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Abstract. Effective waveform design, for topics such as code di-
vision multiple access (CDMA), is essential to transmit many mes-
sages clearly and simultaneously on the same frequency band so that
one user’s message does not become another user’s noise. Unimod-
ular sequences are an essential characteristic for the applicability in
communications and radar of waveforms whose autocorrelations have
prescribed zero sets. Constructive approximations of unimodular se-
quences whose autocorrelations vanish on prescribed sets are made.
The analysis depends significantly on Wiener’s Generalized Harmonic
Analysis and on some number theoretic properties from the theory of
uniform distribution of sequences. Periodic CAZAC (constant ampli-
tude zero autocorrelation) codes are also designed.

§1. Introduction

1.1 Basic problem

Let Z be the integers and let p = {pk : k ∈ Z} be a positive definite
sequence with a prescribed zero-set on Z. We shall address the basic
problem of constructing unimodular digital codes u defined on Z and with
the property that the autocorrelation Au of u is p. Let C be the complex
numbers and recall that p = {pk} is positive definite, denoted by p >> 0,
if

∀N ≥ 1 and ∀c1, . . . , cN ∈ C,
∑

1≤k,m≤N
ck c̄mpk−m ≥ 0.

The autocorrelation Au : Z → C of u : Z → C is defined as

∀k ∈ Z, Au[k] = lim
N→∞

1
2N + 1

∑
|m|≤N

u[k +m]u[m],

Advances in Constructive Approximation 1
XXX (eds.), pp. 1–3.

Copyright oc 2004 by Nashboro Press, Brentwood, TN.

ISBN 0-9728482-x-x

All rights of reproduction in any form reserved.



2 John J. Benedetto

when the limit exists; and u is unimodular if |u[n]| = 1 for all n ∈ Z.
We shall distinguish between algebraic and analytic approaches to the

basic problem.
There are established algebraic approaches for constructing unimod-

ular codes for solving the basic problem, e.g., [16]. Our algebraic con-
struction is in terms of periodic codes, and it is introduced in Section 7,
see Section 1.3.

The main part of this paper deals with the analytic approach for
solving the basic problem, and it is inspired by work of L. Auslander and
Barbano [2]. Our analytic contribution is in terms of codes on Z. The
contribution itself is a technique involving Wiener’s Generalized Harmonic
Analysis (GHA) and methods from uniform distribution of sequences. The
technique is introduced for a special example in Section 5, with supporting
material in Sections 3, 4, and 6, see Section 1.4. The purpose of analytic
constructions to solve the basic problem, whether it be our technique or
that in [2] or others, is to provide flexibility and adaptivity in designing
robust codes which are stable under modest perturbations.

1.2 Reason for the basic problem

The basic problem arises in several applications in the areas of radar and
communications. In the former such codes play a role in effective target
recognition, e.g., [2], [19], [22], [25]; and in the latter they are used to
address synchronization issues in cellular (phone) access technologies, es-
pecially code division multiple access (CDMA), e.g., [27], [28]. The radar
and communications methods combine in recent advanced multifunction
RF systems (AMRFS).

Because of these applications, the codes to be constructed should
exhibit a quantifiable stability under doppler shifts and/or with various
additive noises. Our software package, referenced in Section 7, is a tool
to evaluate such stability for the periodic algebraic codes constructed in
Section 7.

There are two significant reasons that the codes u for solving the
basic problem should have constant amplitude. First, a transmitter can
operate at peak power if u has constant peak amplitude–the system does
not have to deal with the surprise of greater than expected amplitudes.
Second, amplitude variations during transmission due to additive noise
can be (theoretically) eliminated at the receiver without distorting the
message.

1.3 Algebraic periodic version of the basic problem

A strong version of the basic problem is to construct unimodular K-
periodic sequences u with the property that Au vanishes outside of the
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periodic dc-domain points nK, n ∈ Z. As posed, this is a solvable alge-
braic problem, e.g., [1], [12], [14], [15], [20], [23], [26]; and such sequences
are called CAZAC codes, where the palindromic acronym (another scien-
tific one along with “radar”) stands for constant amplitude zero autocor-
relation. Using the ingenious method due to Milewski, we shall compute
several such codes in Section 7. In both radar and CDMA there must
also be optimal crosscorrelation behavior among sets of such codes, and
our present algebraic CAZAC crosscorrelation results and software are
documented in [8].

