Math 744, Fall 2014
Jeffrey Adams
Homework I

(1) Consider the action of $SO(n + 1)$ acting on $S^n \subset \mathbb{R}^{n+1}$.
 (a) Show this action is transitive.
 (b) Compute $\text{Stab}_G(v)$ where $v = (1, 0, \ldots, 0)$.
 (c) Show there is an isomorphism $SO(n + 1)/SO(n) \simeq S^n$ (it is enough to give the bijection).

(2)
 (a) Show that $\{(z, w) \in \mathbb{C}^2 \mid z^2 + w^2 = 1\} \simeq \mathbb{C}^*$
 (b) Show that $SO(2, \mathbb{C}) \simeq \mathbb{C}^*$
 (c) Show that $SO(2, \mathbb{R}) \simeq S^1$
 (d) Show that $SO(1, 1) \simeq \mathbb{R}^*$. Recall $SO(1, 1)$ is the group preserving a symmetric bilinear form on \mathbb{R}^2 of signature $(1, 1)$.
 (e) Show that $O(2)$ contains $SO(2)$ as a subgroup of index 2, that $O(2)$ is no abelian, and the elements of $O(2) - SO(2)$ constitute a single conjugacy class.

(3) Show that the proper algebraic subsets of the one dimensional vector space \mathbb{C} are the finite sets.

(4) Show that the Euclidean topology on \mathbb{C}^n is finer than the Zariski topology.

(5) Show that $\text{Hom}_{\text{alg}}(G_m, G_m) \simeq \mathbb{Z}$; the left hand side is the set of morphisms from G_m to G_m (as algebraic varieties) which are also group homomorphisms.

(6) Recall an action of an algebraic group G on an algebraic variety X is a morphism of varieties $G \times X \to X$, $(g, x) \to g \cdot x$, satisfying $g \cdot (h \cdot x) = (gh) \cdot x$, and $e \cdot x = x$.
 (a) Consider the action of $GL(n, K)$ on K^n (K is any field). Determine the orbits of $GL(n, K)$ and $SL(n, K)$ on K^n.
 (b) Show that $GL(2, K)$ acts transitively on \mathbb{P}^1, the set of lines through the origin in K^2. Compute the stabilizer of a point. Compute the orbits of $GL(2, K)$ on $\mathbb{P}^1 \times \mathbb{P}^1$.