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Geometric Properties of Grassmannian Frames for
R
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John J. Benedetto and Joseph D. Kolesar

Abstract— Grassmannian frames are frames satisfying a min-
max correlation criterion. We translate a geometrically intuitive
approach for two and three dimensional Euclidean space (R2 and
R

3) into a new analytic method which is used to classify many
Grassmannian frames in this setting. The method and associated
algorithm decrease the maximum frame correlation, and hence
give rise to the construction of specific examples of Grassmannian
frames. Many of the results are known by other techniques,
and even more generally, so that this paper can be viewed as
tutorial. However, our analytic method is presented with the goal
of developing it to address unresovled problems ind-dimensional
Hilbert spaces which serve as a setting for sherical codes, erasure
channel modeling, and other aspects of communications theory

I. I NTRODUCTION

A finite frame{xk}Nk=1 ⊆ R
d, whereR

d is d-dimensional
Euclidean space, is characterized by the property that its span
is Rd, see [1]. The norm‖x‖ of x ∈ Rd is the usual Euclidean
distance. Given a finite frame forRd with N elements, we
would like to measure the correlation between frame elements,
and in particular to decide when the correlation is small. We
consider the following metric which is similar to anℓ∞ norm
[2].

Definition I.1. Let N ≥ d and letXN
d = {xk}Nk=1 be a subset

of Rd with each‖xk‖ = 1. Themaximum correlationof XN
d ,

M∞
(
XN

d

)
, is defined as

M∞
(
XN

d

)
= max

k 6=l
|〈xk, xl〉| .

Note that because we consider the absolute value of the
inner product rather than just the inner product, if the angle
between a pair of vectors is closer to90◦, then the pair is less
correlated, while if the angle is closer to0◦ or 180◦ then the
pair is more correlated. Thus, we are measuring the smaller
angle between the lines (one dimensional subspaces) spanned
by these vectors. We could instead consider anℓ1, ℓ2, or ℓp-
type norm to measure correlation, i.e.,

Mp

(
XN

d

)
=




∑

k 6=l

|〈xk, xl〉|p




1/p

, (I.1)

or even weighted versions of (I.1). (See [3] for a discussion
of the casep = 1, 2.)
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Fix d and N with N ≥ d. Our goal is to constructN
element unit norm frames,XN

d , with smallest maximum cor-
relation,M∞

(
XN

d

)
, i.e., unit norm frames that are maximally

spread apart. To this end we make the following definition.

Definition I.2. Let N ≥ d. A sequenceUN
d = {uk}Nk=1 ⊆ Rd

of unit norm vectors is an(N, d)-Grassmannian frameif it is
a frame and if

M∞
(
UN

d

)
= inf

{
M∞

(
XN

d

)}
, (I.2)

where the infimum is taken over all unit norm,N -element
frames forRd.

A compactness argument shows that Grassmannian frames
exist (see the Appendix), but constructing Grassmannian
frames is challenging [4], [5], [6]. As is described in [2], the
concept of Grassmannian frames is related to several other
areas of mathematics and engineering, for example, packings
in Grassmannian spaces, spherical codes and designs, the
construction of equiangular lines, strongly regular graphs, and
reduction of losses associated with packet based communica-
tions systems such as the Internet, [7], [8], [9].

In this paper we give an analytic construction of Grass-
mannian frames inRd, whend = 2, 3. The first treatment of
this construction problem in the cased = 3 is found in [10].
There are extensive computational and theoretical resultsin
[4] which approach this construction problem from a sphere
packing point of view. The relevance of such constructions
was brought to the attention of the frame community in [2].

After stating some technical preliminaries in Section II, we
characterize all(N, 2)-Grassmannian frames in Section III.
In Section IV we state and prove a modest generalization
of a theorem, given in [2], which provides a lower bound
for M∞

(
XN

d

)
. Section V is devoted to the construction of

(4, 3)-Grassmannian frames from first principles rather than
using the theorem in Section IV. Convexity arguments are used
in Section VI to construct examples of(5, 3)-Grassmannian
frames. In Section VII, we construct a(6, 3)-Grassmannian
frame using the theorem in Section IV. The techniques used
in the constructions of Sections V, VI, and VII were developed
in part to fathom the geometrical ideas of Fejes-Tóth [10].

Our presentation is technical, and, we believe, necessarily
so. Some of the technicalities are routine, but they are included
since going from one step to the next without exhibiting them
sometimes seemed mysterious. On the other hand, some of our
techniques may very well be useful in developing more general
methods of finding frames with small correlations in applicable
complex and higher dimensional settings. For example, see the
new techniques used in proving Propositions VI.3 and VI.4,
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and Lemmas VI.5 and VI.6. Our notation is standard, but we
do mention that “=⇒ ” means “implies” and “⇐⇒ ” means
“if and only if”.

II. PRELIMINARIES

In this section, we collect some definitions and theorems
used in the sequel.

Thetransposeof a vector or matrixA is denoted byAT ; and
theHermitian transposeof a vector or matrixB with complex
entries is denoted byB∗, the conjugate transpose ofB, i.e.,
B∗ = B

T
. A d × d matrix U with real entries isorthogonal

if the columns ofU are orthonormal, i.e.,UT U = Id, where
UT is the transpose ofU andId is thed× d identity matrix.
If U is orthogonal, i.e.,U ∈ SOd, then for anyx, y ∈ Rd,
‖Ux‖ = ‖x‖ and 〈Ux, Uy〉 = 〈x, y〉.

The torus is T2π = R/(2πZ). We take any fixed half-open
interval of length2π to be a representative ofT2π.

The unit spherein Rd is Sd−1 =
{
x ∈ Rd : ‖x‖ = 1

}
. A

set{x1, . . . , xN} of unit norm vectors isequiangularif there
is anα ∈ [0, 1] such that|〈xk, xl〉| = α whenk 6= l.

A d×d matrix A with real entries issymmetricif AT = A.
The spectral theorem for symmetric matrices is the follow-

ing, see [11]. We use it in Theorem IV.2.

Theorem II.1 (Spectral theorem). A d×d symmetric matrix
A over R has the following properties:

i. A hasd real eigenvalues counting multiplicities.
ii. The dimension of the eigenspace for each eigenvalue

λ equals the multiplicity ofλ as a root of the characteristic
equationdet(A− λI) = 0.

iii. The eigenspaces are mutually orthogonal, in the sense
that eigenvectors corresponding to different eigenvaluesare
orthogonal.

iv. A is orthogonally diagonalizable, i.e., there is an
orthonormal basis of eigenvectors forA.

We now state some basic definitions of frame theory [12],
[3], [13], [14], [1]. Let H be a separable Hilbert space, and
let X = {xn : n ∈ I} ⊂ H whereI is a countable indexing
set. Consider the following map associated with the setX :

L : H → ℓ2(I)
y 7→ {〈y, xn〉}n∈I .

If L is a well-defined linear map, i.e., if
∑

n∈I |〈y, xn〉|2 <∞
for any y ∈ H, then L is a Bessel mapand X is a Bessel
sequence. The adjoint of L is the map

L∗ : ℓ2(I)→H
{c[n]}n∈I 7→

∑

n∈I
c[n]xn.

If L is a Bessel map, the correspondingframe operatoris the
mapS : H → H defined asL∗L. Thus, for anyy ∈ H,

S(y) = L∗ (L(y)) =
∑

n∈I
〈y, xn〉xn.

As suchy =
∑

n∈I 〈y, xn〉S−1xn. The Grammian operator
is the mapG : ℓ2(I) → ℓ2(I) defined asG = LL∗. Both S
andG are positive, and hence self-adjoint operators.

A Bessel sequenceX is a frame for H if there exist
constantsA, B with 0 < A ≤ B < ∞ such that, for any
y ∈ H,

A ‖y‖2 ≤
∑

n∈I
|〈y, xn〉|2 ≤ B ‖y‖2 .

Thus, given any frame, we have four natural maps:L, L∗, S,
andG. If the indexing setI is finite thenX is called afinite
frame. Also, if A = B then X is called atight frame, or, if
we wish to emphasize the bound, anA-tight frame.

Throughout this paper we shall use that fact that any finite
set of vectors forms a frame for its span with the frame
bounds being the largest and smallest eigenvalues of the frame
operator. Since any finite set of vectors automatically has an
upper frame bound by Cauchy-Schwarz, the fact that any finite
set is a frame for its span is a consequence of the following
result.

Proposition II.2. The following three statements are equiva-
lent:

i. {xn}Nn=1 is a frame forRd;
ii. span{xn}Nn=1 = Rd. iii. ∃A > 0 such that∀y ∈ Rd,

A ‖y‖2 ≤
N∑

n=1

| 〈y, xn〉 |2

III. T WO DIMENSIONAL GRASSMANNIAN FRAMES

We classify all(N, 2)-Grassmannian frames. The idea for
the following proof is illustrated in Figure 1. In fact, in order
to maximize the minimum angle between pairs of vectors, the
vectors we must be equally spaced.

Theorem III.1 ( (N, 2)-Grassmannian). Let X = XN
2 =

{xk}Nk=1 be a collection ofN unit vectors inR2. Then we
have the lower bound

cos(π/N) ≤M∞ (X) .

Furthermore,X is an (N, 2)-Grassmannian frame if and only
if there isP ∈ SO2 and a sequence{εk}Nk=1 ⊂ {±1}N such
that

P (εX) :=
{
P (εkxk) : xk ∈ XN

2

}
(III.1)

=

{(
cos(πk/N)
sin(πk/N)

)

: k = 1, . . . , N

}

.

