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Abstract Low autocorrelation signals have fundamental applicatiorradar and
communications. We construct constant amplitude zerocautelation (CAZAC)
sequences on the integer& by means of Hadamard matrices. We then generalize
this approach to construct unimodular sequenxaesZ whose autocorrelation,

are building blocks for all functions of. As such, algebraic relations between
Ay andAy become relevant. We provide conditions for the validitytoé formulas
Ay = Ac+Ay.

1 Introduction

1.1 Background

LetR be the real numbers, I&tbe the integers, and s&t=RR /Z. A general problem
is to characterize the family of positive bounded Radon messs-, whose inverse
Fourier transforms are the autocorrelations of boundedesezp. A special case
is whenF =1 onT andx is unimodular orZ. The statement that = 1 is the
same as saying that the autocorrelation sénishes except at &here it takes the
value 1 We shall construct such unimodular sequenceased on the analysis of
Hadamard matrices.

The problem of constructing unimodular sequences with azettocorrelation,
which our constructions address, is central in the geneeal af waveform design,
and it is particularly relevant in several applicationstie ireas of radar and com-
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munications, and in the general area of constructing phegeccwaveforms oiR
with optimal narrow band ambiguity function behavior. Irdaa, the sequences
can play a role in effective target recognition, see, eqj,, [P], [15], [20], [21],
[22], [23], [28]; and in communications they can be used tdrads synchroniza-
tion issues in cellular (phone) access technologies, edfyerode division multiple
access (CDMA), e.g., [30], [31], [32]. The radar and comnaation methods com-
bine in recent advanced multifunction RF systems (AMRFSith\Wegard to the
narrow band ambiguity function we refer to [5], [6], [20].9R which in turn refer
to the vast literature in this subject.

In radar there are two main reasons that the sequenslesuld be unimodular,
that is, have constant amplitude. First, a transmitter qgeeraie at peak power ¥
has constant peak amplitude - the system does not have tavitkahe surprise
of greater than expected amplitudes. Second, amplitudaticars during transmis-
sion due to additive noise can be theoretically eliminaléek zero autocorrelation
property ensures minimum interference between signatéghthe same channel.

1.2 Autocorrelation

We shall use the standard notation from harmonic analygs, [@], [27]. N is the

set of natural numbers arf@is the set of complex numbeiG(T9) is the space of
C-valued continuous functions 6ff' = RY/Z9, andA(TY) is the subspace of ab-
solutely convergent Fourier seridd(T9) is the space of bounded Radon measures
onTY, i.e.,M(TY) is the dual space of the Banach sp&¢&¢“) taken with the sup
norm. For a giverd > 0, theL-dilation of f, f, , is defined ad) (t) = A f(At). Let

C N2
A(t) =max1—[t|,0) onR. Let w(y) = ~ (S'ny/z) ; wis theFejer function The

2n \ y/2
Fourier transform of € L1(R) is the functionf defined by

~

fly) = /:) ft)e 2™t ye R (= R).

A(I@) denotes the space of such absolutely convergent Founsfarms or@, with
an analogous definition fak(RY). We write the pairing between the functiérand

fasf < f. The Fourier transform of\ is wyr. For a sete, the measure oE is
denoted byE|.

Definition 1. Theautocorrelation A : Z — C of x: Z — C is formally defined as
VkeZ, Ak = I|m 2N i z X[K -+ m]x[m]

(Lower case Roman letters, suchxasre often used in some applied communities
to denote function& — C.) There is an analogous definition of autocorrelation for
functionsf : RY — C, e.g., see Theorem 1.
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If F e A(TY) we writeF = f = {f}, i.e., F[k] = fx, where, for allk € Z9, f, =
Jra F(y)€7™Vdy. There is a similar definition fofi wherep € M(T9), e.g., see
Theorem 1.

In the setting ofR, we have the following theorem due to Wiener and Wintner
[36], which was later extended ®° in [3], [18].

Theorem 1.Let u be a bounded positive Radon measurelRanThere is a con-
structible function fe L7 (R) whose autocorrelation Aexists for all te R, and
A; =[1onR,i.e.,

T _ .
VteR, lim i/ F(t+x) T dx= / 7l (x).
T—eo 2T J T R
For any positive integel, we denote the-dimensional square ii® by S(N),
ie.,

S(N) = {m= (my,mp,---,mg) € Z¢: =N <m <N,i =1, d}.

OnZY the following version of the Wiener-Wintner theorem can béained [12].

Theorem 2.Let u € A(TY) be positive orilY. There is a constructible function
x: 2% — C such that

kezd AJKl = lim —— K
ke 2%, Ad NILnoo(ZN-i-l)dmg%N)X[ i

= [[K. 1)

Although the Wiener-Wintner theorem gives the constructid the functionx it
does not ensure boundedness.dh fact,x need not be an element 6f(Z) [19].
Our desire is to construct sequengeblat have constant amplitude.

