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Abstract—Using his formulation of the potential theoretic
notion of balayage and his deep results about this idea, Beurling
gave sufficient conditions for Fourier frames in terms of balayage.
The analysis makes use of spectral synthesis, due to Wiener and
Beurling, as well as properties of strict multiplicity, whose origins
go back to Riemann. In this setting and with this technology, with
the goal of formulating non-uniform sampling formulas, we show
how to construct frames using pseudo-differential operators. This
work fits within the context of the short time Fourier transform
(STFT) and time-frequency analysis.

I. INTRODUCTION

A. Background and theme

Our main result, Theorem III.3, formulates pseudo-
differential operator frame inequalities, giving rise to associ-
ated frame expansions. The proof is based on Beurling’s theory
of balayage. Our immediate aim is to provide a new tool in
the theory of operator sampling, see [1], [2], [3], [4], [5], in
the context of time-frequency analysis and short time Fourier
transforms with regard to the importance of pseudo-differential
operators in operator sampling.

Generally, frames provide a natural tool for dealing with
signal reconstruction in the presence of noise in the setting of
overcomplete sets of atoms, and with the goals of numerical
stability and robust signal representation.

Fourier frames (Definition I.3) were the first frames ana-
lyzed in harmonic analysis, and they were originally studied
for the case of non-harmonic Fourier series by Duffin and
Schaeffer [6], with a history going back to Paley and Wiener
[7] (1934) and further, and with significant activity in the
1930s and 1940s, e.g., see [8]. Since [6], there have been
significant contributions by Beurling (unpublished 1959-1960
lectures), [9], [10], Beurling and Malliavin [11], [12], Kahane
[13], Landau [14], Jaffard [15], and Seip [16], [17].

The remainder of Section I is devoted to motivation (Sub-
section I-B) and definitions (Subsection I-C), respectively. In
Section II, we define and expand on the definition of bal-
ayage. Section III gives the requisite background on pseudo-
differential operators and states our main result, Theorem III.3.
It is apparent from the statement of Theorem III.3 that a deeper
understanding of its hypotheses is necessary for any useful
applicability. It is for this reason that we include Section IV.

B. Motivation

There are analogues and extensions of the classical result
that the set {e−2πinω : n ∈ Z} of exponentials forms an
orthonormal basis for the space L2(Λ) of square-integrable
functions on Λ = [0, 1]. As such, we ask if there is a unifying
theory that ties together these analogues and extensions?
Consider the general sampling formulas,

f(x) =
∑

f(xn)sn, (1)

for non-uniformly spaced sequences {xn}, for specific se-
quences of sampling functions sn depending on xn, and for
classes of functions f for which such formulas are true.

Are there general theoretical justifications for the often in-
tricate relations that occur between the sequences of sampling
points and the support sets of the spectra of functions in
equations such as (1)? Such questions are the basis for our
motivation for the setting of Theorem III.3.

To be more precise, and to illustrate a specific case of such
a relation before we get to pseudo-differential operators, we
give the following example.

Example I.1. This is a result of Olevskii and Ulanovskii [18]
(2008) concerning universal sets of stable sampling for band-
limited functions.

Consider an analogue of the aforementioned classical re-
sult, where the interval [0, 1] is now replaced by a possibly
unbounded set Λ ⊆ R̂, where R̂ is defined in Subsection I-C,
in which Λ has Lebesgue measure |Λ| strictly less than 1 and,
speaking intuitively, for which Λ is not too spread-out.

Let E = {n + 2−|n| : n ∈ Z} and let E(E) = {e−x : x ∈
E}, where ex(γ) = e2πxγ . Then E(E) is complete in L2(Λ)
for every measurable set Λ ⊆ R̂ satisfying |Λ| < 1 and for
which |Λ ∩ {γ : k − 1 < |γ| < k}| ≤ C 2−k, where C
is independent of k. This means that for any F ∈ L2(Λ),
where F is zero outside the set Λ, if F is orthogonal to
each function in E(E), then we can conclude that F = 0 a.e.
This is equivalent to saying that for any f ∈ L2(R), for
which f(x) =

∫
Λ
F (γ)e2πixγ dγ, for some F ∈ L2(Λ)

(and so f is continuous on R since |Λ| < ∞), the condition
that f = 0 on E implies that f = 0 a.e. The hypothesis,
|Λ∩{γ : k− 1 < |γ| < k}| ≤ C 2−k, where C is independent
of k, can be weakened but not eliminated. Thus, although Λ



can be an unbounded set, there is a restriction that Λ cannot
be too thin or too spread-out over R̂.