1.4 Analytic methods to address the basic problem

In the non-periodic version of the basic problem, a natural initial approach
for the solution is to invoke analytic methods from GHA [29], cf., [6] for
a recent extension of Wiener’s methods as related to the construction
of codes u whose autocorrelations are given positive definite functions.
Adapting Wiener’s techniques allows one to construct in Section 3 a code
x : Z → C for which Ax = p for a given p >> 0; however, x is not
unimodular.

In order to address the unimodularity constraint, we invoke classical
results from the theory of uniform distribution in Section 4, see [18]. As
such we deal with certain Gauss-like sums, and this is probably related to
code-design in terms of the Heisenberg group by Strohmer.

Using uniform distribution we deal with the basic problem for the
case p = {pk}, where p0 = 1 and pk = 0 for all k �= 0. Because of the
severe restriction of the zero-set of p we can not solve the basic problem
completely in this case. However, the simplicity of p allows us to demon-
strate in a relatively straightforward way how the results from Section
4 are implemented to ensure the unimodularity constraint. This is the
content of Section 5.

A more powerful uniform distribution tool than those listed in Section
4 is the van der Corput difference theorem. In Section 6 we prove a
generalization due to Cigler [13]. We fomulate this generalization with
the primary goal of solving the basic problem for a given p, and, in the
process, of specifying the required constraints on the zero set of p in order
to ensure a unimodular code u for which Au = p. Our secondary goal,
since the proof uses methods from abstract harmonic analysis (although
this may not be obvious), is to prove a version of the difference theorem
for pseudo-measures with an eye to spectral synthesis, e.g., [5].

Section 2 assembles some facts needed in the remaining sections.

1.5 Notation

We use the standard notation from harmonic analysis, e.g., [24], [7]. For
the real numbers R, we write T = R/Z. C(T) is the space of 1-periodic
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complex valued continuous functions on R, and A(T) is the subspace of
absolutely convergent Fourier series. If F ∈ A(T) we write F∨ = f = {fk},
i.e., F∨[k] = fk; and F (γ) =

∑
k∈Z fke

−2πikγ . There is an analogous
definition for μ∨ in the case that μ ∈M(T). M(T) is the space of Radon
measures on T, i.e., M(T) is the dual space of the Banach space C(T) taken
with the sup norm. Mc(T) ⊆ M(T) designates the space of continuous
Radon measures μ, so that μ({γ}) = 0 for each γ ∈ T.

§2. Mathematical Preliminaries

Because of the basic problem in Section 1.1 the following elementary fact
is necessary.

Lemma 2.1. Let SK = {k ∈ Z : 1 ≤ |k| ≤ K}. There is positive
P ∈ A(T) \ {1} for which p0 = 1 and pk = 0 for each k ∈ SK , where
P (γ) =

∑
k∈Z pke

2πikγ .

Proof: Recall that if p = {pk} >> 0 then p−n = pn and |pn| ≤ p0 for
each n ∈ Z. Choose {pn} ⊆ R; and suppose pn = p−n for each n, p0 = 1,
and pn = 0 for all n ∈ SK . Set

P (γ) = 1 + 2
∞∑

k=K+1

pk cos 2πkγ.

Clearly, |P (γ)−1| ≤ 2
∑∞
k=K+1 |pk| so that if {pk} is absolutely summable

and 2
∑∞
k=K+1 |pk| < 1 then

∀γ ∈ T, P (γ) ≥ 1 − 2
∞∑

k=K+1

|pk| > 0.

Hence, P is positive and P ∈ A(T); in particular, P∨ = p >> 0.

Remark 2.2.

a) Since P > 0 on T in Lemma 2.1, we can use Wiener’s lemma on the
inversion of absolutely convergent Fourier series.

b) If F ∈ A(T) then limN→∞ ‖F − SN (F )‖L∞(T) = 0. In particular, if
F > 0 on T then

∃N such that ∀n ≥ N and ∀γ ∈ T,

∑
|k|≤n

F∨[k]e−2πikγ > 0.
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Notationally we let Ln have the property that

∀γ ∈ T,
∑

|k|≤Ln

F∨[k]e−2πikγ ≥ 1
2

inf{F (λ) : λ ∈ T}.

Lemma 2.3. Let x : Z → C be K-periodic. Then

∀k ∈ Z, ∃Ax[k] =
1
K

K∑
m=1

x[k +m]x[m].

Proof: The result is a consequence of the following regrouping for a fixed
k and a given N :

∑
|m|≤N

x[k +m]x[m] =
K∑
m=1

+
2K∑

m=K+1

+ · · · +
KNK∑

m=K(NK−1)+1

+
N∑

m=KNK+1

+
0∑

m=−K+1

+ · · · +
−K(NK−1)∑
m=−KNK+1

+
−KNK∑
m=−N

= 2NK
K∑
m=1

+
N∑

m=KNK+1

+
−KNK∑
m=−N

,

where NK satisfies KNK ≤ N < K(NK + 1).