Proof: Let δ1 = (1, 0)T and let δ2 = (0, 1)T . Since
|〈x, y〉| = |〈x,−y〉|, we note that changing the sign of any
xk ∈ X does not effect the value ofM∞(X). Thus, by
changing the sign onxk when necessary, we may assume
xk ∈ {v ∈ S1 : 〈v, δ2〉 ≥ 0}. Also, since rotations preserve
inner products, applying a rotation to all the vectors inX
does not effectM∞(X). Thus, rotating by−φ, whereφ =
mink=1,...,N cos−1(〈xk, δ1〉), and reordering if necessary, we
may assumex1 = δ1 = (1, 0)T , and

1 ≥ 〈x2, x1〉 ≥ 〈x3, x1〉 ≥ . . . ≥ 〈xN , x1〉 ≥ −1. (III.2)

For k = 1, . . . , N − 1, let θk be the angle betweenxk

and xk+1, and let θN be the angle betweenxN and the
negativex-axis, i.e., θk = cos−1 (〈xk+1, xk〉) and θN =
cos−1 (〈−δ1, xN 〉), see Figure 1 for an example whenN = 6.
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Fig. 1. An example of the reordering induced by the inequalities on the inner
products in (III.2) forN = 6.

Then, because of the above reordering,θk ≥ 0 for k =
1, . . . , N , and

∑N
k=1 θk = π. Thus, for1 ≤ l < k ≤ N ,

|〈xk, xl〉| =

∣
∣
∣
∣
∣
∣

cos





k−1∑

j=l

θj





∣
∣
∣
∣
∣
∣

,

where min
k=1,...,N−1

θk ≤
k−1∑

j=l

θj ≤ π − θN .

Furthermore,| cos(θ)| has a maximum on[0, π] at θ = 0, and
θ = π, and |cos(θ)| is monotone decreasing on[0, π/2] and
monotone increasing on[π/2, π]. Hence,

M∞(X) = max
k 6=l

∣
∣
∣
∣
∣
∣

cos





k−1∑

j=l

θj





∣
∣
∣
∣
∣
∣

= max

{

|cos (π − θN )| ,
∣
∣
∣
∣
cos

(

min
k=1,...,N−1

θk

)∣
∣
∣
∣

}

=

∣
∣
∣
∣
cos

(

min
k=1,...,N

θk

)∣
∣
∣
∣
.

Therefore, in order to minimizeM∞(X) we must choose
N positive numbersα1, . . . , αN which sum toπ and which
minimize |cos(mink=1,...,N αk)|, and, hence, which maximize
the expression

min
k=1,...,N

αk. (III.3)

Now we claim that if α1, . . . , αN maximize (III.3) then
α1 = . . . = αN . We prove this implication by contraposition,
i.e., assume it is not the case thatα1 = . . . = αN . Then there
is anm ∈ {1, 2, . . . , N − 1} so that if we listα1 ≤ . . . ≤ αN

by size, then only the firstm are equal, and the(m + 1)st is
strictly larger than themth, i.e.,

αk1
= αk2

= . . . = αkm
< αkm+1

≤ . . . ≤ αkN
.

Let ν = αkm+1
− αkm

and, for j = 1, . . . , N , define the
sequenceβkj

as

βkj
=







αkj
+ ν

2m for j = 1, . . . , m,

αkj
− ν

2 for j = m + 1,

αkj
for j = m + 2, . . . , N .

Now the new set,

βk1
= βk2

= . . . = βkm
≤ βkm+1

≤ . . . ≤ βkN
,

has a strictly larger minimum angle than the original since for
j = 1, . . . N ,

min
k=1,...,N

αk = αk1
< αk1

+
ν

2m
= βk1

≤ βj .

We see that the originalαs do not maximize (III.3). So by
contraposition we have that if theαs maximize (III.3), then
they must all be equal. Finally, ifα is the common value,
then

∑N
k=1 αk = Nα = π, and thereforeα = π/N . Thus,

π/N ≥ mink=1,...,N θK , and therefore

cos(π/N) ≤ cos

(

min
k=1,...,N

θK

)

=M∞ (X) .

Next we prove that any(N, 2)-Grassmannian frame is, up
to a sign change, the firstN adjacent vertices of a regular2N -
gon. If X is an (N, 2)-Grassmannian frame, then, using the
above argument, we see that we can choose{εk} ⊂ {±1}N
andP ∈ SO2 so that the frame

P (εX) = {P (εkxk) : xk ∈ X}

is in the closed upper half plane with one of the vectors being
(1, 0)T ; and

M∞ (X) =M∞ (P (εX)) = cos

(

min
k=1,...,N

θk

)

,

where θk is the angle between thekth and (k + 1)st adja-
cent vectors inP (εX) (reindexing may be necessary). Since
an (N, 2)-Grassmannian frame minimizes the∞-correlation
M∞ (X), the above argument also shows thatθ1 = . . . =
θN = π/N . Therefore, the angle between adjacent vectors in
P (εX) is π/N , and we have proved the forward direction of
the equivalence.

To show the reverse implication we note that if

P (εX) =

{(
cos(πk/N)
sin(πk/N)

)

: k = 1, . . . , N

}

,

then

M∞ (X) =M∞ (P (εX))

= cos

(

min
k=1,...,N

θk

)

= cos(π/N).

Hence,X is (N, 2)-Grassmannian since it achieves the lower
bound. Q.E.D.

Notice that forN odd, if we change the sign on the theN th
roots of unity below the real axis, then we obtain the frame
described in the above claim withεk = 1, i.e., with all vectors
in the upper half plane, and a common angle ofπ/N between
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adjacent vectors. Hence forN odd, theN th roots of unity are
(N, 2)-Grassmannian. Furthermore, forN even, theN th roots
of unity do not form an(N, 2)-Grassmannian frame because
ζ and−ζ are bothN th roots. If we identifyζ and−ζ then
we obtain an(N/2, 2)-Grassmannian frame.

IV. A LOWER BOUND FORM∞

It is more difficult to construct a Grassmannian frame inR3

for N > 3 than in R2. Thus, we first derive a lower bound
for the maximum correlation between frame elements of an
N -element frame forRd, see [2], [15] for superb treatments,
although we have felt compelled to spell-out all details. Such
lower bounds are useful in coding theory [16], and we first
learned of them in [2].

We shall need the following lemma whose proof can be
found in the Appendix.

Lemma IV.1. Let Hn be then×n matrix with 1 on the main
diagonal andβ elsewhere, and letCn be then × n matrix
defined by

[Cn]i,j =

{

β, if (i, j) = (1, 1)

[Hn]i,j , otherwise,

where[Hn]i,j is the(i, j)th entry of the matrixHn. Then

det(Hn) = (1 + (n− 1)β)(1− β)n−1 (IV.1)

and

det(Cn) = β(1− β)n−1. (IV.2)

Theorem IV.2. Let N ≥ d, let XN
d be anN -element subset

of Sd−1, and letd0 = dim
(
span

(
XN

d

))
. Then

M∞
(
XN

d

)
≥
√

N − d0

d0(N − 1)
, (IV.3)

where equality holds in(IV.3) if and only if
a. XN

d is equiangular, and
b. XN

d is a tight frame for its span with frame bounds
A = B = N

d0
.

Furthermore, if N > d(d+1)
2 , then XN

d is not equiangular,
hence equality cannot hold in(IV.3).

Proof: a. First, we prove the inequality (IV.3). Since
the N × N Grammian matrixG is symmetric, the spectral
theorem applies, and soG hasN eigenvaluesλj counted with
multiplicity and ordered by size, i.e.,λ1 ≥ λ2 ≥ . . . ≥ λN .
Furthermore, sincerank(G) = d0, only the firstd0 of these
eigenvalues are nonzero. Hence,

d0∑

k=1

λk = TraceG =

N∑

k=1

|〈xk, xk〉| =
N∑

k=1

1 = N.

Now setek = λk − N
d0

. Then

d0∑

k=1

ek =

d0∑

k=1

(

λk −
N

d0

)

= N − d0
N

d0
= 0,

and so
d0∑

k=1

λ2
k =

d0∑

k=1

(
N

d0
+ ek

)2

=

d0∑

k=1

N2

d2
0

+
2N

d0

d0∑

k=1

ek +

d0∑

k=1

e2
k

=
N2

d0
+

d0∑

k=1

e2
k ≥

N2

d0
,

with equality if and only ifek = 0 for k = 1, . . . d0, i.e., if
and only ifλk = N

d0
for k = 1, . . . d0. Next, the eigenvalues of

G2 areλ2
1 ≥ λ2

2 ≥ . . . ≥ λ2
N , so that ifgk is thekth column

of G, then by matrix multiplication we have

N2

d0
≤

d0∑

k=1

λ2
k = Trace(G2) =

N∑

k=1

gT
k gk (IV.4)

=

N∑

k=1

N∑

l=1

|〈xk, xl〉|2.

SinceG is symmetric,|〈xk, xl〉| = |〈xl, xk〉|, so that by (IV.4)
we compute

N2

d0
≤

N∑

k=1

N∑

l=1

|〈xk, xl〉|2

=
∑

k=l

|〈xk, xl〉|2 +
∑

k<l

|〈xk, xl〉|2 +
∑

k>l

|〈xk, xl〉|2

= N + 2
∑

k<l

|〈xk, xl〉|2

≤ N + 2
N(N − 1)

2
max
k 6=l
{|〈xk, xl〉|2}.

(IV.5)

Therefore, solving for themax in (IV.5), we have

N − d0

d0(N − 1)
≤M∞

(
XN

d

)2
. (IV.6)

For future reference we note thatd ≥ d0 implies N−d
d(N−1) ≤

N−d0

d0(N−1) . Hence, (IV.3) remain true when we replaced with
d0 ≤ d.

b. Next we prove that equality holds in (IV.3) if and only
if XN

d is equiangular and is a tight frame for its span.

(=⇒): SupposeM∞(XN
d ) =

√
N−d0

d0(N−1) . Then (IV.5)
becomes

N∑

k=1

N∑

l=1

|〈xk, xl〉|2 =
N2

d0
,

which implies from (IV.4) that

d0∑

k=1

λ2
k =

N2

d0
;

and, as we saw above, equality in this sum implies thatλk =
N
d0

for k = 1, . . . , d0. The frame bounds forXN
d are the largest

and smallest nonzero eigenvalues, and henceA = N/d0 = B
and soXN

d is a tight frame for its span.
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To see thatXN
d is also equiangular, we notice that (IV.5)

gives

N + 2
∑

k<l

|〈xk, xl〉|2 =
N2

d0
,

and, hence,
∑

k<l

|〈xk, xl〉|2 =
N(N − d0)

2d0
. (IV.7)

Our assumptionmaxk 6=l |〈xk, xl〉|2 = N−d0

d0(N−1) implies that,
for any k 6= l,

|〈xk, xl〉|2 =
N − d0

d0(N − 1)
− εk,l,

whereεk,l ≥ 0. Thus (IV.7) is

N(N − d0)

2d0
=
∑

k<l

(
N − d0

d0(N − 1)
− εk,l

)

=

(
N(N − 1)

2

)(
N − d0

d0(N − 1)

)

−
∑

k<l

εk,l

=
N(N − d0)

2d0
−
∑

k<l

εk,l.