This is the type of intricate relation we are referring to
above, in this case between the set E of sampling points and
the support set Λ of the Fourier transform F(f) of a function
f, see Subsection I-C for the definition of F(f).

C. Definitions

Definition I.2. (Frame) Let H be a separable Hilbert space. A
sequence {xn}n∈Z ⊆ H is a frame for H if there are positive
constants A and B such that

∀ f ∈ H, A‖f‖2 ≤
∑
n∈Z

|〈f, xn〉|2 ≤ B‖f‖2.

The constants A and B are lower and upper frame bounds,
respectively. The smallest possible value of B and the largest
possible value of A are the optimal frame bounds.

Our overall goal beyond this paper is to extend the theory
of Fourier frames to more general types of frames in time-
frequency analysis. To accomplish this, we formulate non-
uniform sampling formulas parametrized by the space M(Rd)
of bounded Radon measures, see [19]. This formulation pro-
vides a natural way to generalize non-uniform sampling to the
setting of short time Fourier transforms (STFTs) [20], Gabor
theory [21], [22], [23], and pseudo-differential operators [20],
[24], The techniques are based on Beurling’s methods from
1959-1960, [10], [9], which incorporate balayage, spectral
synthesis, and strict multiplicity. In this paper, we show how
to achieve this goal for pseudo-differential operators.

We define the Fourier transform F(f) of f ∈ L2(Rd) and
its inverse Fourier transform F−1(f) by

F(f)(γ) = f̂(γ) =

∫
Rd

f(x)e−2πix·γ dx,

and
F−1(f̂)(γ) = f(x) =

∫
R̂d

f̂(γ)e2πix·γ dγ.

R̂d denotes Rd considered as the spectral domain. We write
F∨(x) =

∫
R̂d F (γ)e2πix·γ dγ. The notation “

∫
”’ designates

integration over Rd or R̂d. When f is a bounded continuous
function, its Fourier transform is defined in the sense of
distributions. If X ⊆ Rd, where X is closed, then Mb(X)
is the space of bounded Radon measures µ with the support
of µ contained in X . Cb(Rd) denotes the space of complex
valued bounded continuous functions on Rd.

Definition I.3. (Fourier frame) Let E ⊆ Rd be a sequence and
let Λ ⊆ R̂d be a compact set. Notationally, let ex(γ) = e2πix·γ .
The sequence E(E) = {e−x : x ∈ E} is a Fourier frame for
L2(Λ) if there are positive constants A and B such that

∀ F ∈ L2(Λ), A‖F‖2L2(Λ) ≤
∑
x∈E
|〈F, e−x〉|2 ≤ B‖F‖2L2(Λ).

Define the Paley-Wiener space,

PWΛ = {f ∈ L2(Rd) : supp(f̂) ⊆ Λ}.

Clearly, E(E) is a Fourier frame for L2(Λ) if and only if the
sequence,

{(e−x 1Λ)∨ : x ∈ E} ⊆ PWΛ,

is a frame for PWΛ, in which case it is called a Fourier frame
for PWΛ. Note that 〈F, e−x〉 = f(x) for f ∈ PWΛ, where
f̂ = F ∈ L2(R̂d) can be considered an element of L2(Λ).

II. BALAYAGE

Beurling introduced the following definition in his 1959-
1960 lectures.

Definition II.1. (Balayage) Let E ⊆ Rd and Λ ⊆ R̂d be closed
sets. Balayage is possible for (E,Λ) ⊆ Rd × R̂d if

∀µ ∈Mb(R
d), ∃ν ∈Mb(E) such that µ̂ = ν̂ on Λ.

Balayage originated in potential theory, where it was intro-
duced by Christoffel (early 1870s) and by Poincaré (1890).
Kahane formulated balayage for the harmonic analysis of
restriction algebras. The set, Λ, of group characters (in this
case Rd) is the analogue of the original role of Λ in balayage
as a set of potential theoretic kernels.

Let C(Λ) = {f ∈ Cb(Rd) : supp(f̂) ⊆ Λ}.

Definition II.2. (Spectral synthesis) A closed set Λ ⊆ R̂d is
a set of spectral synthesis (S-set) if

∀f ∈ C(Λ) and ∀µ ∈Mb(R
d), µ̂ = 0 on Λ⇒

∫
f dµ = 0,

(2)
see [25].

Closely related to spectral synthesis is the ideal structure of
L1, which can be thought of as the Nullstellensatz of harmonic
analysis. As examples of sets of spectral synthesis, polyhedra
are S-sets; and the middle-third Cantor set is an S-set which
contains non-S-sets. Laurent Schwartz (1947) showed that
S2 ⊆ R̂3 is not an S-set; and, more generally, Malliavin (1959)
proved that every non-discrete locally compact abelian group
contains non-S sets. See [25] for a unified treatment of this
material.