It has been shown in [34], [35] thatAf€ (0, 1) has binary expansion@, a,a3- - ,
if we consider the Lebesgue measure(0ri), and if we define the unimodular (in
fact, +1-valued) functiory by

[ 2amy1—1 ifk=n+1, ne NU{0},
y[k]—{2a2n—1 ifk=1-n,neN, 2)

then, foralmost allvalues ofA, the autocorrelation of, Ay, is

0 ifk£0,
Al = { 1 itk=0. ®)

Thus,Ay is the inverse Fourier transform Bf= 1 onT. Here Lebesgue measure on
(0, 1) is the probability measure ([12], page 77).

The expression (3) defines a sequeptavingperfect autocorrelationAn ex-
plicit or deterministic construction of such a unimodulagsence ofZ is given in
[34], where the sequence consistsidfs. Inspired by that we propose a different
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class of deterministic unimodular sequences with perfati@rrelation that are
constructed from real Hadamard matrices. In fact, an extergeneralization of
such constructions can be found in [8].

Definition 2. (a) LetZ/NZ be the finite groud0, 1,...,N — 1} with addition mod-
ulo N. We say thatx : Z/NZ — C is a constant amplitude zero autocorrelation
(CAZAC) sequence ifx[k]| = 1 for eachk € Z/NZ and if

1Nt
vk=1,...,N—1, szzox[m—i—k]x[m]zo.

(b) Givenx: Z — C. The sequence is a CAZAC sequence 07 if |x[k]| =1 for
eachk € Z and if A k] = 0 for eachk € Z\{0}.

1.3 Qutline

In Section 2.1, we review properties and problems relatédadamard matrices.
This serves as background for Section 2.2, where we ediahksrelation between
CAZAC sequences ofi/NZ, Hadamard matrices, and the discrete Fourier trans-
form. Then, in Section 2.3, we construct CAZAC sequence%.dry means of
Hadamard matrices. Section 3 is devoted to extending therrabbf Section 2

in the following way. In Section 3.1 we construct unimoddlarctions ornZ whose
autocorrelations are triangles; and we view this as a gératian of the construc-
tion of CAZACs onZ. It is natural to think of such triangles as building blocks of
the functions or¥. As such, Section 3.2 is devoted to the formijay = Ax+ Ay,

and we prove its validity a.e.

2 Hadamard matrices and CAZAC sequences

2.1 Hadamard matrices

Definition 3. A real Hadamard matrixis a square matrix whose entries are either
+1 or—1 and whose rows are mutually orthogonal.

LetH be a Hadamard matrix of ordar Then, the matrix

H H

H-H
is a Hadamard matrix of ordem2This observation can be applied repeatedly (as
Kronecker products) to obtain the following sequence oféaiadrd matrices.
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H_ [FLHL] 11
27 |Hy —Hy | |11
11 1 1
W [H2 H2]_|1-11 -1 -
T Hy —Ho |~ |11 —1-1|
1-1-11
Thus,
[Hok1 Hok 1
Ho = 2 2
ra L sz—l _sz—l :|

i H2k—2 H2k—2 H2k—2 H2k—2
_ H2k—2 —H2k—2 H2k—2 —H2k—2 (4)

H2k—2 H2k—2 _sz—Z _sz—Z
_sz—Z H2k—2 _sz—Z H2k—2

This method of constructing Hadamard matrices is due toesyr (1867) [29].
In this manner, he constructed Hadamard matrices of ofder 2very non-negative
integerk.

The most important open question in the theory of Hadamatdees is that of
existence. Théladamard conjecturasserts that a Hadamard matrix of ordisrek-
ists for every positive intege [16]. Hadamard matrices of orders 12 and 20 were
constructed by Hadamard in 1893 [14]. He also proved thit i§ a unimodular
matrix of orderN, then|detU)| < NV/2, with equality in the cas¥ is real if and
only if U is Hadamard [14]. In 1933, Paley discovered a construckiahgroduces
a Hadamard matrix of order+ 1 whenq is any prime power that is congruent to
3 modulo 4, and that produces a Hadamard matrix of ordgr2l) whenq is a
prime power that is congruent to 1 modulo 4 [24]. His methaabusite fields. The
Hadamard conjecture should probably be attributed to Paleysmallest order that
cannot be constructed by a combination of Sylvester’s atey/Banethods is 92. A
Hadamard matrix of this order was found using a computer bhyniBat, Golomb,
and Hall in 1962. They used a construction, due to Williamgbat has yielded
many additional orders. In 2004, Hadi Kharaghani and Befiayfeh-Rezaie an-
nounced that they constructed a Hadamard matrix of order A2& result, the
smallest order for which no Hadamard matrix is presentlykmis 668.