Therefore,
∑

k<l εk,l = 0, and, since theεk.l are non-negative,
we can assert thatεk,l = 0 for k < l. Also, since G
is symmetric,εk,l = 0 for all k 6= l, and henceXN

d is
equiangular with|〈xk, xl〉|2 = N−d0

d0(N−1) .
(⇐=): Now assumeXN

d is equiangular and is a tight frame
for its span with frame boundA = B = N

d0
. Then there is an

α ∈ [0, 1], such that|〈xk, xl〉|2 = α for k 6= l. Now since
XN

d is tight, λk = N
d0

for k = 1, . . . , d0, and zero otherwise.
Hence (IV.4) and (IV.5) imply

N2

d0
=

d0∑

k=1

λ2
k =

N∑

k=1

N∑

l=1

|〈xk, xl〉|2 = N + N(N − 1)α.

Thus, solving forα we see that equality holds in (IV.3).
c. Finally, to proveN > d(d+1)

2 implies XN
d is not

equiangular, we prove the contrapositive using Lemma IV.1
and the following argument, cf., [17]. AssumeXN

d is equian-
gular. Let Pk : Rd → Rd be the projection ofx onto the
line spanned byxk, i.e., Pkx = 〈x, xk〉xk. Let V be the
vector space of symmetric linear mappingsRd → Rd. Then
dim(V ) = d(d+1)

2 , and the map〈·, ·〉 : V × V → R given by
〈C, D〉 = Trace(CD) is an inner product onV . SinceXN

d is
equiangular, there is anα ∈ [0, 1] such that〈xk, xl〉 = ±α for
k 6= l. Furthermore,α = 1 impliesN = 2, since the elements
of XN

d are assumed to be distinct and of unit norm. Thus, for
d ≥ 2, we haveN = 2 < 3 ≤ d(d+1)

2 . Therefore, we may
assumeα ∈ [0, 1). Now,

〈Pk, Pl〉 = 〈xk, xl〉2 =

{

1, if k = l

α2, if k 6= l.

Hence, the Grammian of the set{P1, . . . PN} ⊂ V is

[G]k,l = [〈Pk, Pl〉]k,l =

{

1, if k = l

α2, if k 6= l,
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Fig. 2. The functionf(x) = cos2(π/x) − x−2
2(x−1)

on [2, 70].

where[G]k,l is the(k, l)th entry of the matrixG. Thus, Lemma
IV.1 applies with G = HN and β = α2. Consequently, if
α ∈ [0, 1), then

detG =
(
1 + (N − 1)α2

)
(1− α2)N−1 6= 0.

Therefore,G is invertible and has full rank. Finally, since
rank(G) = rank(S) = N , we have that

N = rank(G) = dim (span {P1, . . . , PN})

≤ dim(V ) =
d(d + 1)

2
.

We have proved that if XN
d is equiangular, then

N ≤ d(d + 1)/2; and so, by contraposition, we have
proven the result. Q.E.D.

Remark: Theorem III.1 shows thatM∞
(
XN

2

)
≥

cos (π/N), while Theorem IV.2 showsM∞
(
XN

2

)
≥

√
N−2

2(N−1) . Using standard calculus techniques, we can show
that the equality in Theorem III.1 is an improvement over the
bound in Theorem IV.2 for allN > 3. Let

f(x) = cos2(π/x) − x− 2

2(x− 1)

(see Figure 2), so that

f ′(x) =
π

x2
sin

(
2π

x

)

− 1

2(x− 1)2

and

f ′′(x) = −2π

x3

(
π

x
cos

(
2π

x

)

+ sin

(
2π

x

))

+
1

(x− 1)3
.

Hence,

f ′(x) > 0 ⇐⇒ sin(2π/x) >
1

2π

(
x

x− 1

)2

.

For x ∈ [3, 6],

sin

(
2π

x

)

≥
√

3

2
≥ 9

8π
≥ 1

2π

(
x

x− 1

)2

,

and sof(x) is increasing forx ∈ [3, 6]; and, sincef(3) = 0,
we have thatf(x) ≥ 0 for x ∈ [3, 6]. Furthermore, forx ∈
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N Optimal bound Bound from Theorem III.1

=
q

N−2
2(N−1)

cos(π/N)

3 0.5000 0.5000
4 0.5774 0.7071
5 0.6124 0.8090
6 0.6325 0.8660
7 0.6455 0.9010
8 0.6547 0.9239
9 0.6614 0.9397

10 0.6667 0.9511

TABLE I

IMPROVEMENT OF THE OPTIMAL BOUND DERIVED INTHEOREM IV.2 FOR

THE CASE OF(N, 2)-GRASSMANNIAN FRAMES.

[6,∞), 36
50π ≥ 1

2π

(
x

x−1

)2

. Also, sin
(

2π
x

)
≥ 36

50π if and only
if

x ≤ 2π

sin−1
(

36
50π

) < 27.172.

Thus, f(x) is increasing forx ∈ [3, 27], and, hence, it is
greater that zero on that same interval. We also note that for
x > 1,

1

2π
<

1

2π

(
x

x− 1

)2

.

Further,sin
(

2π
x

)
≤ 1

2π when

x ≥ 2π

sin−1
(

1
2π

) > 39.310.

Hence f is decreasing on the interval[40,∞), and since
limx→∞ f(x) = 1

2 , we have thatf(x) > 1
2 for x ∈ [40,∞).

Finally, we check thatf ′′ < 0 on the interval[27, 40] and
f(27), f(40) > 1

2 ; thus, f(x) > 1
2 on [27, 40]. In summary

we have shown thatf(x) > 0 on (3,∞) and thatf(x) > 1
2

on [27,∞). Therefore,

cos
( π

N

)

>

√

N − 2

2(N − 1)
for N > 3,

and we see that Theorem III.1 is an improvement over Theo-
rem IV.2 in the cased = 2, see Table I.

In light of Theorem IV.2, we make the following definition,

Definition IV.3. Let N, d ∈ N with d ≤ N ≤ d(d+1)
2 . Let

XN
d = {xk}Nk=1 be a frame forRd with ‖xk‖ = 1. We call

XN
d an optimal Grassmannianframe if XN

d satisfies (IV.3)
with equality, i.e.,

M∞
(
XN

d

)
=

√

N − d

d(N − 1)
.

In R2, sinced = 2 and d(d+1)
2 = 3, only frames withN = 2

and N = 3 elements can be optimal Grassmannian. Since
cos(π/2) = 0 =

√

(2− 2)/(2(2− 1), andcos(π/3) = 1/2 =
√

(3− 2)/(2(3− 1), both (2, 2)- and (3, 2)-Grassmannian
frames are optimal. The same phenomenon does not happen in
three dimensions. Table II lists the Grassmannian bound which

N Optimal bound Grassmannian bound

=
q

N−3
3(N−1)

= minM∞

`

XN
3

´

3 0 0
4 0.3333 0.3333
5 0.4082 0.4472
6 0.4472 0.4472

TABLE II

BOUNDS FORN -ELEMENT FRAMES INR
3 WITH POTENTIAL OF BEING

OPTIMAL GRASSMANNIAN.

will be proven below and the optimal bound forN = 3, 4, 5, 6,
(the only Ns with the possibility of being optimal). By
inspecting Table II, we notice that(5, 3)-Grassmannian frames
are not optimal, while(3, 3), (4, 3) and(6, 3)-Grassmannians
are optimal.

V. (4, 3)-GRASSMANNIAN FRAMES

In this section and the next two, we shall derive the bounds
for three dimensional Grassmannian frames withN = 3, 4, 5
and6. First note that ifN = 3, and if X is any orthonormal
basis forR3, then0 ≤M∞(X) = 0. Hence, any orthonormal
basis is Grassmannian and, in fact,X is trivially optimal
Grassmannian.

Next considerN = 4. We need the following two lemmas
which are necessary to rigorize Fejes Tóth’s ideas in [10].
In particular, Lemma V.1 is intuitively elementary when we
consider the fact that theℓ2-norm is convex,Q is convex, and
C is the set of extreme points ofQ.

Lemma V.1. Let a ∈ Rd, and let{v1, v2, . . . , vd} ⊂ Rd. Set

Q =






a +

d∑

j=1

sjvj : sj ∈ [0, 1]







C =






a +

d∑

j=1

εjvj : εj ∈ {0, 1}






,

and choosec ∈ C such that‖c‖ = max {‖cl‖ : cl ∈ C} where
l = 1, . . . , 2d. Then, for anyv ∈ Q \ C, ‖v‖ < ‖c‖.

Proof: Let v ∈ Q\C, so thatv = a+
∑d

j=1 sjvj . Since
v /∈ C, there is anm ≥ 1, such thatsj1 , . . . , sjm

∈ (0, 1)
and sjm+1

, . . . , sjd
∈ {0, 1}. For i ≤ m set ti = sji

, and
for i > m set εi = sji

, so ti ∈ (0, 1) and εi ∈ {0, 1}.
Now, let w0 = v, and for eachi = 1, . . . , m, recursively let
wi = wi−1 + (ε̃i − ti)vji

, where

ε̃i =

{

1, if 〈vji
, wi−1〉 > 0

0, if 〈vji
, wi−1〉 ≤ 0.

By induction oni, we show that

‖v‖ = ‖w0‖ < ‖w1‖ < . . . < ‖wm‖ .
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Note that by construction of̃εi, we have thatwm ∈ C, and,
hence,‖wm‖ ≤ ‖c‖. Also note that, fori = 1, . . . , m,

‖wi‖2 = ‖wi−1‖2 + 2 (ε̃i − ti) 〈wi−1, vji
〉

+ (ε̃i − ti)
2 ‖vji

‖2 . (V.1)

We begin the induction with the base casei = 1. Inspecting
(V.1) with i = 1, we have 3 cases.

