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Zeta Functions for Idelic Pseudo-Measures.

J. J. BENEDETTO (*)

In [Benedetto, 1973] I introduced the notion of an «idelic pseudo-
measure » in the context of investigating non-synthesizable phenomena.
The Fourier analysis program that I envisaged for these pseudo-measures,
and that I began in the above reference, stalled because I did not know
enough about their structure. The theory of idelic psendo-measures that 1
now develop is meant to correct this shortcoming. [Benedetto, 1976] com-
plements the present paper and provides relations with some fundamental
issues in analytic number theory.

Let A’(T) be the space of pseudo-measures on T = R/2nZ with norm
| Il As is well-known, Hecke L-functions for the field @ of rationals can
be formed from characters of the locally compact abelian idele group Jg;
and if these characters belong to the subgroup Q%+ C .fQ of idele class charac-
ters, then the associated L-functions comprise the usual Dirichlet zeta func-
tions and have functional equations for purposes of analytic continuation.
The Riemann [-function is the IL-function associated with the identity
1eQ*L.

We shall choose certain elements y € J, for which there is not only an
associated L-funetion L(s, ), 8 = ¢ + it, but also & distribution 7,, <1,
on T. These distributions are called idelic distributions and if T, A(T)
then 7, is an idelic pseudo-measure; IPM designates the space of such pseudo-
measures. We shall prove the following analytie continuation and approxi-
mation result. There is & sequence {y,}C Jo\@** and a sequence {T, }C
CIPM, o> %, of corresponding idelic psendo-measures having the following
properties:

a) For each n and each s,eC, ¢,> %, there is a sequence {4,}C
C A'(T) such that T,,= > A.(s— s,)™ converges in the A'(T) norm in
some neighborhood of s,;
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b) {y,} converges to 1 in Jy and |T,,

IA' S H Tﬂ+l,8l

The result is also valid for L*(T), p <oco, cf., Example 2.3; although a
major interest in these problems that I’ve posed is to construct pseudo-
measures which are not measures. Part « is given in sect. 3 and somewhat
more than part b is given in sect. 4.

Section 1 establishes criteria for determining elements of IPM and sec-
tion 2 provides a selection of examples indicating the effectiveness of the
criteria and the relation with number theoretic estimates. The setting of
this paper is not intrinsically idelic and so it is necessary to explain our
idelic language beyond the analytic reasons given in [Benedetto, 1973].
From a number theoretic point of view, it is natural to ask if knowledge
about idele characters which are not idele class cha)mcters can ever provide
any information about idele class characters. The results of sections 3 and 4
can be viewed in this context with the idea that IPM is an effective analytic
space to study. In fact, we can construct idele characters y which are not
idele class characters such that the Riemann hypothesis is valid if and
only if 7, e IPM.

4 for each n.

Acknowledgement. In section 2 we have used D. Aharanov’s development
of the Lebedev-Milin inequalities.

1. — Criteria for idelic pseudo-measures,

For each y € J, there is a function k: P - R and a conductor fe N
(P is the set of primes and N = {1, 2, 3, ...}) which determine the Hecke-L
series

< 1,
Ls, y) = 2 _61k(n)7

n=1 ®°
(n,f)=1

where k(1) = 0 and %k: N - R is defined by the rule k(pg) = k(p) 1 k(g)
for each p,ge P. It k(P)C Z then the idelic distribution T, (on T) cor-
responding to y € Jy, is
T,~3 T (n)e™
where
Tiny= I 1/m,.
k(m)=n
m=1,(m,f)=1

T, is unbounded if T,(0) = oo and T,eIPM if sup |T.(n)] < co. We shall
write y ~ k~ T, to designate the relation between idele character, k-func-
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tion, and distribution. The above definitions and following result are de-
veloped in [Benedetto, 1976]. We shall assume that % is an increasing
function P — N U {0}; the conditions on % can be weakened at the ex-
pense of a more technical presentation.

PROPOSITION 1.1. Take 0>% and y~k~T,. T,cIPM if and only
if the power series expansion of exp (zz"(”)/p") has bounded coefficients.
peP

REMARK 1. Given y~k~ T, and take o, € (},1). Set j, — inf {pep:
k(p) = n} and m, — sup {p € P: k(p) = n}. Assume that

Mo — (G —1) _it
log ja n

for each n>1. Then T,eIPM for every ¢ € [g,, 1].