Let F ∈ A(T) have Fourier coefficients p = {pk}, and for any Kn

define the discrete measure

μK =
K−1∑
j=0

1
K

⎛
⎝ ∑

|k|≤MK

pke
−2πik(j/K)

⎞
⎠ δj/K , (2.1)

where δj/n is the Dirac measure at j/n ∈ T.

Lemma 2.4. Let F ∈ A(T) have Fourier coefficients p = {pk} and define
μK as in (2.1). Assume MK → ∞ as K → ∞. Then

∀f ∈ C(T), lim
K→∞

∫
T

f(γ)dμK(γ) =
∫
T

f(γ)F (γ)dγ.
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Proof: We have the estimate∣∣∣∣
∫
T

f(γ)dμK(γ) −
∫
T

f(γ)F (γ)dγ
∣∣∣∣

≤
∑

|k|>MK

|pk|
(

1
K

K−1∑
j=0

|f(
j

K
)|

)

+
∑
k∈Z

|pk|
∣∣∣∣
∫ 1

0

f(γ)e−2πikγdγ − 1
K

K−1∑
j=0

f(
j

K
)e2πik(j/K)

∣∣∣∣.

It is straightforward to check that the right side goes to 0 as K → ∞.

The following is immediate from the previous discussion.

Lemma 2.5. Let F ∈ A(T) have Fourier coefficients p = {pk} and define
μK as in (2.1).

a) μ∨
K : Z → C is K-periodic.

b) ∀k ∈ Z, μ∨
K [k] = 1

K

∑K−1
j=0

(∑
|�|≤MK

p�e
−2πi�(j/K)

)
e2πik(j/K).

c) If F > 0 on T, then for each fixed K we can choose LK (see Remark
2.2b) such that

∀j = 0, 1, . . . ,K − 1,∣∣∣∣
∑

|�|≤LK

p�e
−2πi�(j/K)

∣∣∣∣ =
∑

|�|≤LK

p�e
−2πi�(j/K).

§3. The Basic Problem and Wiener’s GHA

Suppose we weaken the basic problem and pose the following problem:
Let p = {pk} >> 0 have a prescribed zero set; construct a digital code
x : Z → C such that Ax = p. We have temporarily dropped the constraint
of unimodularity.

By the definition of autocorrelation it is not unreasonable to define
x in terms of a square root, and in some sense this was the approach of
Wiener in his original GHA on R [29].

Using the approach from Section 2, we set

∀k ∈ Z, xK [k] =
K−1∑
j=0

( ∑
|�|≤LK

p�
K
e−2πi�(j/K)

)1/2

e2πik(j/K), (3.1)

where we have chosen LK as in Lemma 2.5c.

The proof of the following result is straightforward.
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Proposition 3.1. Let F ∈ A(T) be positive on T with Fourier coefficients
{pk}, and let μ∨

K and xK be as in Lemma 2.5a (with LK instead of MK)
and (3.1), respectively. Then μ∨

K , xK : Z → C are K-periodic and

∀k ∈ Z, AxK
[k] = μ∨

K [k].

Example 3.2. Let F = 1 on T. Then for any positive K ∈ Z, xK [mK] =√
K for all m ∈ Z and xK vanishes otherwise.

The methods to prove the following result go back to Wiener [29],
cf., [6]. We shall only outline the proof because of the “non-unimodular”
nature of the construction, e.g., Example 3.2, and the subsequent approach
with uniform distribution, e.g., Sections 4 and 5.

Theorem 3.3. Let F ∈ A(T) be positive on T with Fourier coefficients
p = {pk}. There is a constructible sequence x : Z → C for which Ax = p.
(x is not unimodular.)

Outline of Proof.
Using the notation in Proposition 3.1 we can prove that there is an

increasing positive sequence {LK}, as K → ∞, such that

∀k ∈ Z and ∀N ≥ LK ,∣∣∣∣ 1
2N + 1

∑
|m|≤N

xK [k +m]xK [m] − μ∨
K [k]

∣∣∣∣ < 1
2K+1

.

It is advantageous to choose the smallest possible LK at each step. Next,
set

NK = (L1 + 1)(L2 + 2) . . . (LK +K).

Therefore NK ≥ K!, and the sequences {NK}, {NK+1/NK}, and {NK+1−
NK} tend to infinity. Using the definition of xK in (3.1) we define x : Z →
C as follows: x[k] = 0 for |k| < N1 and x[k] = xK [k] for NK ≤ |K| <
NK+1. It must now be checked that Ax = p.