Case 1.〈w0, vj1 〉 > 0.
Then ε̃1 = 1, and so ε̃1 − t1 > 1 − t1 > 0 and
2 (ε̃1 − t1) 〈w0, vj1 〉 > 0. Hence, by (V.1),‖w1‖2 > ‖w0‖2.

Case 2.〈w0, vj1 〉 < 0.
Then ε̃1 = 0, so that ε̃1 − t1 < −t1 < 0, and therefore
2 (ε̃1 − t1) 〈w0, vj1 〉 > 0. Hence, by (V.1),‖w1‖2 > ‖w0‖2.

Case 3.〈w0, vj1 〉 = 0.
Then ε̃1 = 0, w0 + (−t1vj1) = y2, where fork = 2, . . .m,
and

yk = a +

d∑

i=k

sji
vji

.

By the Pythagorean theorem,‖w0‖2 + ‖−t1vj1‖2 = ‖y2‖2,
and, hence,

‖w0‖2 = ‖y2‖2 − t1 ‖vj1‖2 . (V.2)

Thus, ε̃1 = 0 and−t21 < 0 imply −t21 ‖vj1‖ < −ε̃ 2
1 ‖vj1‖,

and, by equation (V.2),

‖w0‖2 < ‖y2‖2 + 0 = ‖w0 + (ε̃1 − t1)vj1‖2 = ‖w1‖2 .

Consequently, in every case,‖w0‖ < ‖w1‖.
Now for the induction step. If1 < i ≤ m, and if we have

‖w0‖ < ‖w1‖ < . . . < ‖w1−1‖ ,

then repeating the above argument withw0, w1, y2 replaced
with wi−1, wi, yi+1, respectively, we have‖wi−1‖ < ‖wi‖.
Finally, sincewm ∈ C, we obtain‖v‖ < ‖wm‖ ≤ ‖c‖.
Q.E.D.

Lemma V.2. Let {b, y1, y2, y3} ⊂ S2. If |〈b, y1〉|, |〈b, y2〉|,
and |〈b, y3〉| are not all equal, then there is a constructible
c ∈ R3 such that

max {|〈b, yk〉| : k = 1, 2, 3} (V.3)

> max

{∣
∣
∣
∣

〈
c

‖c‖ , yk

〉∣
∣
∣
∣
: k = 1, 2, 3

}

.

Furthermore,
∣
∣
∣

〈
c

‖c‖ , y1

〉∣
∣
∣ =

∣
∣
∣

〈
c

‖c‖ , y2

〉∣
∣
∣ =

∣
∣
∣

〈
c

‖c‖ , y3

〉∣
∣
∣.

Proof: Case 1.{y1, y2, y3} ⊂ S2 is linearly dependent.
Then there isa1, a2, a3 ∈ R3 with at least one (actually two)
ak 6= 0 such that

a1y1 + a2y2 + a3y3 = 0.

Thereforedim (kerY ) ≥ 1, whereY is a 3 × 3 matrix with
columnsyj . Hence,dim (spanY ) = rankY ≤ 2. We can
choosec ∈ (span Y )

⊥, so that

∀k = 1, 2, 3, |〈b, yk〉| > 0 =

∣
∣
∣
∣

〈
c

‖c‖ , yk

〉∣
∣
∣
∣
,

−2−1012
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1
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1
 

c
3
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2
 

c
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2
 

−c
1
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4
 

−c
3
 

Fig. 3. An example showing the points±ck, k = 1, . . . , 4, and their
relationship to the vectorsy1, y2, y3. Note,y2 lies on the plane with vertices
{c1, c2,−c3, c4}.

since by assumption we know that the|〈b, yk〉| cannot all be
equal, and hence cannot all equal zero.

Case 2.{y1, y2, y3} ⊂ S2 is linearly independent.
Let Y be the3 × 3 matrix whose columns areyj . ThenY T

is invertible. Letc1, . . . , c4 be the columns of the following
3× 4 matrix product

[
|
c1
|

|
c2
|

|
c3
|

|
c4
|

]

=
(
Y T
)−1





1 −1 1 1
1 1 −1 1
1 1 1 −1



 , (V.4)

see Figure 3. Notice that

c1 =
(
Y T
)−1





1
1
1



 =
(
Y T
)−1









−1
1
1



+





1
−1

1



+





1
1
−1









= c2 + c3 + c4.

Let c ∈ {c1, . . . , c4} have the property that‖c‖ =
max {‖c1‖ , . . . , ‖c4‖}. We now show that this procedure of
matrix multiplication followed by taking the maximum gives
rise to a vectorc ∈ R3 which satisfies the conclusion of
Lemma V.2.

For j = 1, 2, 3, definevj = cj+1 − c1, and, set

Q =






c1 +

3∑

j=1

sjvj : sj ∈ [0, 1]







and

C =






c1 +

3∑

j=1

εjvj : εj ∈ {0, 1}






.

Identify a point inC with a vector(ε1, ε2, ε3). For example,
if (ε1, ε2, ε3) = (1, 0, 1), then v = c1 + v1 + v3. Observe
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that sincec1 = c2 + c3 + c4, we have the following bijection
betweenC and{±c1,±c2,±c3,±c4}:

(0, 0, 0) ←→ c1

(1, 0, 0) ←→ c2

(0, 1, 0) ←→ c3

(0, 0, 1) ←→ c4

(1, 1, 0) ←→ −c4

(1, 0, 1) ←→ −c3

(0, 1, 1) ←→ −c2

(1, 1, 1) ←→ −c1.

In particular,‖c‖ = max {‖c′‖ : c′ ∈ C}.
Now, if

H =
{
v ∈ R

3 : |〈v, yk〉| ≤ 1 for k = 1, 2, 3
}

then Q = H . To see this, we check both containments, but
first note that (V.4) withj = 2 implies

Y T c2 =





−1
1
1



 =⇒





yT
1 c2

yT
2 c2

yT
3 c2



 =





−1
1
1



 ,

i.e., 〈y1, c2〉 = −1, 〈y2, c2〉 = 1, and 〈y3, c2〉 = 1, and
similarly for the othercj .

Q ⊂ H : Let v ∈ Q. Then

|〈v, yk〉| =

∣
∣
∣
∣
∣
∣

〈c1, yk〉+
3∑

j=1

sj 〈vj , yk〉

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

1 +

3∑

j=1

sj 〈vj , yk〉

∣
∣
∣
∣
∣
∣

,

whereas

〈vj , yk〉 = 〈cj+1 − c1, yk〉 =

{

1− 1, if k = j,

−1− 1, if k 6= j.

Thus, |〈vj , yk〉| = |1− 2sk|, and sosk ∈ [0, 1] implies that
1− 2sk ∈ [−1, 0], and, hence,|〈vj , yk〉| ≤ 1

H ⊂ Q: Equivalently, we prove the inclusionQc ⊂ Hc

of complements. Letv /∈ Q. First, v1, v2, v3, are the images
of (−2, 0, 0)T , (0,−2, 0)T , (0, 0,−2)T , respectively, under the
transformation

(
Y T
)−1

. Hence,{v1, v2, v3} is a basis forR3.
Thus, there are unique elementss1, s2, s3 ∈ R

3 such thatv−
c1 = s1v1 + s2v2 + s3v3, i.e.,

v = c1 + s1v1 + s2v2 + s3v3.

Because of the uniqueness of thesjs, v /∈ Q implies there
is a j0 ∈ {1, 2, 3} such thatsj0 /∈ [0, 1]. Now, |〈v, yj0〉| =
|1− 2sj0 |, and so sj0 /∈ [0, 1] implies

1− 2sj0 ∈ (−∞,−1) ∪ (1,∞).

Thus,|〈v, yj0〉| > 1, and sov /∈ H . Therefore, we have proven
H ⊂ Q.

We complete the proof of Lemma V.2 as follows. For the
set{b, y1, y2, y3} ⊂ S2, let

|〈b, ykb
〉| = max {|〈b, y1〉| , |〈b, y2〉| , |〈b, y3〉|} ,

and setλb = 〈b, ykb
〉. Then, for anyk = 1, 2, 3,

∣
∣
∣
∣

〈
b

λb
, yk

〉∣
∣
∣
∣
=
|〈b, yk〉|
|〈b, ykb

〉| ≤
|〈b, ykb

〉|
|〈b, ykb

〉| = 1,

and so b
λb
∈ Q. Now v ∈ C implies that the elements of

{|〈v, yk〉| : k = 1, 2, 3} are all equal. By the contrapositive of
this implication, we see that the assumption that the elements
of {|〈b, yk〉| : k = 1, 2, 3} are not all equal impliesb

λb
/∈ C.

Thus, we have shownbλb
∈ Q \C. Therefore, by Lemma V.1,

we have
∥
∥
∥

b
λb

∥
∥
∥ < ‖c‖; and, hence,b ∈ S2 implies

1

|λb|
=

1

|λb|
‖b‖ =

∥
∥
∥
∥

b

λb

∥
∥
∥
∥

< ‖c‖ .

We conclude that

max {|〈b, yk〉| : k = 1, 2, 3} = |λb|

>
1

‖c‖ = max

{∣
∣
∣
∣

〈
c

‖c‖ , yk

〉∣
∣
∣
∣
: k = 1, 2, 3

}

,

and so Lemma V.2 is proved. Q.E.D.

With these two lemmas we can prove the following theorem.

Theorem V.3 ((4,3)-Grassmannian).Let U =
{u1, u2, u3, u4} ⊂ S2 ⊂ R3. If U is (4, 3)-Grassmannian,
then U is equiangular, i.e.,|〈uk, ul〉| = β ∈ [0, 1] whenever
k 6= l.

Proof: We show the contrapositive of the above impli-
cation, viz., we prove that ifU is not equiangular, then there
is a 4 element setX ⊂ S2 such that

M∞(X) <M∞(U).

Hence,U does not have minimal maximum correlation, and
therefore it is not(4, 3)-Grassmannian.