Hadamard matrices are closely connected with Walsh funstjg], [26]. The
Walsh functions, constructed by J. Walsh [33], are an othmal basis fol.?(T).
Every Walsh function is constant over each of a finite numbesubintervals of
(0,1). A set of Walsh functions written down in appropriate orderaws of a
matrix will give a Hadamard matrix of ordeMN2as obtained by Sylvester's method.
The Walsh functions defined dhcorrespond to the wavelet packets associated with
the Haar multiresolution analysis.
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2.2 CAZACs and circulant Hadamard matrices

An N x N matrix A of the form

a az ag -+ an
aNn ai a .- an-1
A= |aN-1aNn a1 - aN-2
Q@ a--an &
is called a circulant matrix [17]. Each row is just the prexsaow cycled forward
by one step, so that the entries in each row are just a cyciioytation of those
in the first. There is a characterization of CAZAC sequennédsfims of circulant
Hadamard matrices with complex entries, see Theorem 4,[&0]. For any finite

sequenceg= (X[0],x[1],...,x[N—1]) of N complex number&N > 1), its normalized
discrete Fourier transfornt = (X[0], X[1],...,X[N — 1]) is defined by

N—-1 L
Rj] =N2 S x(Ke ?™IN (j=0,1,...,N=1),
k=0

N-1 , Nt ,
IX[KJ[== > [X[j]|
Itis easy to see thatis CAZAC if and only ifx andX'are unimodular (Corollary 1).

This fact is a consequence of the following result.

Theorem 3.Let x: Z/NZ — C be the sequence= (X[0],x[1],...,X[N —1]). The
condition,

By Parseval’s relation,

vm=1,...,N—1 Nzk 0 x[m+K|x[k] = (5)
is valid if and only if there is a constant ¢ such th&t=c onZ/NZ.

Proof. (i) Suppose thaik| = c onZ/NZ. Then, for each € Z/NZ,

1N1

2 mi(k-0)i/N,
=N 2, XK Ng

le |2+ZX ké)J/N

KZL
Thus, by hypothesis, we hatég[j]|> = -4 [X[n]|2 (= N¢?), and so

Z) %|X |2+§ i (k— /)J/N

and so
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Hence, by Parseval’s identity, we have

Vj € Z/NZ, ; x[Kx[(]e 20N — g (6)
k£l

Fixke {0,1,...,N—1} and letm= k— £(modN). Then, (6) becomes

N—1N-1 - o
> /z X[ 4 mix[ZJe~2"mi/N — 0, @)
m=1

In particular, there arbi® — N terms in the sum of (6) since we exclude the diagonal
of anN x N array. For compatibility, for eacim there areN terms in (7), and since
there areN — 1 values ofm we see that there ai¢” — N terms in the sum of7).
Now let f[m] = 34 x[¢ + m|x[¢]. Then (7) becomes

N-1 o
VieZ/NZ, 5 flme ?™mI/N o, (8)
=1
Multiplying both sides of (8) bye?™i/N_for a fixedk € {0,1,...,N — 1}, we have
Vj € Z/NZ, Z f[mje2m(m-KI/N _ g,

and so

N-1 N—1 , ,
Z f[m] ( zerm(mk)J/N> -0 (9)
m=1 j=

for every fixedk € {0,1,...,N—1}. Since

N-1 . - N’ k=m,
Z)e*Zm(m*k)J/N = { e MM Y1 _ g ktm,
= e ZmmIN—1 7&

e 2m(m— k/N l

and sincene {1,...,N—1}, equation (9) allows us to assert tHain| = 0 for each
me {1,...,N —1}. In fact, for any fixedk € {1,...,N — 1}, the left side of (9)
becomedN f[k], and sof [k] = 0 by the right side of (9).

(i) The converse is proved by retracing the steps of (i)l

Corollary 1. Letx: Z/NZ — C be the unimodular sequencexx[0],X[1],...,X[N—
1]). The sequence x is a CAZAC sequence if and orlisib unimodular sequence.

Proof. If xis a CAZAC sequence then (5) is valid and/fo= c by Theorem 3. The
constant of Theorem 3 is 1 by proof of Theorem 3 and sirxds unimodular. The
converse follows by retracing this proofm

Definition 4. A complex Hadamard matrix is a square matrix whose entriesiair
modular and whose rows are mutually orthogonal.
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We have the following characterization of CAZAC sequencet®ims of circulant
Hadamard matrices with complex entries.

Theorem 4.Given a sequence: X /NZ — C, and let H be a circulant matrix with
first row x= (x[0],x[1],...,x[N — 1]). Then x is a CAZAC sequence if and only if H
is a Hadamard matrix.