§4. Uniform Distribution

A sequence {θn : n = 1, . . .} ⊆ R is uniformly distributed mod 1 if, for
every interval [a, b) ⊆ [0, 1),

lim
N→∞

card {θn : 1 ≤ n ≤ N, θn − [θn] ∈ [a, b)}
N

= b− a.

Here, “card” stands for “cardinality” and [θ] is the greatest integer less
than or equal to θ ∈ R, the so-called integer part of θ. An excellent
reference on uniform distribution is Kuipers and Niederreiter’s book [18],
cf., [21] for recent advanced results.

We shall need the following three theorems due to Hermann Weyl
(1914 and 1916).
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Theorem 4.1. {θn : n = 1, . . .} ⊆ R is uniformly distributed mod 1 if
and only if

∀f ∈ C(T), lim
N→∞

1
N

K∑
n=1

f(θn) =
∫ 1

0

f(x)dx.

Theorem 4.2. {θn : n = 1, . . .} ⊆ R is uniformly distributed mod 1 if
and only if

∀h ∈ Z\{0}, lim
N→∞

1
N

N∑
n=1

e2πihθn = 0.

Theorem 4.3. Let Q(x) = cmx
m + cm−1x

m−1 + · · · + c0, m ≥ 1, be a
polynomial where each cj ∈ R and where some cj , j > 0, is irrational.
Then {Q(n) : n = 1, . . .} is uniformly distributed mod 1.

Remark 4.4. Van der Corput (1929 and 1931) gave a simpler proof than
Weyl of Theorem 4.3, using the van der Corput difference theorem, see
Remark 6.7.

§5. Constructive Approximation to Unimodular Solution

The purpose of this section is to illustrate our GHA – uniform distribution
technique for the construction of unimodular digital codes u defined on Z

whose autocorrelation is a prescribed positive definite sequence p.
For simplicity, we choose the particular sequence p = F∨ where F = 1

on T. Thus, F∨[k] = pk = 0 for all k �= 0. We provide details to the
approximation of unimodular u, in which Au = p = {pk}, for certain sum-
mands arising in the overall approximation of u. The remaining summands
use uniform distribution discrepancy methods with additional complexity
[11]. These will be presented in the sequel, combined with an error analysis
of unimodular approximants whose autocorrelations are associated with a
given positive definite sequence for which there is no exact solution to the
basic problem on Z.

Using the idea of Wiener’s construction of x in terms of {xK}, see
Section 3, we let positive K ∈ Z be fixed and define

∀k ∈ Z, uK [k] =

⎧⎨
⎩
K1/2 if k = mK, some m ∈ Z,

e2πik
2γK if k �= qK for any q ∈ Z,

(5.1)

where each γK is irrational. Each uK is “almost” unimodular, and it is not
K periodic. Using Wiener’s construction from Section 3, for uK instead
of xK , the resulting digital code u will have longer and longer unimodular
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segments as |k| increases. Since autocorrelations are characterized by their
behavior at infinity this is what we shall mean by the unimodularity of u.

Setting

AN,y[k] =
1

2N + 1

∑
|m|≤N

y[k +m]y[m], (5.2)

we shall analyze a special but not untypical case of AN,uk
as N → ∞; and

then, as mentioned above, we define unimodular u in terms of {uK} as
was done for x and {xK} in Section 3.

Writing
∑

|m|≤N
y[k +m]y[m] =

(N)∑
y[k +m]y[m], (5.3)

in (5.2), we have

AN,uK
[k] =

1
2N + 1

(N)∑
m �=qK

+
1

2N + 1

(N)∑
m=qK

= I1,K,N (k) + I2,K,N (k)

with uK replacing y in (5.3). It is easy to check that

lim
N→∞

I2,K,N (pK) = 1 = μ∨
K [pK], (5.4)

uniformly in p ∈ Z, where the quadratic term in (5.1) can be replaced by
any unimodular term. Also, using the irrationality of γK , we compute

∀p ∈ Z\{0}, lim
N→∞

I1,K,N (pK) = 0; (5.5)

and a direct computation shows that

lim
N→∞

I1,K,N (0) = 1 − 1
K
. (5.6)

Thus,

AuK
[0] = lim

N→∞
AN,uK

[0] = 2 − 1
K
.