SupposeU = {u1, u2, u3, u4} is not equiangular. Then
there is anm1 ∈ {1, 2, 3, 4} such that, ifk1, k2, k3 are the
remaining indices, we have

max {|〈um1
, uk1
〉| , |〈um1

, uk2
〉| , |〈um1

, uk3
〉|} =M∞(U)

and

|〈um1
, uk1
〉| , |〈um1

, uk2
〉| , |〈um1

, uk3
〉| are not all equal.

Applying Lemma V.2 with b = um1
and {y1, y2, y3} =

{uk1
, uk2

, uk3
}, there isc ∈ R3 such that

max {|〈um1
, uki
〉| : i = 1, 2, 3, }

> max

{∣
∣
∣
∣

〈
c

‖c‖ , uki

〉∣
∣
∣
∣
: i = 1, 2, 3,

}

.

Let xm1
= c

‖c‖ , see step 2 in Figure 4. Since we have only
moved the pointum1

to xm1
, the remaining correlations are

unaffected since they do not involveum1
. Thus

M∞ (U) = max {|〈um1
, uki
〉| : i = 1, 2, 3, }

> max {|〈xm1
, uki
〉| : i = 1, 2, 3, } =: α. (V.5)

Now eitherM∞ ({xm1
, uk1

, uk2
, uk3
}) = α, or there is an

m2 ∈ {1, 2, 3, 4} \ {m1} such that if m1, j1, j2 are the
remaining indices, then

M∞(U) = max {|〈um2
, uj1〉| , |〈um2

, uj2〉|} (V.6)
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Fig. 4. An example of the four steps in proving Theorem V.3. A number next
to an edge represents the inner product of the two boundary points of the
edge.

and

|〈um2
, xm1

〉| , |〈um2
, uj1〉| , |〈um2

, uj2〉| are not all equal,
(V.7)

where (V.7) follows from (V.5). In this case we apply Lemma
V.2 to b = um2

and {y1, y2, y3} = {uj1 , uj2 , xm1
}. Thus,

there is ac′ ∈ R3 such that

max {|〈um2
, xm1

〉| , |〈um2
, uj1〉| , |〈um2

, uj2〉|}
= max {|〈um2

, uj1〉| , |〈um2
, uj2〉|}

> max

{∣
∣
∣
∣

〈
c′

‖c′‖ , xm1

〉∣
∣
∣
∣
,

∣
∣
∣
∣

〈
c′

‖c′‖ , uj1

〉∣
∣
∣
∣
,

∣
∣
∣
∣

〈
c′

‖c′‖ , uj2

〉∣
∣
∣
∣

}

.

Let xm2
= c′

‖c′‖ , see step 3 in Figure 4. Thus

M∞ (U) = max {|〈um2
, uj1〉| , |〈um2

, uj2〉|}
> max {|〈xm2

, xm1
〉| , |〈xm2

, uj1〉| , |〈xm2
, uj2〉|} (V.8)

=: α′.

Therefore, (V.5) and (V.8) imply

M∞ (U)

> max







|〈xm1
, uj1〉| , |〈xm1

, uj2〉| ,
|〈xm2

, xm1
〉| , |〈xm2

, uj1〉| ,
|〈xm2

, uj2〉|






(V.9)

= max {α, α′} ,
becausej1, j2 ∈ {k1, k2, k3}.

So eitherM∞ ({xm1
, xm2

, uj1 , uj2}) = max {α, α′} or
elseM∞ (U) = |〈uj1 , uj2〉|.

In the latter case, (V.8) implies that
|〈uj1 , uj2〉| , |〈uj1 , xm1

〉| , |〈uj1 , xm2
〉| are not all equal,

and so we apply Lemma V.2 tob = uj1 , and
{y1, y2, y3} = {uj2 , xm1

, xm2
}. Thus, there isc′′ ∈ R3

such that

max {|〈uj1 , xm1
〉| , |〈uj1 , xm2

〉| , |〈uj1 , uj2〉|}
= |〈uj2 , uj1〉|

> max







∣
∣
∣

〈
c′′

‖c′′‖ , xm1

〉∣
∣
∣ ,
∣
∣
∣

〈
c′′

‖c′′‖ , xm2

〉∣
∣
∣ ,

∣
∣
∣

〈
c′′

‖c′′‖ , uj2

〉∣
∣
∣






. (V.10)

Let xm3
= c′′

‖c′′‖ and let X = {xm1
, xm2

, xm3
, uj2}. Then

(V.9) and (V.10) imply

M∞(U) (V.11)

> max

{
|〈xm3

, xm1
〉| , |〈xm3

, xm2
〉| , |〈xm3

, uj2〉| ,
|〈xm2

, xm1
〉| , |〈xm2

, uj2〉| , |〈xm1
, uj2〉|

}

=M∞(X).

Q.E.D.

Next we show that if a four element set is equiangular then
the vectors are parallel to the diagonals of a cube or to four
of the diagonals of an icosahedron.

Theorem V.4. If u1, u2, u3, u4 ∈ S2 and |〈uk, ul〉| = α for
k, l ∈ {1, . . . , 4} with k 6= l, then

α =
1

3
or α =

1√
5
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〈w2, w3〉 〈w2, w4〉 〈w3, w4〉

case 1 α α α impossible
case 2 −α α α α = 1/

√
5

case 3 −α −α α α = 1/
√

5
case 4 −α −α −α α = 1/3

TABLE III

FOUR MAIN CASES IN THE PROOF OFTHEOREMV.4.

Proof: Since sign changes and rotations do not effect
inner products, letP be an element ofSO3 which rotates
u1 to δ3 = (1, 0, 0)T . For k = 1, 2, 3, 4, let

εk = sign 〈Pxk, δ3〉,
and let Q ∈ SO3 so that Q fixes δ3 and Q rotates
εkPx2 to the positivexz-plane, i.e.,〈QεkPx2, δ1〉 ≥ 0 and
〈QεkPx2, δ2〉 = 0. Then, fork 6= l,

α = |〈uk, ul〉| = |〈εkQPuk, εlQPul〉| = |〈wk, wl〉| ,
wherewk = εkQPuk. By the choice ofεk, for k = 2, 3, 4,
we have

α = |〈w1, wk〉| = 〈δ3, wk〉 ,
so that the third component ofwk is α. Also, 0 = 〈δ2, w2〉,
andw2 ∈ S2, so that the first component ofw2 is

√
1− α2.

Therefore, we have

w1 = (0, 0, 1)T

w2 = (
√

1− α2, 0, α)T

w3 = (x3, y3, α)T

w4 = (x4, y4, α)T . (V.12)

We now have four cases (see Table III) where both case 2 and
3 have three subcases which, by relabeling, can be reduced to
the considered case.

Case 1. For k = 3, 4, 〈w2, wk〉 = α implies

xk =
α− α2

√
1− α2

= α

√

1− α

1 + α
. (V.13)

Then (V.13) and‖wk‖2 = 1 imply

yk = ±
√

1 + α− 2α2

1 + α
. (V.14)

In addition, (V.13) and〈w3, w4〉 = α imply

y3 · y4 =
α(1− α)

1 + α
. (V.15)

Combining (V.14) and (V.15), we have

−1 + α− 2α2

1 + α
=

α(1− α)

1 + α
=⇒ 2α2 + 1 = 0

=⇒ α ∈ C \ R;

hence, case 1 is impossible.
Case 2.Now 〈w2, w3〉 = α implies

x3 =
α− α2

√
1− α2

, (V.16)

and 〈w2, w4〉 = −α implies

x4 =
−α− α2

√
1− α2

, (V.17)

and (V.16), and (V.17) imply

y3 · y4 = α. (V.18)

Then, (V.16) and‖w3‖2 = 1 imply

y2
3 = −2α2 − α− 1

α + 1
=

(2α + 1)(α− 1)

α + 1
, (V.19)

and (V.17) and‖w4‖2 = 1 imply

y2
4 =

2α2 + α− 1

α− 1
=

(2α− 1)(α + 1)

α− 1
. (V.20)

Finally, (V.18), (V.19), and (V.20) imply

−α2 = (2α + 1)(2α− 1) =⇒ α = ± 1√
5
.

Sinceα is assumed to be positive, we have proven case 2.
Case 3.For k = 3, 4, 〈w2, wk〉 = −α implies

xk =
−α− α2

√
1− α2

= −α

√

1 + α

1− α
. (V.21)

Then (V.21) and‖wk‖2 = 1 imply

y2
k =

2α2 + α− 1

α− 1
=

(2α− 1)(α + 1)

α− 1
. (V.22)

Hence, (V.21) and〈w3, w4〉 = α imply

y3 · y4 =
α− 3α2

1− α
. (V.23)

Combining (V.22) and (V.23), we have

− (2α− 1)(α + 1)

α− 1
= −y2

k = y3 · y4 =
α− 3α2

1− α

=⇒ α = ± 1√
5
,

and sinceα is positive, we have proven case 3.
Case 4.This is the same as case 3 except that〈w3, w4〉 = α

and (V.21) imply

y3 · y4 =
α(α + 1)

α− 1
. (V.24)

Combining (V.22) and (V.24), we have

−(2α− 1)(α + 1)

α− 1
= −y2

k = y3 · y4 =
α(α + 1)

α− 1

=⇒ α =
1

3
,

and we have proven case 4.
Therefore, the theorem is proved. Q.E.D.

By Theorem V.4, and since1√
5

> 1
3 , we see that the(4, 3)-

Grassmannian bound is13 . which is also seen to be optimal
by inspection.
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VI. (5, 3)-GRASSMANNIAN FRAMES

We first introduce some ideas from convex analysis, [18],
[19], [20].

Definition VI.1. A set A ⊂ Rn is convexif for any x1, x2 ∈
A, and for anyλ ∈ [0, 1],

λx1 + (1− λ)x2 ∈ A.

A point x ∈ A is an extreme pointof A if wheneverx =
λx1 + (1 − λ)x2, where0 < λ < 1 and x1, x2 ∈ A, then
x = x1 = x2. Given a setA ⊂ Rn, the convex hullof A is

Hull(A)

=







m∑

j=1

λjxj :
m∑

j=1

λj = 1, λj > 0, xj ∈ A, m ∈ N






.