Proof.
X0 x1]--- xN—1] X0  XN—1]-- x[1]
X[N—1] X[0] - -+ XN —2] x[1] x[0] - X[2]
Hy = . . He= . .
X1 X2 X0 N=TXN=7 - X0

(i) Assume thaty is a complex Hadamard matrix. Hence, all of the entriebl,of
are unimodular and
HxHy = Nly (20)

wherely is theN x N identity matrix. As a consequence of (10) one hasnfice
1,...,N—1
N-1 o

; X[+ mix[(] = 0
/=0

which means that has zero autocorrelation and is thus a CAZAC.

(ii) Conversely, suppose thais a CAZAC. We want to show thaty is a Hadamard
matrix. We already know that all the entriestyf are unimodular sinceis unimod-
ular and the entries dfl are the elements of We want to show thatyHy; = Nly.
Due to unimodularity

N—1
; X7 =N (11)
/=0

and so the diagonal entriesld{H,; equalN as required. Sinceis CAZAC,
N-1 _

/% X[ +mx[¢] =0

for m# 0, which means that every off-diagonal entrytfH;; equals zero and this
together with (11) implies thatixH; is a Hadamard matrix. O

Due to this characterization of CAZACs there is a basic i@tdbetween CAZACs
andfinite unit normed tight frame$FUNTFs) inCY. We shall say that: Z/NZ —
CYis a CAZAC sequence ifi¢ if each||x[K]|| = 1 and

1N
vk=1.,N=1 =% ({m-+HK,xm)=0.

Eachx[m] = (x1[m],...,Xg[m]), wherex;[m € C, me Z/NZ, andj =1,...,d; and
the inner product is
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d N
(X[, x[ml) = lej (k] [m.
j=

The norm of eactx[K] is then||x[k]|| = (x[k],x[k])¥/2. For fundamentals on frame
theory we refer to [11] or [13]. The following has been showiid].

Theorem 5.Let x= {x[n]}N_, be a CAZAC sequence @ Define

vk=1,...,N, v«»:é%@me+u,“mw+d—ny

Then v= {v(k)}}_, is a CAZAC sequence i and {v(k)}}_, is a FUNTF forC®
with frame constany{.

2.3 CAZACs and Hadamard sequences

In this section we construct infinite CAZAC sequences, CAZAC sequences on
Z, from real Hadamard matrices. Two different constructiores given. For the
proofs of Theorem 6 and Theorem 7 we refer the readers to [8].

Example 1.To construct a unimodular sequencéet H; be repeated once{2 1),
H, be repeated twice {3, H4 be repeated2times,Hg be repeated2times, and, in
general, leHxn be repeated™imes. For the positive integers, betake values row
by row from the elements of the sequence of matrices

Hi,Ho, Ho,Ha, Ha, Hg, Ha Hg, - - (12)

Setx[0] = 1 and, for anyk € N, definex[—k] = x[k]. The sequencg is called the
exponential Hadamard sequence.

Theorem 6.Let x be the exponential Hadamard sequence. Then,

1ifk =0,
AXMZ{Oifk;ﬁO.

Instead of having the Hadamard matrices repeat exponlgraisidescribed in
Example 1, we can construct unimodular sequences, whoseatglations vanish
everywhere expect at the origin, by letting the Hadamardioest repeat linearly.

Example 2To construct the linear Hadamard sequercket Hy be repeated zero
times, H, be repeated oncéls be repeated twicdilg be repeated thrice, and, in
general, leHan be repeated times. For the positive integers, betake values row

by row from the elements of the sequence of matrices

Ha,Ha,Ha, Hg, Hg, Hg, H16,H16,H16,H16,H32, - - - .
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Setx[0] = 1, and, for anyk € N, definex|—k| = x[k|]. The sequencg is called the
linear Hadamard sequence.

The proof of the following result is similar to that of Theare.
Theorem 7.Let x be the linear Hadamard sequence. Then,

1ifk =0,
AXMZ{Oifk;ﬁO.

These two constructions are more general than they appsaexample, instead

of H; = [1] one could start wittH; = [—1] and obtain the following sequence of
Hadamard matrices.

Hy = [-1],
W [HoHO] _[-1-1
27 Hy —Hy | |[-1 1]
~1-1-1-1
W [HeH2 ] _|-11-11}
T HyHy| |-1-11 1|’
-11 1-1

Using this sequence of Hadamard matrices in Example 1 or BbaPrwould give
a different sequencebut one which would still have perfect autocorrelation.

Example 3Let x be the exponential Hadamard sequence. Since in practicanve ¢
not use the entire infinite sequence, we would like to soleefdfiowing problem:
givene > 0, find N € N such that

vk e Z, <E.