REMARK 2. Given y~k~ T, and take o €(},1). Define the trigono-
metric series

1
~ R eik(ﬂ):ﬁ .
fo ,EP ?°

It 3 [f2]4/n! < oo then T,e IPM.

2. — Examples of idelic pseudo-measures.

EXAMPLE 2.1. a) Let k(p) = [log p], p € P. -Then T,eIPM/M(T) for
8 =1+ iz, e.g., [Benedetto, 1973, Example 4.1; 1976, Example 2.3; Holz-
sager, 1975].

b) Using the number theoretic techniques necessary to prove part a
we see that T, ¢ IPM if k(p) = [log” p] for & << 1.

¢) If k(p) increases faster than log p then 7, eIPM, s =1 -} i7.

ExAmpre 2.2. Let k(p) = [log®p]. To see that T,¢IPM, o¢<1, by
means of Prop. 1.1 and the fact that > z» = exp (z z"/fn,), note that
0 1

> 1/pe = (m(expVn+ 1) — nfexp Vn))fexp (¢V/n + 1)

k(p)=n

and apply the prime number theorem (7(x) = card {p e P: p<a}). In par-
ticular, if k(p) = [log p] then T ¢ IPM for ¢ < 1.

24 - Ann. Scuola Norm. Sup. Pisa Cl. Sei.
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ExampLE 2.3. We shall show that (for most cases) if %(p) is strictly in-
creaging and T, € IPM for each ¢ > } then 7, e L¥T). Besides Prop. 1.1
we also need the inequality

LN |

1D,[? < exp (kzlklAklz—_kZl %) , Dy=1,

where exp (Z Akz") = D,?* (Lebedev and Milin). The boundedness of
{ID.|} is assured if

n
jA}<Clogn,
i=1

3

where A;=1/p° if j = k(p) and A, = 0 otherwise. Since ¢ >} we can
apply Prop. 1.1 if there are at most C logn elements in {k(p): k(p)<n}.
This latter condition essentially demands that k(p;)> Me’ where p; is the
j-th prime. If k(p;)>Mei then each » = || p" has at most one representa-
tion > rk(p). Consequently, T, e L¥(T) for each ¢ > }.

ExAMPLE 2.4. a) Let p, be the j-th prime and note that T,, ¢<1, is not
in I*(T) even if

(2.1) k(psa) > k(pa) + ... + k(@) -

This is checked directly using the Fourier series criterion of | | -bounded-
ness of Fejér partial sums, cf. part d which is weaker.

b) On the other hand if % satisfies (2.1) then an application of the
Hausdorff-Young theorem shows that

Voe(},1] and Vg<li/dl—o), TseILXT);

and, of course, 7, € L¥T) for each ¢ > .

¢) The significance of (2.1) is-that the frequencies of

8@ =1 (1 + 6"“”’”)

DEP p°

are distinet, noting that 7, = 8,¢, where

o) = T1( 3 *ip)) € A(T).

PEP *i=0

If %(p,) = 27t then N U {0} is the set of frequencies of §,.
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d) Set k(p,) = 2/-* and note that §,, o € (}, 1], does not have bounded
variation on T since the Fourier coefficients of its distributional derivative
are unbounded.

¢) For perspective, recall that for each z e (0,2x), Y (1/n°)6™ is an
analytie funetion in the region ¢ > 0.

3. — The analytic continuation problem.

Given a funection %: P - N U {0} extended to N as in section 1. For
each n, define

H(n) = {m>1:k(m) = n and plm = k(p)+~ 0},

and m, = inf {m:m € H(n)}. Note that if {g,,...,¢,}C P is the zero set
of & and if h%n kE(p) = oo then card H(n) < oo for each n. To prove this let

E(p') > n and set
my = [[{': a<p’y0€ P\{a, ..., ¢,} and je NU {0}} .

where jk(q) > %(p'). Take m = [] p">m,, where the product is the prime
. pFa
decomposition of m. If some p > p’ (in this product), then rk(p) =k(p') > n

since % is increasing. If each p<p’ (in this product) then some p = ¢ has
the property that »>j; thus, k(m) > rk(p) >jk(p) = jk(g) > k(p') > n. There-
fore there are at most m, elements in H(n).