There is the following relationship between extreme points,
convex hulls, and convex sets, [21].

Theorem VI.2. A nonempty bounded convex set inR
d is the

convex hull of its set of extreme points.

We need the following two convexity propositions to prove
Lemma VI.5, which in turn is used to prove Lemma VI.6, the
key lemma for computing the(5, 3)-Grassmannian bound in
Theorem VI.7.

Proposition VI.3. Let N ≥ d, let Y = {y1, . . . , yN} ⊂
Sd−1 ⊂ Rd, and assumespan(Y ) = Rd. Let

Q =
{
v ∈ R

d : |〈v, yk〉| ≤ 1, for k = 1, . . . , N
}

and letC be the set of extreme points ofQ. Then
a. Q is a bounded convex set,
b. If v0 ∈ C then there are at leastd distinct integers

k1, . . . , kd ∈ {1, . . . , N} such that|〈v0, yki
〉| = 1 for i =

1, . . . , d,
c. card (C) ≤

(
N
d

)
2d <∞.

Proof: a.First, to showQ is convex, letx1, x2 ∈ Q. Then
for any λ ∈ [0, 1], and for anyk ∈ {1, . . . , N},
|〈λx1 + (1− λ)x2, yk〉| ≤ λ |〈x1, yk〉|+ (1− λ) |〈x2, yk〉|

≤ λ + (1− λ)

= 1.

Next, we showQ is bounded. Sincespan(Y ) = Rd, Y is a
frame forRd. Let S be the associated frame operator, and let
A andB be the lower and upper frame bounds, respectively.S
is invertible, so we can definevj = S−1(yj) for j = 1, . . .N .
Then we have

‖vj‖ =
∥
∥S−1(yj)

∥
∥ ≤

∥
∥S−1

∥
∥ ‖yj‖ =

1

A
.

Now, for anyx ∈ R
d,

x = S−1(Sx) =

N∑

j=1

〈x, yj〉S−1(yj) =

N∑

j=1

〈x, yj〉 vj .

Thus, givenx ∈ Q,

‖x‖ =

∥
∥
∥
∥
∥
∥

N∑

j=1

〈x, yj〉 vj

∥
∥
∥
∥
∥
∥

≤
N∑

j=1

|〈x, yj〉| ‖vj‖ =
N∑

j=1

‖vj‖ ≤
N

A
.

b. We prove the contrapositive. Assume|〈v0, yk〉| = 1 for
fewer thand vectors inY , i.e, by relabeling, assume there is
an m ≥ 0 such that

|〈v0, yk〉| = 1, for k ∈ N with k ≤ m,

|〈v0, yk〉| < 1, for k = m + 1, . . . , N .

We now show thatv0 is not an extreme point by constructing
x1, x2 ∈ Q with x1 6= x2 such that there is aλ ∈ (0, 1) for
which

v0 = λx1 + (1 − λ)x2.

Let Ỹ = span {y1, . . . , ym}, where Ỹ is empty if m = 0.
Since by assumptionm < d, we havedim(Ỹ ) < d. Let z ∈
Ỹ ⊥ ∩ Sd−1, and define

β = max {|〈v0, yk〉| : k = m + 1, . . . , N} .
By the choice ofm, we haveβ < 1. Set

x1 = v0 +
1− β

2
z and x2 = v0 −

1− β

2
z.

Notice thatβ < 1 implies‖x1 − x2‖ = (1−β) ‖z‖ = 1−β >
0, and hencex1 6= x2. Furthermore, ifλ = 1

2 then

λx1 + (1− λ)x2 =
1

2
v0 +

1− β

4
z +

1

2
v0 −

1− β

4
z = v0.

Finally, we check thatx1 andx2 are inQ. For k = 1, . . . , m
and l = 1, 2, we have

|〈xl, yk〉| =
∣
∣
∣
∣
〈v0, yk〉 ±

1− β

2
〈z, yk〉

∣
∣
∣
∣
= |〈v0, yk〉| = 1;

and fork = m + 1, . . . , N and l = 1, 2, we have

|〈xl, yk〉| =
∣
∣
∣
∣
〈v0, yk〉 ±

1− β

2
〈z, yk〉

∣
∣
∣
∣

≤ |〈v0, yk〉|+
1− β

2
|〈z, yk〉|

≤ β +
1− β

2
‖z‖ yk

=
1 + β

2
< 1.

Thus,v0 ∈ Q \ C.
c. If v0 is an extreme point ofQ, i.e., v0 ∈ C, then

v0 must satisfy at leastd of the N equations which
define Q. Therefore we count the number of ways we
can pick d distinct elements,yk, from Y to satisfy thed
equations|〈v0, yk〉| = 1. There are

(
N
d

)
d-element subsets

of {1, . . . , N}, and, because of the absolute value, there are
two choices for the equation eachv0 can satisfy, namely
〈v0, yk〉 = 1 or 〈v0, yk〉 = −1. Note, if any one of the
remainingN − d inequalities is not satisfied byv0, thenv0 is
not an extreme point. This proves that we can have fewer than
(
N
d

)
2d extreme points for a given arrangement ofyks. Q.E.D.

Under the same hypotheses of Proposition VI.3 we have the
following result.

Proposition VI.4. Let N, d, Y, Q, and C be as in Propo-
sition VI.3, and letc ∈ C have the property that‖c‖ =
max {‖c′‖ : c′ ∈ C}. Then, for anyv ∈ Q \ C,

‖v‖ < ‖c‖ .
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Proof: Let v ∈ Q\C. Then there is aλ ∈ (0, 1), and there
arex1, x2 ∈ Q with x1 6= x2 such thatv = λx1 + (1− λ)x2.
Consider the functionf : R→ R defined by

f(λ) = ‖λx1 + (1− λ)x2‖ .

We first verify thatf is uniformily continuous onR. Let ε > 0
be given, and chooseδ < ε

‖x1−x2‖ . Then, for allλ0 for which
|λ− λ0| < δ, we have

|f(λ)− f(λ0)|
=
∣
∣
∣ ‖λx1 + (1− λ)x2‖ − ‖λ0x1 + (1− λ0)x2‖

∣
∣
∣

≤ ‖λx1 + (1− λ)x2 − λ0x1 − (1− λ0)x2‖
= ‖(λ− λ0)(x1 − x2)‖
= |λ− λ0| ‖x1 − x2‖
< δ ‖x1 − x2‖ < ε.

Now setg(λ) = f(λ)2. Then g(λ) is also continuous onR
and it is the parabola,

g(λ) = ‖λx1 + (1− λ)x2‖2

= λ2 ‖x1‖2 + 2(λ− λ2) 〈x1, x2〉 − 2(1− λ) ‖x2‖2 .

We compute

g′(λ) = 2λ ‖x1 − x2‖2 + 2 〈x1 − x2, x2〉 ,

so thatg′(λ) = 0 at

λ∗ = −〈x1 − x2, x2〉
‖x1 − x2‖2

.

Furthermore, for allλ ∈ R,

g′′(λ) = 2 ‖x1 − x2‖2 > 0. (VI.1)

Hence,g attains a minimum atλ∗, and for allλ 6= λ∗, we have
g(λ) > g(λ∗). Now if we restrictg to [0, 1], theng achieves
its maximum and minimum on[0, 1]. Thus, ifλ∗ ∈ [0, 1], then
by (VI.1) and the fact thatg describes a parabola, we have

min
λ∈[0,1]

g(λ) = g(λ∗)

and
max

λ∈[0,1]
g(λ) = max {g(0), g(1)} ;

and if λ∗ /∈ [0, 1], then

min
λ∈[0,1]

g(λ) = min {g(0), g(1)}

and
max

λ∈[0,1]
g(λ) = max {g(0), g(1)} .

In either case the maximum ofg occurs at one of the end
points. Furthermore, at interior points,g is strictly less than
the maximum value.

Now since‖v‖2 = g (λ0) for someλ0 ∈ (0, 1), (VI.1)
implies

‖v‖2 = g (λ0)

< max
λ∈[0,1]

g(λ) = max {g(0), g(1)} = max
{

‖x1‖2 , ‖x2‖2
}

.

Thus, we have shown that

v ∈ Q \ C =⇒ ∃x ∈ Q such that‖v‖ < ‖x‖
and, hence,

v ∈ Q \ C =⇒ ‖v‖ < sup {‖x‖ : x ∈ Q} . (VI.2)

Q is a bounded closed set so that, by continuity of‖·‖, the
supremum in (VI.2) is achieved onQ, whereas (VI.2) also
shows that this supremum is not achieved onQ \ C. Thus,

sup {‖x‖ : x ∈ Q} = sup {‖x‖ : x ∈ C} = ‖c‖ .
Therefore, for any v ∈ Q \ C we have ‖v‖ <
sup {‖x‖ : x ∈ Q} = ‖c‖ . Q.E.D.

Following the basic geometric idea in [10], but using the
previous propositions, which can be implemented as explicit
algorithms, we can reduce the correlation of a given frame.
We proceed as follows.

Lemma VI.5. Let U = {b, y1, y2, y3, y4} ⊂ S2 ⊂ R3, and let
α =M∞(U). Assume|〈b, y1〉| < α and |〈b, y2〉| < α. Then
there existsc ∈ R3 such that

∣
∣
∣
∣

〈
c

‖c‖ , yk

〉∣
∣
∣
∣
< α for k = 1, 2, 3, 4.

Proof: If both |〈b, y3〉| < α and |〈b, y4〉| < α, then take
c = b. Otherwise, without loss of generality, assume|〈b, y3〉| =
α. We have 2 cases.

Case 1.dim (span {y1, . . . , y4}) < 3.
Then, similar to Lemma V.2, choosec ∈

(span {y1, . . . , y4})⊥. By Theorem IV.2,
〈

c

‖c‖ , yk

〉

= 0 <
1√
6
≤ α.

