Math/Cmsc 475, Jeffrey Adams

Generating Permutations

Here is algorithm L for generating all permutations of a set or multiset, from The Art of Computer Programming, Volume 4A, page 319 by Donald Knuth.

Write the set in ascending order $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$. Note that some of these can be equal.
(1) Find the largest j such that $x_{j}<x_{j+1}$.
(2) Find the largest k such that $x_{j}<x_{k}$.
(3) Swap x_{j} and x_{k}.
(4) Reverse all x_{j+1}, \ldots, x_{n}.

For example consider 1, 2, 2, 3
(1) $j=3, k=4$, swap the (second) 2 and $3: 1,2,3,2$. There is no reversing to do.
(2) $j=2, k=3$, swap the (first) 2 and the 3 to get $1,3,2,2$, then reverse 2,2 to (still) get $1,3,2,2$.
(3) $j=1, k=4$, swap 1 and the (second) 2 , to get $2,3,2,1$, then reverse the last 3: $2,1,2,3$.
(4) $j=3, k=4$: swap the last two: $2,1,3,2$.
(5) $j=2,4$, swap 1,2 , to get $2,2,3,1$, reverse the last two: $2,2,1,3$.

Final result:
$\begin{array}{llllllllllll}1223 & 1232 & 1322 & 2123 & 2132 & 2213 & 2231 & 2312 & 2321 & 3122 & 3212 & 3221 .\end{array}$
A trivial example: 1112. You get: 1121, 1211, 2111.