2~

N
X[m+ K]

2.1

N

Lete > 0 andK € N. The smallesN such that

V0 < |k <K, <e

Zl =

N

z [m+K]x
m=1
satisfies the inequality

18lon®+1 1 1

N 7 + 72,\,I+1 <E, (13)

whereM is a function ofN. For more information about the relationship betwien
andN we refer to [8], [12].

(14) gives the values dfl obtained via (13) foK = 16 and several values of
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The autocorrelation of the function from Hadamard matrices using 2001 terms and error = 0.:
12 T T T

Autocorrelation at k

WA

-20 -15 -10 -5 0 5 10 15 20
k values

Fig. 1 Error estimates of the exponential Hadamard sequene€).2.

16 16 16 16
14 15 16 17
0(815) 0(816) 0(817) 0(818)

(14)

Z[=Z[R[™

Remark 1The actual error estimate for the exponential Hadamardesespuis il-
lustrated in Figure 1. This estimate is significantly bettten that obtained in (13).
The disparity is a consequence of the difficult counting fEots inherent in deal-
ing with Hadamard matrices. However, Figure 1 does imply ladwsse of these
sequences in applications.

Let x be the linear Hadamard sequence. Gigen 0 andK € N. The smallesN
such that

N
VOo< |k <K, z X[m+Kx[m]| < €
m=1

Zl =

satisfies the inequality

3[log,(K)] — 1)4ll0e(K)1+1 4 41 9. gM+1
92 <€
3M4AM+T _4(4M _ 1) ’

(15)

whereM is a function ofN.

(16) gives the values df obtained from (15) foK = 16 and several values of
Once again, Figure 2 illustrates that the actual error esémare much better than
that obtained in (15).
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el 5 .25 A

K|16 |16 16 16

M|5 7 13 31 (16)
N [350487354645.16 x 10°|7.97 x 10°°

The autocorrelation of the function from Hadamard matrices using 4001 terms and error = 0.:

Autocorrelation at k

A,

~0.2 . . . . . . .
-20 -15 -10 -5 0 5 10 15 20
k values

Fig. 2 Error estimates of the linear Hadamard sequeace0.2.

3 Autocorrelations as sums of triangles

3.1 The construction of sequences with triangular autocorrelation

In this section a generalization of (3), the autocorretafimnction of the sequence
given by (2), and of those constructed from Hadamard matiit&ection 2.3 and
also in [8] is given.

Theorem 8.Given Me N and K> 0. Let A: Z — R be defined by

K| .
AK = K(l—‘M—‘) if0< |kl <M, an
0 otherwise.

Then there exists a constructible sequencé&x— R with constant amplitude/K
whose autocorrelation, Ais A

Proof. (i) As mentioned in Section 1.2 one can deterministicallpstouct a uni-
modular sequencgon Z whose autocorrelation is

0 itk£0,
Al = { 1ifk=0, (18)
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and we use (18) at the end of the proof. Wiener’s constru¢Béjof y is as follows.
On the positive integers Igttake values in the following order:

[1,—1] (this row has 12! elements and is repeatefi2 1 time);
[1,1;1,-1;-1,1;-1,—1] (this row has 22° elements and is repeated 2 2
times);

1,1,1;1,1,-1;1,-11;1,-1,-1;-1,1,1;-1,1, -1,

-1,-1,1;-1,—-1,-1] (this row has 323 elements and is repeateti2 4 times);
etc. Thusy[1] = 1,y[2] = —1,y[3] = 1,y[4] = 1,.... In addition, lety[0] = 1, and,
forke N, lety[—K] = y[K].

(i) We define the functiox: Z — C by x[K] = \/Ky[%]], where[.] denotes the
next largest integer. Note thad = VK.

We show that the autocorrelatiéy of x is A as defined in (17). Sinceis a real
sequence, the autocorrelation function is even, and seitasigh to prove the result
fork>0.Let0< Mp <k<M(p+1)for somep e NU{0}. For any given integer
N, let ny be the smallest integer such tidik M(ny + 1). Then we have

Ak = Nﬁm 2N+ Wi x[m+ k]x[m]
Mny 1
'\IHOO 2N+1m:Z/I X[k+ mjx[m] + Ilmoo NI, <ngNx[m+ Kjx[m]
= lim (Sin(k) +Son (k) = Si(k) +Sp(k).- (19)

First, we calculate bounds & n (k).