THEOREM 3.1. Given ¢ €(§,1] and k(p) S N U {0} where k(1) = k(2) =

= k(3) = k(5) = k(7) = 0 and card {pe P: k(p) = 0}< co. Assume that
the power series expansion, > a,1*, of

exp (z ]ﬂ tk(?))
v P°
has bounded coefficients, and that
card H(n)

g
@

(3.1) K, such that Yn >0, < Kq

(in particular, card H(n) < co). Hatend k additively to N U {0} as in sec-
tion 1. Then

logm
lk(m)=nW

(3.2) Yo>1/2, sup{ :n20}<oo.
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ProoF. Clearly, > #>¢*>1+ 2; and so
0

SI

i

)>exp (Ta)> [[0+25) = Sar,

where 2, = ((log p)/p°) #®. {e,} is bounded since {a.} is bounded. The left
hand side of (3.3) can be written as

[Ta+2) [TA+4+4+.)=2dt.

Some straight forward estimates and an occasional use of the prime
number theorem yield the convergence of > b,, where b, is defined by
ma-+ 22 4 ...) = X b,t". Combining these observations we see that {d,}

D
is bounded. The bound on (3.2) is then obtained in terms of {d,}. The
hypotheses in the statement that we have not mentioned in this outline of
proof arige in the rather extensive technical verification of several of the
above claims [Benedetto, 1974]. q.e.d.

Take y e J, whose corresponding k-function takes values in N U {0}
and satisfies (3.2). For each f= ¢ e A(T), we define

Vo>3%, Fyls)=<T,e>= sz(n)T.(ﬂ) ,
f7E.
and we see that F, is analytic in the half-plane o > } since its derivative

-3 > 25

neZ k{m)=n

is an absolutely convergent series. In this case we write for a fixed s,, 0, > §,

(3.4) F(s) =3 A (p)s— so)" .

n=0

THEOREM 3.2. Given y ~ k~ T, and assume that k satisfies (3.2). Then
for any fized s, € C, 0o > %, there exists a sequence {A,:n = 0,1,..}C A(T)
depending on 8, such that
(3.5) T, =3 Aufs — s)°

n=0
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conwerges in the | | -norm in some meighborhood of s,; and

3.6) 3 14yl < o0
n=0
if 0> 3.
PrOOF. Because of (3.4),

1 T,
WA, A= | oo,
(4]

where ¢,>}, O is the circle s, + r¢°, and ¢,—r>%. In particular,
A,: A(T) - C is linear and depends on s, (and not on 7). Then,

n2
1 Fo(s, 18) peid df
dutg)] =g | [T b 2D < (1pha sup [T
(1}

By the definition of 7', we have
(3'7) "'An "A' < ” Tct.—r ”A’/r" g

Thus, if s € C with ¢ > { has the property that |¢ — o,|fr <1 then

[ 40]8 — 8|7 < o0

2 14,
n=0

This yields (3.5). (3.6) is clear from (3.7) and the requirements that r>1
and g,—r> . g.e.d.

Exawvpre 3.1. Given y~ k-~ T, and assume that % satisfies (3.2). Then

Vo>3%, lim T, (n)=0.

In|-~>co
In fact,
1 1
— | < log m)/me| <
K(m)=n M° IOgmn k(ﬁ;=”( £ )/ logm,,’

where m, is the smallest m for which k(m) = n. Clearly lim m, = co.
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4. — A topological-arithmetic property of idele characters.

Given integers j, J»>1, and a finite set ¥ having at least ([j77] + 1)
elements. The elements of ¥ will consist of j-tuples of integers satisfying
the following property: if ¥y = (¥, ..., %;) and y'= (v, ..., ¥;) are in ¥ and
y#y then y—y' or y'— y is a j-tuple of positive integers.

ExAMPLE 4.1. Define ¥ = {y;, ...} in either of the following two ways
a) 1= (1,1,..,1), 4. =1(2,2,...,2), 45 = (3,3, ..., 3)y .0

b) Given # = (@, ..., ;) Where @, is a positive integer. Define y, = ho
for h=1,2,...

The following elementary result in diophantine approximation depends
only on the Dirichlet pigeon-hole principle.

LeMMA. Given j, J, and Y as above. There are elements y, y'€ Y such
that if k= y'— y > 0, where k = (k(p.), B(ps), ..., k(p;)) and k(p,)>1, then
for each j-tuple (m,,..,m,)€ZX...XZ (j-times) with |n,|<[J*¥], there is
N = N(py, ..., p;) for which

| 3 kp)n,— 22N | <1fj.

p<ps

ProoF. Let M = [J'¥] so that there are on the order of M = J j-tuples
(My,s +ey My,) of integers for which |n,|<M if p<p;: Consider the Jxj
matrix («,,) of numbers #/2n where n € Z and |n|< M.