Case 2.span {y1, . . . y4} = R3.
Let

Q =
{
v ∈ R

d : |〈v, yk〉| ≤ 1, k = 1, . . . , 4
}

and letC be the set of extreme points ofQ. By Proposition
VI.3, Q is bounded and convex andC is finite. Let c be a
point in C of maximum norm. Then, by assumption,

∣
∣
∣
∣

〈
b

α
, y1

〉∣
∣
∣
∣
< 1,

∣
∣
∣
∣

〈
b

α
, y2

〉∣
∣
∣
∣
< 1,

∣
∣
∣
∣

〈
b

α
, y3

〉∣
∣
∣
∣
= 1,

∣
∣
∣
∣

〈
b

α
, y4

〉∣
∣
∣
∣
≤ 1,

which shows thatbα can satisfy with equality at most two of
the four equations which defineQ. Then by Proposition VI.3,
b
α is not an extreme point ofQ. Hence, by Proposition VI.4,

1

α
=

∥
∥
∥
∥

b

α

∥
∥
∥
∥

< ‖c‖ .

Therefore, sincec ∈ C ⊂ Q, we have|〈c, yk〉| ≤ 1 and
∣
∣
∣
∣

〈
c

‖c‖ , yk

〉∣
∣
∣
∣
≤ 1

‖c‖ < α

for k = 1, 2, 3, 4. Q.E.D.
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Lemma VI.6. Let U = {u1, . . . , u5} be a (5, 3)-
Grassmannian frame, and letα = M∞(U). Then for any
j, there are distinctj1, j2, j3 ∈ {1, . . . , 5} \ {j} such that

|〈uj , ujk
〉| = α for k = 1, 2, 3.

Proof: We prove the contrapositive. By relabeling if
necessary, without loss of generality, assume|〈u1, u2〉| < α
and |〈u1, u3〉| < α. We use Lemma VI.5 to construct a new
setW for whichM∞(W ) < α. This showsU is not (5, 3)-
Grassmannian.

First, letb = u1 and{y1, . . . , y4} = {u2, . . . , u5} and apply
Lemma VI.5. Then there is ac1 ∈ R3 such that

∣
∣
∣
∣

〈
c1

‖c1‖
, uk

〉∣
∣
∣
∣
< α for k = 2, 3, 4, 5.

Second, consider the set̃U := {u2, . . . , u5}. We have two
cases,

Case 1.There existj0, k0 ∈ {2, 3, 4, 5} with j0 6= k0, for
which |〈uj0 , uk0

〉| < α.
For ease in notation, by relabeling if necessary, we assume

j0 = 2 and k0 = 3. In this case, we can apply Lemma
VI.5 with b = u2 and{y1, . . . , y4} =

{
c1

‖c1‖ , u3, u4, u5

}

, and

constructc2 ∈ R3 such that
∣
∣
∣
∣

〈
c1

‖c1‖
,

c2

‖c2‖

〉∣
∣
∣
∣
< α

and

max

{∣
∣
∣
∣

〈
c2

‖c2‖
, uk

〉∣
∣
∣
∣
: k = 3, 4, 5

}

< α.

Now we can apply Lemma VI.5 to the remaining points and
produce a frame with a strictly smaller value ofM∞. In fact,
since

∣
∣
∣

〈
ci

‖ci‖ , u3

〉∣
∣
∣ < α for i = 1, 2, we let b = u3 and

{y1, . . . , y4} =
{

c1

‖c1‖ , c2

‖c2‖ , u4, u5

}

. Then, by Lemma VI.5,

there is ac3 ∈ Rd such that
∣
∣
∣
∣

〈
c3

‖c3‖
,

ci

‖ci‖

〉∣
∣
∣
∣
< α for i = 1, 2,

and

max

{∣
∣
∣
∣

〈
c3

‖c3‖
, uk

〉∣
∣
∣
∣
: k = 4, 5

}

< α.

Finally, apply Lemma VI.5 one last time tob = u4 and

{y1, . . . , y4} =

{
c1

‖c1‖
,

c2

‖c2‖
,

c3

‖c3‖
, u5

}

,

and obtainc4 ∈ Rd for which
∣
∣
∣
∣

〈
c4

‖c4‖
,

ci

‖ci‖

〉∣
∣
∣
∣
< α for i = 1, 2, 3,

and ∣
∣
∣
∣

〈
c4

‖c4‖
, u5

〉∣
∣
∣
∣
< α.

Thus, if we letW =
{

c1

‖c1‖ , c2

‖c2‖ , c3

‖c3‖ , c4

‖c4‖ , u5

}

, then, by

construction, for anyi, j ∈ {1, . . . , 4}, i 6= j, we have∣
∣
∣

〈
ci

‖ci‖ , c1

‖c1‖

〉∣
∣
∣ < α and

∣
∣
∣

〈
ci

‖ci‖ , u5

〉∣
∣
∣ < α. Hence,

M∞(W ) < α =M∞(U),

and soU is not (5, 3)-Grassmannian. This finishes Case 1.
Case 2.Ũ is equiangular.
SinceŨ has four elements, Theorem V.4 impliesα = 1/3

or α = 1/
√

5. If α = 1/3, then set

β = max

{∣
∣
∣
∣

〈
c1

‖c1‖
, uk

〉∣
∣
∣
∣
: k = 2, 3, 4, 5

}

.

Thus, by construction ofc1, we haveβ < 1
3 and

M∞

({
c1

‖c1‖

}

∪ Ũ

)

= max

{
1

3
, β

}

=
1

3
,

whereas Theorem IV.2 withN = 5 andd = 3 implies

1√
6
≤M∞

({
c1

‖c1‖

}

∪ Ũ

)

=
1

3
,

a contradiction.
Thus,α = 1√

5
; and |〈u1, uk〉| < α for k = 2, 3, 4, 5, and

|〈uk, uj〉| = α for k 6= j andk, j ∈ {2, 3, 4, 5}.
We seek to find a contradiction. Without loss of generality,

the setting can reduce to the following general position by
using rotations and sign changes as in Theorem V.4:

u2 = (0, 0, 1)T

u3 = (
√

1− α2, 0, α)T

u4, u5 ∈ {p1, p2, p3, p4} ,

where

p1 =

(

α

√

1− α

1 + α
,

√

(1 + 2α)(1 − α)

1 + α
, α

)T

=

(
√

1− α2 cos

(
2π

5

)

,
√

1− α2 sin

(
2π

5

)

, α

)T

,

p2 =

(

−α

√

1 + α

1− α
,

√

(1− 2α)(1 + α)

1− α
, α

)T

=

(
√

1− α2 cos

(
4π

5

)

,
√

1− α2 sin

(
4π

5

)

, α

)T

,

p3 =

(

−α

√

1 + α

1− α
,−
√

(1− 2α)(1 + α)

1− α
, α

)T

=

(
√

1− α2 cos

(

−4π

5

)

,
√

1− α2 sin

(

−4π

5

)

, α

)T

,

and

p4 =

(

α

√

1− α

1 + α
,−
√

(1 + 2α)(1 − α)

1 + α
, α

)T

=

(
√

1− α2 cos

(

−2π

5

)

,
√

1− α2 sin

(

−2π

5

)

, α

)T

.

Therefore, if

A =





cos(2π/5) − sin(2π/5) 0
sin(2π/5) cos(2π/5) 0

0 0 1
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Fig. 5. Top figure is the functionγ2 − γ1, bottom figure is the function
d

dβ
(γ2 − γ1). We can see that the original function is strictly increasing.

andp0 = u3, then

Ak(p0, p1, p2, p3, p4) = (pσ(0), pσ(1), pσ(2), pσ(3), pσ(4)),

whereσ(n) = (n + k)( mod 5).
If we setβ = |〈u1, u2〉| < α, then, by changing the sign of

u1 if necessary and since‖u1‖ = 1, we may assume

u1 =
(√

1− β2 cos t0,
√

1− β2 sin t0, β
)T

,

for some fixedt0 ∈ [−π, π). Hence,

|〈u1, u3〉| < α (VI.3)

⇐⇒
∣
∣
∣

√

1− α2
√

1− β2 cos t0 + αβ
∣
∣
∣ < α

⇐⇒ −α√
1− α2

1 + β
√

1− β2
< cos t0 <

α√
1− α2

1− β
√

1− β2

⇐⇒ cos−1

(

1

2

√

1− β

1 + β

)

︸ ︷︷ ︸

γ1(β)

< |t0| < cos−1

(

−1

2

√

1 + β

1− β

)

︸ ︷︷ ︸

γ2(β)

.

(VI.4)

We observe that

γ1(β) =

{
6π
15 = 2π

5 , if β = α,
5π
15 = π

3 , if β = 0,

γ2(β) =

{
12π
15 = 4π

5 , if β = α,
10π
15 = 2π

3 , if β = 0,

and that d
dβ (γ2 − γ1) (β) > 0 for β ∈ (0, α), see Figure 5.

Thus 5π
15 ≤ γ2(β)− γ1(β) < 6π

15 , whenβ ∈ [0, α).
Hence, for a fixedβ ∈ [0, α),

γ2(β) < γ1(β) +
6π

15
,

−1 −0.5 0 0.5 1
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p
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p
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p
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p
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p
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4
 

γ
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Fig. 6. Ten intervals onT2π corresponding to the pointsp0 = u3, and
p1, . . . , p4.

and, fork = 1, 2, 3, 4, we have

α > |〈u1, pk〉| =
∣
∣
〈
A−ku1, A

−kpk

〉∣
∣

=
∣
∣
〈
A−ku1, p0

〉∣
∣ =

∣
∣
〈
A−ku1, u3

〉∣
∣ ,

where

A−ku1 =
(√

1− β2 cos

(

t0 −
2πk

5

)

,

√

1− β2 sin

(

t0 −
2πk

5

)

, β
)T

.