S xmekxm

1Sen(k)| =
2N+1 Mny <|m|<N

K 2K (N —Mny)

Mol = g 3 1o
2N+1y Goien 2N+1

S AL, 5
2N+1 Mny <|m|<N

We know from the definition ofiy thatN — Mny < M. Therefore S;(k) = 0. Con-
sequentlyAy k] = limn_e Sy n(K) = Si(K). Next, we write

Mny
Si(k) = “I‘%ZNJrlme X[k + mjx[m|
nn—1 M(n+1) 1
rleoo N+1, & n+1x[k+m] [m] + l'ﬂm [—nn A+ KIX[—nN]-

(20)

Sincex has the same valugKy[n+ 1] for all the integersn € [Mn+1,M(n+1)],
one can replace thgm] in the first term of the right side of (20) by'Ky[n+ 1].
Since the second term of the right side of (20) is 0 this ingplie
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nN—1 M(n+1)

x[m+ k] vKy[n+ 1]
n=—nNy m=Mn+1
) 1 nn—1 Mn+M(p+1)—k

n=—ny m=Mn+1

9 = . 7y

nn—1 M(n+1)
+ 2 S Xm+KVKyn+ 1])
N=-=NN Mn+M(p+1)—k+1
nn—1 /Mn+M(p+1)—k
im N1 yin+p+1]y[n+1]
N—e 2N+ 1 =Sy ( i1
M(n+1)
+ > yin+p+2Jyn+ 1])
m=Mn-+M(p+1)—k+1
ny—1
M oN 1 n:ZnN ((M(p+1) —K)y[n+p+1)yin+1]
+(k=Mp)y[n+ p+2)y[n-+1])

. M(p+1)—k 2nyk ™t
= lim yin+p+1y[n+ 1]+
N—sco 2N+1 2nN n:ZnN

ny—1
(- Mp) 200K 5" v+ p-2lyfn+- 1

=—1N

lim
+N|aoo 2N+1 2y

Sinceny — o asN — o, we have

. o M(p+1)—k _ k—Mp
am Suntk) = WM o8 2KALPI M S5 KA P+
. k 2nyM
= lim, (p“‘ m) Ny 1R AP (21)
. k 2nyM
wlm (- p) s i<alps
Note that M
. nN .
MmN b (22)

In fact, from the choice ofiy, we haveMny < N < M(ny + 1) so that Mny +1 <
2N+1 < 2M(ny+1) +1, and hence

2Mny - 2Mny < 2Mny
2M(ny+1)+1 " 2N+1 "~ 2Mny+1°

nN goes to infinity adN goes to infinity and so taking limits throughoutidgoes to
infinity we obtain (22).
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Substituting (22) in (21) and using the fact ttgatk) = 0, we obtain from (19)
that

k k
If 0 < k< M thenp=0. For every other range & pis non-zero. Using the values

of Ay[p] as given by (18) and the fact thaj is an even function one obtains (17).
O

Remark 2The functionAdefined in Theorem 8 is the trianglex v (t) = Kmax(1—
%,0) onR with heightK and base length\ restricted to the integers. The Fourier

. 2
transform of Ak m(t) is KM (%’) . Thus in Theorem 8 we have constructed a
sequence of constant amplitude whose autocorrelation is the invEcagier trans-

form of the dilated Fejér functioK .

3.2 The additive property of triangular autocorrelation a.e.

As mentioned in Section 1.2, and repeated in the proof of fdmad, it has been
shown in [34], [35] that ifA € (0,1) has binary expansion@ azas-- -, if we con-
sider the Lebesgue measure @1), and if we define the unimodular (in fact,
+1-valued) functiory by

K = 2aon11—1 ifk=n+1ne NU{0},
" 12an—1 ifk=1-nneN,

then, foralmost allvalues ofA , the autocorrelation of, Ay, is

0 ifk£0,
Ay“‘]:{ufkfo.

In Theorem 8 it was shown that givésh € N thisy can be used to construcsuch
thatx has constant amplitude and

1-M ifo<|k<™m
A = {17 w TO<TK <M,
x(K { 0 otherwise.

3

In this casex is unimodular. We shall now show that the autocorrelatiothefsum
of two such functions is the sum of the respective autocatimis for almost alk.
For the necessary measure theory we refer to [7].

We begin with the following calculation.

Example 4Let X be the set of unimodular functions: Z — C for which there
exists a positive intege¥ with the property,
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~ M o< |k <M,
= M
A { 0, otherwise.