For each y = (91, ..., ¥;) € ¥ consider the J-tuple w, = (wy, ..., w;) de-
fined by

) .
wr=wr(y)= zlar,cyc’ 7‘=1,‘...,J.
=
For any such w,, let (2,,...,2,)€ZX...XZ (J-times) have the property
that w, = (&, — wy, ..., #; — w;) €[0,1) X... X[0, 1, (J-times).

Divide [0, 1) into j intervals [/, (b +1)/j), h=0,1,...,j—1; and in
this way partition [0,1)X...x[0,1) (J-times) into j7 cubes.

We have

([J-Jli] _|_ 1)5 =~ (?'J/i)i — jJ i

Since card ¥ > ([§7%] - 1)’ there is at least one of the j7 cubes, call it O,
that has at least two of the w, (y €Y) in it. Say o,, o, € C, where y + y'.
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Because O is a cube of side 1)j we have

1 ' [ j ?
E'-‘> I(mr— Wy) — (@ — wr)’ =3 Elo‘r,c(?/é —¥Ye) — (wr — @) for r =1,..,J.
=

By our hypothesis we can assume without loss of generality that
y; — 4, > 0 for each ¢ =1, ..., j. Thus, finally, we can define kp,) = _1/; — Yus

ige<]. q.c.d.
Choose y € Jo so that if y~%~ T, then 7,eIPM for each ¢>}. If

j>1 define k(p) = jk(p) for p € P, and write y;~k~ T,;. By definition,
we have

ProrosiTIoN 4.1. Given T,;€ A'(T) where j is a positive integer.
a) Take ne Z. If j t n, then T, (n) = 0; and if j|n, then T,,n) =
= T,a(n[j).
b) "Tm"f - "Ta,5+1

ExXAMPLE 4.2. a) Define k;(p) = 0 if p<p; and k,(p) = k(p) > 0 if p > p;,
where y~k~T,€IPM for all o€ (§,1]. Then

|o -

. 1 1
TMO = 1 = — ces =
(0) 2 1m >p1+ +p,-

E(m)=0
and so T,-’,(O) increases indefinitely as j — co.. Thus, Jim [Z40)l 4 = o0.
On the other hand, it is easy to compute that 7%°(0) < co for such o.

b) For the k, defined in part a we let y; € JQ be the corresponding
idele character; and note that {y,} converges to 1 in fq.

Given y~k~ T, IPM for some o€ (},1], where k(p)> 0 for each
p € P. Define k; as we did before Prop. 4.1. Then

THEOREM 4.1. a) There is a subsequence of {y;} which converges to 1 in j@ o

by Along with Prop. 4.1, we also have that }_i)r& T,,=1 in the o(4d', A)
topology; in fact, for each jT,-’,(O) =1 and for each 17,7&0i]_i>n°_; Tj’a(n) =0.

ProoF. a.i. Let ||, be the p-adic metric on the multiplicative group Q
of the p-adic completion of Q; and let U, be the p-adic units. We define
x. 1 ‘
By = r,,eQ,,:;;glr,,l,,gn ’

an H B:u_,nx_]___[ UIH

0<P<vp P>,
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and

N,={yeJdo:VweK, |(y,2)—1|<1/n} (where Qf = R*).

From the definition of the topology in fQ we must verify that for each N,
there is J, 8o that

(4.1) Vo= {r,}eK,, |(y,2)—1|<l/n for each j=>J,.

We know that
_ . ks(p)
(viy @) = 1;_[ exp 'l'logplog 7slo
where n, € Z, — log n< — n, log p<log n, and log |r,|, = — n,log p; in par-

ticular, |n,|<log nflog p.

Taking € K,, we have r,e U, if p > p, and so |r,], =1 if > p.;
thus n, = 0 for each p > p,.

Consequently, if € K,, then

(ys, ) = [] exp— tky(p)n,, |n,|<lognflogp.

P<Dn

Using the notation of the Lemma, we set M = [log n] since
max ([log n/log p]) <[log n] ;

and we define J = M~
Note that if v € K,,, then, by the above, the n-tuple (u,,.
responding to # has the property that |n,|<M for each ¢.
Consequently, we apply the Lemma (and raise to the ¢ power) to ob-
tain (4.1).

.y My ) COT-

b follows from Prop 4.1. g.6.d.
The analogous result holds for LY(T).
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