Therefore, by (VI.4),

α > |〈u1, pk〉| ⇐⇒ γ1(β) ≤
∣
∣
∣
∣
t0 −

2πk

5

∣
∣
∣
∣
≤ γ2(β), (VI.5)

for k = 0, 1, 2, 3, 4. These inequalities define ten intervals
on the torusT2π . If we plot these ten intervals onT2π , we
note that no set of three of them overlap, see Figure 6. This
assertion can also be seen since

γ1(β) ≤
∣
∣
∣
∣
t0 −

2πk

5

∣
∣
∣
∣
≤ γ2(β)

=⇒ γ1(β) ≤
∣
∣
∣
∣
t0 −

2πk

5

∣
∣
∣
∣
< γ1(β) +

2π

5

=⇒ t0 ∈
[
γ + εk, γ + ε(k + 1)

)

︸ ︷︷ ︸

Pk

∪
[
− γ + ε(k − 1),−γ + εk

)

︸ ︷︷ ︸

Nk

whereγ = γ1(β), ε = 2π
5 , andk = 0, 1, 2, 3, 4. Thus,∪4

k=0Pk

is a disjoint cover ofT2π \ [γ−ε, γ), and∪4
k=0Nk is a disjoint

cover ofT2π \ [−γ + ε,−γ). Hence,t0 can be in at most two
of the ten setsPk, Nk.

Now by assumption,|〈u1, u3〉| = |〈u1, p0〉| < α.
Also |〈u1, u4〉| < α, and |〈u1, u5〉| < α where
u4, u5 ∈ {p1, p2, p3, p4}. Thus, (VI.5) implies t0 lies
in three of the ten intervals represented in Figure 6, a



15

contradiction. Consequently,̃U cannot be equiangular. Q.E.D.

Finally, using Lemma VI.6, we have the following result.

Theorem VI.7. If U ⊂ S2 ⊂ R3 is (5, 3)-Grassmannian, then
M∞(U) = 1√

5
.

Proof: Let α = M∞(U), and consider the graph
whose vertices areu1, . . . , u5, and whose edges are defined
as follows: for any pair of pointsuk, uj ∈ U with k 6= j, an
edge connectsuk anduj if and only if |〈uk, uj〉| = α. We call
the number of edges emanating from a vertexuk, the degree
of uk, denoteddeg (uk). Then Lemma VI.6 implies that

5∑

k=1

deg (uk) ≥
5∑

k=1

3 = 15.

Since each edge connects two vertices, the sum of the degrees
must be an even number. Thus, at least one vertexuj must
have degree 4, i.e., there is aj ∈ {1, . . . , 5}, such that
|〈uj , uji

〉| = α for i = 1, . . . , 4, where {j1, j2, j3, j4} =
{1, 2, 3, 4, 5}\{j}. By relabeling if necessary we may assume

|〈u1, uk〉| = α for k = 2, 3, 4, 5,

and

|〈u2, uk〉| = α for k = 3, 4.

Furthermore, we can reduce to the general position used in
Theorem V.4, i.e., assume

u1 = (0, 0, 1)T

u2 = (
√

1− α2, 0, α)T

u3 = (x3, y3, α)T

u4 = (x4, y4, α)T

u5 = (x5, y5, α)T .

We have two cases.
Case 1.|〈u3, u4〉| = α.
Then the subset̃U = {u1, u2, u3, u4} is equiangular, hence

Theorem V.4 impliesα = 1
3 or 1√

5
. However, just as in Lemma

VI.6, α = 1
3 implies that

1

3
=M∞(U) ≤ 1√

6
,

and soα = 1√
5
.

Case 2.|〈u3, u4〉| < α.
Then since each vertex must be of degree 3, we have that
|〈u3, u5〉| and |〈u4, u5〉| each equalsα. Thus, if we remove
the absolute values, we have the following equations:

〈u2, u3〉 = ±α, 〈u2, u4〉 = ±α,

〈u3, u5〉 = ±α, 〈u4, u5〉 = ±α.

This gives24 = 16 possible cases. Of these 16 cases, 7 lead
to contradictions, and the remaining 9 fall into 5 types; but

each implies thatu3, u4, u5 are three of the four points
(

α

√

1− α

1 + α
,±
√

(1 + 2α)(1− α)

1 + α
, α

)T

,

(

−α

√

1 + α

1− α
,±
√

(1− 2α)(1 + α)

1− α
, α

)T

,

which are the positive endpoints on the remaining 4 diagonals
of an icosahedron. Hence in each case,α = 1/

√
5. Q.E.D.

The (5, 3)-Grassmannian frame is the first example of a
non-optimal Grassmannian frame since1√

5
> 1√

6
. Hence, by

Theorem IV.2, the(5, 3)-Grassmannian frame is the first three
dimensional example of a Grassmannian frame which is not
tight.

VII. (6, 3)-GRASSMANNIAN FRAMES

The (6, 3)-Grassmannian bound can be calculated as a
consequence of Theorem IV.2.

Theorem VII.1. If U = {u1, . . . , u6} ⊂ S2 is (6, 3)-
Grassmannian, then

M∞(U) = 1/
√

5.

Proof: Setα = 1√
5
, and consider the setW with vertices

w1 = (0, 0, 1)
T

,

w2 =
(√

1− α2, 0, α
)T

,

w3 =

(

α

√

1− α

1 + α
,

√

(1 + 2α)(1 − α)

1 + α
, α

)T

,

w4 =

(

α

√

1− α

1 + α
,−
√

(1 + 2α)(1− α)

1 + α
, α

)T

,

w5 =

(

−α

√

1 + α

1− α
,

√

(1 − 2α)(1 + α)

1− α
, α

)T

,

w6 =

(

−α

√

1 + α

1− α
,−
√

(1− 2α)(1 + α)

1− α
, α

)T

.

Note that±W are the twelve vertices of an icosahedron. For
k 6= l, we compute|〈wk, wl〉| = 1√

5
. Furthermore, by Theorem

IV.2, if U is a 6 element subset ofS2, then

M∞ (U) ≥
√

6− 3

3(6− 1)
=

1√
5

=M∞(W ).

ThusW is a (6, 3)-Grassmannian frame. Q.E.D.

Notice the(6, 3) Grassmannian arrangement is so good that
when you remove a vector from it, it remains Grassmannian,
and when we remove two vectors from it, it is still a local
minimum ofM∞. In [4] Conway, Hardin, and Sloane have
found that there are other instances of this in higher dimen-
sions, particularly when the symmetry group of the frame has
a large number of elements.
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APPENDIX

i. We show that Grassmannian frames exist. First, we define
the function

f : Sd−1 × . . .× Sd−1

︸ ︷︷ ︸

N times

→ [0, 1]

f(x1, . . . , xN ) =M∞
(
{xk}Nk=1

)
.

Next we check thatf is continuous onX := Rd × . . .× Rd

(N times). Consider the norm onX defined by

∥
∥
∥{xk}Nk=1

∥
∥
∥

X
=

N∑

k=1

‖xk‖ ,

let {xk}Nk=1 ∈ X be fixed, setR − 1 = maxk {‖xk‖}, and
let ε > 0 be given. ClearlyR ≥ 1. Chooseδ such that
0 < δ <

√
1+ε−1

R , i.e., R2δ2 + 2Rδ < ε. Then, whenever
∥
∥
∥{yk}Nk=1 − {xk}Nk=1

∥
∥
∥

X
< δ, we have that, for everyj ∈

{1, . . . , N},

‖yj − xj‖ ≤
N∑

k=1

‖yk − xk‖ =
∥
∥
∥{yk}Nk=1 − {xk}Nk=1

∥
∥
∥

X
< δ.

Therefore, for eachj, there is anαj ∈ Rd with ‖αj‖ < δ
such thatyj = xj + αj . Thus,

|f(y1, . . . , yN )− f(x1, . . . , xN )|
= max

k 6=l
{|〈xk, xl〉|+ |〈xk, αl〉|+ |〈αk, xl〉|+ |〈αk, αl〉|}

−max
k 6=l
{|〈xk, xl〉|}

≤ max
k 6=l
{|〈xk, xl〉|+ ‖xk‖ ‖αl‖+ ‖αk‖ ‖xl‖+ ‖αk‖ ‖αl‖}

−max
k 6=l
{|〈xk, xl〉|}

< max
k 6=l
{|〈xk, xl〉|}+ 2Rδ + Rδ2 −max

k 6=l
{|〈xk, xl〉|}

= 2Rδ + Rδ2 < ε.

Hence,f is continuous on the compact setSd−1× . . .×Sd−1

(N times), and sof achieves its absolute maximum and
absolute minimum on this set. Thus, we know that(N, d)-
Grassmannian frames exist for anyN ≥ d. Next we must
check that ifUN

d solves (I.2), thenUN
d is a unit norm frame

for Rd, but this a tautology since, by compactness,UN
d is one

of the frames over which we are taking the infimum.
ii. We now give a proof of Lemma IV.1 used in Section IV.

Proof: [Proof of Lemma IV.1] We proceed by induction. Let
P (n) be the statement

det(Hn) = (1 + (n− 1)β)(1− β)n−1

and
det(Cn) = β(1− β)n−1.

For n = 1, H1 = 1 and C1 = β, and sodet(H1) = 1 and
det(C1) = β; this is P (1).

Next assumeP (n). Using the cofactor expansion of the
determinant, we first note that the(1, 1)-cofactor of Hn+1

and Cn+1 is det(Hn). Also note that forj = 2, . . . , n + 1,
the (1, j)-cofactor of bothHn+1 andCn+1 is

(−1)1+j det
(

B(j)
n

)

,

whereB
(j)
n can be defined recursively as

B(1)
n = Cn,

B(j)
n = B̃(j−1)

n for j = 2, . . . , n + 1,

and whereB̃(j−1)
n is B

(j−1)
n with the jth and(j − 1)st rows

interchanged. Sincedet is multilinear, interchanging a row
changes the sign of the determinant. Hence

(−1)1+j det(B(j)
n ) = − det(Cn) for j = 2, . . . n + 1.

Using the induction hypothesis and the cofactor expansion,we
compute

det(Hn+1) = 1 · det(Hn) +
n+1∑

j=2

(

β · (−1)1+j det(B(j)
n )
)

= det(Hn)− nβ det(Cn)

= (1 + (n− 1)β)(1 − β)n−1 − nβ2(1 − β)n−1

= (1 + nβ)(1 − β)(1 − β)n−1

and

det(Cn+1) = β det(Hn)− nβ det(Cn)

= β(1 + (n− 1)β)(1− β)n−1 − nβ2(1− β)n−1

= (β − β2)(1 − β)n−1;

this isP (n+1), and so the result follows by induction. Q.E.D.
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