Definition II.3. (Strict multiplicity) A closed set Γ ⊆ R̂d is a
set of strict multiplicity if

∃µ ∈Mb(Γ) \ {0} such that lim
‖x‖→∞

|µ∨(x)| = 0.

The notion of strict multiplicity was motivated by Rie-
mann’s study of sets of uniqueness for trigonometric se-
ries. Menchov (1906) showed that there exists a closed set
Γ ⊆ R̂/Z and µ ∈ M(Γ) \ {0}, such that |Γ| = 0
and µ∨(n) = O((log |n|)−1/2), |n| → ∞. There have been
intricate refinements of Menchov’s result by Bary (1927),
Littlewood (1936), Beurling, et al., see [25].

The above concepts are used in the deep proof of the
following theorem, due to Beurling.

Theorem II.4. Assume that Λ is an S-set of strict multiplicity,
and that balayage is possible for (E,Λ). Let Λε = {γ ∈ R̂d :



dist (γ,Λ) ≤ ε}. Then, there is ε0 > 0 such that if 0 < ε < ε0,
then balayage is possible for (E,Λε).

Definition II.5. A sequence E ⊆ Rd is separated if

∃ r > 0 such that inf{‖x− y‖ : x, y ∈ E and x 6= y} ≥ r.

The following theorem, also due to Beurling, gives a suf-
ficient condition for Fourier frames in terms of balayage. Its
history and structure are analyzed in [19] as part of a more
general program.

Theorem II.6. Assume that Λ ⊆ R̂d is an S-set of strict
multiplicity and that E ⊆ Rd is a separated sequence. If
balayage is possible for (E,Λ), then E(E) is a Fourier frame
for L2(Λ), i.e., {(e−x 1Λ)∨ : x ∈ E} is a Fourier frame for
PWΛ.

III. PSEUDO-DIFFERENTIAL OPERATORS AND
TIME-FREQUENCY ANALYSIS

Definition III.1. Let f, g ∈ L2(Rd). The short time Fourier
transform (STFT) of f with respect to g is the function Vgf
on R2d defined as

Vgf(x, ω) =

∫
Rd

f(t)g(t− x) e−2πit·ω dt,

see [20], [24] (Chapter 8).
The STFT is uniformly continuous on R2d. Further, for a

fixed “window” g ∈ L2(Rd) with ‖g‖2 = 1, we can recover
the original function f ∈ L2(Rd) from its STFT Vgf by means
of the vector-valued integral inversion formula,

f =

∫ ∫
R2d

Vgf(x, ω) eωτx dω dx, (3)

where (τxg)(t) = g(t− x) and (eωg)(t) = e2πit·ωg(t).

Let σ ∈ S ′(Rd × R̂d). The operator, Kσ, formally defined
as

(Kσf)(x) =

∫
σ(x, γ)f̂(γ)e2πix·γ dγ,

is the pseudo-differential operator with Kohn-Nirenberg sym-
bol, σ, see [24] Chapter 8, [26], and [27], Chapter VI. We
can manipulate the above formula to illustrate its connection
to time frequency analysis. In fact, we compute as follows:

(Kσf)(x) =

∫
σ(x, γ)f̂(γ)e2πix·γ dγ

=

∫ ∫
σ(x, γ)e2πi(x−y)·γf(y) dγ dy

=

∫ ∫
σ̂(ω, y − x)e2πiω·xf(y) dy dω

=

∫ ∫
σ̂(ω, u)e2πiω·xf(u+ x) du dω.

This last expression allows us to view Kσ formally as a
superposition of time-frequency shifts, that is,

Kσ =

∫ ∫
σ̂(ω, u)eωτ−u du dω,

where eω and τu are, respectively, the modulation and trans-
lation operators, defined in (3). These two operators are the
fundamental operators in time-frequency analysis, and we see
that a pseudo-differential operator with the right symbol class
is a superposition of modulation and translations. The function
σ̂ is the spreading function associated to the operator Kσ .

For consistency with the notation of the previous section, we
shall define pseudo-differential operators, Ks, with tempered
distributional Kohn-Nirenberg symbols, s ∈ S ′(Rd × R̂d), as

(Ksf̂)(γ) =

∫
s(y, γ)f(y)e−2πiy·γ dy.