For givenM € N let Q be the set of all possibilities of anyv2consecutive values of
x € X. Then cardQ) = 2°M. Let E be the subset a@ such that giverz, the sum of
the 2Vl consecutive values afexceedd/ ¢ in absolute value. Among théPvalues
suppose that there af®! — j) +1sandM+ j) —1swhere-M < j <M. So the
absolute value of the sum ofMRconsecutive values would b&l + j — (M — j)| =
2|j|. The sum of these values exceeds in absolute value |tMe] < 2|j| < 2M.
The number of ways of havingVl — j) +1s and(M + j) —1s is (") = (4))-
The total number of possible values for which the sum exchbtdis

cardE) = %ME ( > | %E] (le\_/lj)fi ](MH) ig < >

lil= _2_ :[_2_ J*[T = —2—

Consequently,

cardE) _ ., ou i M1 e [2M
cardQ) 2 % =2 ,%ﬁ] M—j/)

=17

Theorem 9. (a) Let X be the set of unimodular functionsZ — C for which there
exists a positive integer M with the property,

K. if o< |k <M,
AxlK] = ’
(K {O, otherwise.

Then there is a well defined finite Borel measure p on X induaed Eebesgue
measure or{0, 1), in a manner described in the proof.
(b) For almost all xy € X, with respect to pwe have

Axty = At Ay,

noting that x+y does not necessarily have constant amplitude and thgtia not
generally a triangle.

Proof. (a) We know from (2) and (3) that there$s C [0, 1] defined by the proper-
ties:|S| =1 and

VA €S, 3y :Z— Csuchthaty,|=1andAy K = dkOnZ.

From Theorem 8 we know that for eabhe N, there isSy C [0,1] defined by the
propertiesiSy| = 1 and

VA € Su, 3y : Z — Csuch thafpu, | = 1 andAy, [k = max(0,1— |I\/I£|) onZ.
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In fact, by the way we defined, in Theorem 8 we could tak&y = . However,
we can equally-well choos€Sy : Su € S,|Su| = 1} to be a disjoint collection
whose union is%. In this case we define the functiony : Sy — X, A — L,
whereA, [k] = max(0,1— ‘k‘) onZ,andf : S — X, A — fu(A) whenA € Su.
In this way we usef to define a compact topology Omnduced fromS C [0, 1],
and to define a bounded Borel measpren X induced from Lebesgue measure on
[0,1].

We provide the technical propertiespfn part (b) of the proof.
(b) We have already seen the construction of suahdy in Theorem 8. Formally,

N

Aol = lim o3 3 Gcry)me Ky

N
l\llaoo 2N+1 z

m=—N

(X[M+K] +y[m+K]) (x[m] + y[m])

1 N
:l\lllinooZN—i— 2 Nx[m+k] X[m] + I|m
N
z x[m+Kly m+I|m

1 S
LINTI, 2 z y[m+KJy[m] +

+

b ONF1 Z ym-+ K

= Ad(K) + Ay(K)

N —_—
M oN T sz xX[m+ K]y[m] +

+ lim y[m+ KJx[m]. (23)

N—eo 2N+ 1 m:ZN

Let us denote the last two terms on the right side of (235bsindS, respectively.
We want to show thaf; = 0 andS; = 0.

N _

S = lim 3 xm-+ Ky (24)

N—o 2N+ 1

Without loss of generality we taketo be real-valued and so (24) becomes

%_Wim2N+ % Xm+kly| (25)
Suppose that

N Pl
and

A = — L if0 <[k < My,
Y 0, otherwise.
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Let By be the largest integer so that

MaPy < N < Mo(Py +1). (26)
ThenS; can be written as
1 MR-l
= lim k li Kly
SNy 2 MY I ST 2N 1 WN;,,NH m+
M2Py
+ I|ﬂoo 2N+1m:% X[m-+K]y[ 27)

Let us denote the first two terms of (27) byands,, respectively. Now,

~MoPy—1
s[< Y 1=N-MPRy
m=—N
and
N
|82 < 1=N-MPy.
m=MyPy+1
From (26),

N—MoPy < Mz(By+1) — MaPy =My
which meangs;| < M, and|s;| < My. Therefore,

Is1 . Mz
l < | -0
N'ELZN+1 ngloZN—f-l

and also

A . M>
lim < lim —=— =
Nl 2N+ 1 = Nt 2N+ 1

Thus,

MRy

S = lim % x[m-+ Ky (28)

