(1) Let M be a smooth manifold. Prove the Jacobi identity for derivations of $C^\infty(M, \mathbb{R})$.

(2) Consider the exponential map from $M_n(\mathbb{C})$ to $GL(n, \mathbb{C})$.

(a) Show that $\det(\exp(X)) = \exp(\text{Tr}(X))$

(b) A matrix is nilpotent if $X^n = 0$ for some n, and unipotent if $X - I$ is nilpotent. Prove that exp is a bijection from nilpotent to unipotent matrices.

(c) A matrix is semisimple if it is diagonalizable. Show that if X is semisimple then $\exp(X)$ is semisimple. What about the converse?

(d) Show that the exponential map from $M_n(\mathbb{C})$ to $GL(n, \mathbb{C})$ is surjective.

(e) Show that the exponential map from $M_n(\mathbb{R})$ to $GL(n, \mathbb{R})$ is not surjective. Describe its image.

(3) Let $G = SO(n)$, the set of $n \times n$ real matrices satisfying $gg^t = I$ and $\det(G) = 1$.

(a) Show that the Lie algebra of G is $\mathfrak{g} = \{X \in M_n(\mathbb{R}) \mid X + X^t = 0\}$.

(b) Show that the exponential map from \mathfrak{g} to G is surjective.

(4) Compute the Lie algebras of the classical groups $SL(n, \mathbb{R}), SO(p, q)$, and $SU(p, q)$. What are their dimensions?

(5) Let $G = SU(2)$, and let \mathfrak{g} be its Lie algebra, $\mathfrak{g} = \{X \in M_2(\mathbb{C}) \mid X + X^t = 0, \text{Tr}(X) = 0\}$.

(a) Show that \mathfrak{g} is a three dimensional real vector space, and $(X, Y) = \text{Tr}(XY^t)$ is a positive definite symmetric bilinear form on \mathfrak{g}.

(b) Let G act on \mathfrak{g} by $g : X \to gXg^{-1}$. Show that this preserves the form $(,)$, so defines a map $\phi : SU(2) \to SO(3)$.

(c) Show that ϕ is surjective, and identify its kernel.