Further, we shall deal with Hilbert-Schmidt operators,
K : L2(R̂d) → L2(R̂d); and these, in turn, can be repre-
sented as K = Ks, where s ∈ L2(Rd × R̂d). Recall that
K : L2(R̂d)→ L2(R̂d) is a Hilbert-Schmidt operator if∑∞

n=1
‖Ken‖22 <∞

for some orthonormal basis, {en}∞n=1, for L2(R̂d), in which
case the Hilbert-Schmidt norm of K is defined as

‖K‖HS =

( ∞∑
n=1

‖Ken‖22

)1/2

,

and ‖K‖HS is independent of the choice of orthonormal
basis. The first theorem about Hilbert-Schmidt operators is
the following [28]:

Theorem III.2. If K : L2(R̂d) → L2(R̂d) is a bounded
linear mapping and (Kf̂)(γ) =

∫
m(γ, λ)f̂(λ) dλ, for

some measurable function m, then K is a Hilbert-Schmidt
operator if and only if m ∈ L2(R̂2d) and, in this case,
‖K‖HS = ‖m‖L2(R2d).

The following is our main result in this paper. It shows the
construction of frames using pseudo-differential operators.

Theorem III.3. Let E = {xn} ⊆ Rd be a separated sequence,
that is symmetric about 0 ∈ Rd; and let Λ ⊆ R̂d be an S-set
of strict multiplicity, that is compact, convex, and symmetric
about 0 ∈ R̂d. Assume balayage is possible for (E,Λ).
Further, let K be a Hilbert-Schmidt operator on L2(R̂d) with
pseudo-differential operator representation,

(Kf̂)(γ) = (Ksf̂)(γ) =

∫
s(y, γ)f(y)e−2πiy·γ dy,

where sγ(y) = s(y, γ) ∈ L2(Rd × R̂d) is the Kohn-Nirenberg
symbol and where we make the further assumption that

∀γ ∈ R̂d, sγ ∈ Cb(Rd) and supp (sγe−γ )̂ ⊆ Λ.

Then,

∃A, B > 0 such that ∀f ∈ L2(Rd)\{0},

A
‖Ksf̂‖42
‖f‖22

≤
∑
x∈E
|〈(Ksf̂)(·), s(x, ·) ex(·)〉|2

≤ B ‖s‖2
L2(Rd×R̂d)

‖Ksf̂‖22.



The proof of Theorem III.3 can be found in [19]. The
framework developed in [29] and [30] are presently our guide
for formulating the next stage of this theorem in a more useful
and elegant form.

IV. THE BEURLING COVERING THEOREM

The material in this section is due to [29] and [30], and
it goes back to the late 1990s. The underlying analysis is
due to Beurling [10], but Benedetto and Wu emphasized the
essential nature of coverings in the process. The setting is
for Fourier frames. However, it is this point of view that we
hope will be useful in constructing implementable frames from
Theorem III.3. In particular, the hypothesis of balayage in
Theorem III.3 would be replaced by the analogues of the
analytic and geometrical hypotheses of an inequality and a
covering property, respectively, in Theorem IV.2.

Let Λ ⊆ R̂d be a convex, compact set which is symmetric
about the origin and has non-empty interior. Then ‖·‖Λ,
defined by

∀γ ∈ R̂d, ‖γ‖Λ = inf{ρ > 0 : γ ∈ ρΛ},

is a norm on R̂d equivalent to the Euclidean norm. The polar
set Λ∗ ⊆ Rd of Λ is defined as

Λ∗ = {x ∈ Rd : x · γ ≤ 1, for all γ ∈ Λ}.

It is elementary to check that Λ∗ is a convex, compact set
which is symmetric about the origin, and that it has non-empty
interior.

Example IV.1. Let Λ = [−1, 1]×[−1, 1]. Then, for (γ1, γ2) ∈
R̂2,

‖(γ1, γ2)‖Λ = inf{ρ > 0 : |γ1| ≤ ρ, |γ2| ≤ ρ} = ‖(γ1, γ2)‖∞ .

The polar set of Λ is

Λ∗ = {(x1, x2) : |x1|+|x2| ≤ 1} = {(x1, x2) : ‖(x1, x2)‖1 ≤ 1}.

Theorem IV.2. (Beurling covering theorem) Let Λ ⊆ R̂d be a
convex, compact set which is symmetric about the origin and
has non-empty interior, and let E ⊆ Rd be a separated set
satisfying the covering property,⋃

y∈E
τyΛ∗ = Rd.

If ρ < 1/4, then {(e−x 1Λ)∨ : x ∈ E} is a Fourier frame for
PWρΛ.

Theorem IV.2 [29], [30] involves the Paley-Wiener theorem
and properties of balayage, and, as mentioned, it depends on
the theory developed in [10] as well as [9], pages 341-350,
and [14]. Unaware of our work from the late 1990s there is
the recent development[31].
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