N—00 2N+1

1 Py—1 Ma(nt1)
= lim ——— x[m+ Kly[m] +
N-rc0 2N+1n:ZFNITb 1

1

li X—M kly[—M
L aR MK MR
Av—1 Ma(n+1)
[

. 1
= ’\|||an N1 n:ZFN _ n+1x m+ KJy[Ma(n+ 1)]. (29)
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The last step (29) follows due to the fact that by construtis constant and equal
to either+1 or —1 in the interval[Man+ 1, Mz(n+ 1)]. Soy[Mz(n+1)] is either+1
or —1. BetweenMzn+ 1) andMz(n+ 1) there areM, terms. So there aid, values
of x. Suppose that of thedé, values there argthat have the value 1 and(Mz — j)
that have the value 1. Upon multiplication byy(M2(n+ 1)) we have eithef values
thatare—1 and(M; — j) values that are-1 or vice versa. In the sum on the right side
of (29) there are By blocks of lengthM,. Let us say that the first block hgsterms
equal to+1 and(M; — j1) terms equal te-1, the second block hgs terms equal to
+1 and(M;, — j») terms equal to-1 and so on. Together, there dijg + jo+--- +
jon,) terms equal tor1 and(Mz — j1+ Mz — jo+---+Ma— jop,) = 2RAM2 — (j1+
jo+ -+ j2n) terms equal to-1. LetPAyMp = M andjy + jo+ -+ jop, =M —
where—M < j < M. Note that thisM is unrelated to th&1 that appears in Theorem
8 and part (a) of the statement of this theorem where it indgthe length of the
base of a triangle. TherPRM, — (j1+ j2+ -+ jop) =2M = (M — j) =M +j.
Thus, out of M consecutive values ofm+ KJy[m| there argM — j) values that are
+land(M+ j) values that are-1. So the absolute value of the sum &&M, = 2M
consecutive values ofm+ Kly[m] would beM + j — (M — j) = 2]j].

Let Q be the set of all possibilities for thé/Rconsecutive values afm+ k]y[m).
From (2), each suck andy corresponds to some € (0,1). From Example 4 and
the definition ofe C Q there, it follows that gives the measure of the set for which
the sum of M consecutive values exceeldg in absolute value is

cardE) _ , omi1 i ( 2M_)_
card Q) j:%% M—j

This can be transported as an explicit, computable propény
It can be shown in a manner identical to that in [34] that

M 2M
H —2M+1 _
J.!'w' 2 ,—% : (M—j) =0
LTz

Thus the set ok andy for which there should fail to be an integral valueMf=
PuMy such that from that value on (see (28))

| % X[m-+ Ky[mi| < Me +1

m=—M

has measure zero. Therefore,

— 1 M Me+1 RyMoe 1
P e < =
limy_, ’2N+1W;Mx[m+ k]y[m]‘ (30)

T 2N+1 2N+1 2N+1°

From (26),
PuMa - N 1

2N+1-2Nt+1 2
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asN goes to infinity. So, the left side of (30) is less thgand for almost alk and
Y

AM Nt 1 Z Xm+Ky[m] =0.

In a similar way one can show that

=M oNTT 2 Z yim-+kx(m] =0

for almost everi andy. This concludes proving part (b).0

Remark 3Due to Theorem 8, Theorem 9 can be trivially generalizedandy that
have constant amplitud€ andKj; respectively and have autocorrelation functions

AdK = K1(1 ‘k‘) if 0 < K| <My,
0, otherwise,

and

NI A (1— h‘,,—k‘z) Lif 0 < K| < My,
0, otherwise.

, 2
Remark 4GivenK > 0andM € N, onR, the inverse Fourier transform bfK (azmy)

is Kmax(l— %,O). By the additive property of Fourier transform, the inverse

Fourier transform oF (y) = N 1nKn(5'“"”V) restricted tdZ, is

N

Z Knmax(1—

Iml

,0).

Due to Theorem 8, one can construct functignsuch that,, = Kymax(1— ‘m‘ ,0)
with |xy| = /Kq. Theorem 9 implies that the sequence x; + --- + Xy has auto-
correlationF . Also, x € £°(Z) since|x| is bounded byy\_, /K;,. Thus we have a
functionx € ¢*(Z) whose autocorrelation is the inverse Fourier transfornilafes
of Fejér functions.

Example 5Generally,Ax,y[K] # Ax[K + Ay[K]. In fact, in the case of real-valued
sequences,y € (*(Z), when all limits asN — oo exist, Agyy[K| = AxK] + Ay K] +
2Ay[—k], and there is no reason to expégy[—k|] = O for eachk € Z. Here, Ay is
the cross-correlation ofandy defined by

Vk € Z, Aylk] = I|m 2N i z X[k + m]y[m]

As a particular example, note that the binary expansiorts, a/precision of 16
bit, of Ax=0.35and\y = 0.9 are 001011001100110011 andl110011001100110
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—#+— Autocorrelation of x
< -+ Autocorrelation of y |

0 -5 0 5 10

0.01 T T
m of the autocorrelations of x and y|

-10 -5 0 5 10

Autocorrelation
o
=
3
&

Autocorrelation of x+y
3951

39 . . .
-10 -5 0 5 10
k values

Fig. 3 Autocorrelations of two sequencesndy and their sum

respectively. From these one can obtain sequera®ly of +1s by following
the definition ofy in (2). The partial autocorrelations &f y, andx+y have been
calculated by computing the sum in Definition 1 fér= 100Q i.e., 2N+ 1 = 2001
terms. These partial autocorrelations at the integersdsw10 and 10 are plotted
in Figure 3. Clearly, the sums of the autocorrelationg ahdy do not match the
autocorrelation ok +.
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