With the flexibility of adding non-zero pk for |k| large, for a given non-
negative F ∈ A(T) with Fourier coefficients p = {pk}, we can compute the
desired Au[0] = 1. It remains to evaluate

∀k �= pK, lim
N→∞

Ij,K,N (k), j = 1, 2. (5.7)

We shall do the case j = 2.
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Proposition 5.1. If k �= pK then

lim
N→∞

I2,K,N (k) = 0 = μ∨
K [k]. (5.8)

Proof: First note that if k ∈ Z\{pK}, p ∈ Z, then μ∨
K [k] = 0. In fact, if

k/K /∈ Z then k/K = m + 〈k/K〉, where 〈k/K〉 ∈ (0, 1) is the fractional
part of k/K. Thus, e2πik/K �= 1 and so

Kμ∨
K [k] =

K−1∑
j=0

(e2πik/K)j

=
1 − e2πiK( k

K −m)

1 − e2πik/K
= 0.

Next, for k ∈ Z\{pK}, we compute

I2,K,N (k) =
1

2N + 1

(N)∑
m=qK

e2πi(k+m)2γK

(K−1∑
j=0

(
1
K

)1/2

e−2πim(j/K)

)

=
K1/2

2N + 1

(N/K)∑
q

e2πi(k+qK)2γK ,

(5.9)
since m = qK implies k + m �= �K. {Q(q) = (k + qK)2γK : q ∈ Z} is
uniformly distributed mod 1 by Weyl’s Theorem 4.3. The right side of
(5.9) is

≈ K1/2

2N + 1

(
2N
K

+ 1
)

1
2

[
N
K

]
+ 1

(N/K)∑
q

e2πiQ(q),

and so it tends to 0 as N → ∞ by Weyl’s theorem. Equation (5.8) is
proved.

§6. Implications of Unimodularity

Proposition 6.1. Let p = {pk} >> 0 and assume

Z = {k ∈ Z : pk = 0} �= ∅.

Let {x[n] = Ceiθn : C > 0} have the property that

∀k ∈ Z, lim
N→∞

1
2N + 1

∑
|m|≤N

x[k +m]x[m] = pk.
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Then p0 = C2 and {θn} can not have the property that

∃k ∈ Z such that ∀m ∈ Z, eiθk+m = eiθkeiθm . (6.1)

Proof: Suppose there is k such that (6.1) holds. Take any ε > 0 for which
C2 ≥ ε. By definition of k ∈ Z,

∃Nε,k such that ∀N > Nε,k,

∣∣∣∣ 1
2N + 1

∑
|m|≤N

x[k +m]x[m]
∣∣∣∣ < ε. (6.2)

Equation (6.2) implies

∀N > Nε,k,
C2

2N + 1

∣∣∣∣
∑

|m|≤N
eiθk+me−iθm

∣∣∣∣ < ε

and so from (6.1) we have

∀N > Nε,k,
C2

2N + 1

∣∣∣∣eiθk

∑
|m|≤N

1
∣∣∣∣ < ε,

i.e., C2 < ε, the desired contradiction.

Given {θm : m ∈ Z} ⊆ R and consider the formal mean

∀h, k ∈ Z, ρh,k = lim
N→∞

1
2N + 1

∑
|m|≤N

e2πih(θm+k−θm). (6.3)

If h is fixed we write
ρh,k = ph[k];

and if k is fixed we write
ρh,k = qk[h].

Note that
∀h, k ∈ Z, ρ0,k = 1 and ρh,0 = 1. (6.4)

Lemma 6.2. Fix h ∈ Z and assume ph[k] exists for all k ∈ Z. Then
ph >> 0.

Proof: If h = 0 then p0[k] = 1 for all k ∈ Z by (6.4). Thus, p0 >> 0. In
fact, δ∨0 = p0, and of course δ0 is a positive measure.

Let h ∈ Z\{0}. Also consider the function Pϕ,N = 1
2N+1 (ϕ111111111N ) ∗

(ϕ111111111N )∼, where ϕ : Z → C, 111111111N : Z → C is the characteristic function of
{−N, . . . , 0, 1, . . . , N}, and ∼ designates involution. For this h set ϕ[m] =
ϕh[m] = e2πihθm . Since ph exists on Z it can be shown that

∀k ∈ Z, ph[k] = lim
N→∞

Pϕh,N [k].
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Since
P∧
ϕh,N

=
1

2N + 1
|(ϕh111111111N )∧|2 ≥ 0

we have ph >> 0.

Lemma 6.3. Fix k ∈ Z and assume qk[h] exists for all h ∈ Z. Then
qk >> 0.

Proof: If h, � ∈ F ⊆ Z, F a finite set, and let {ch : h ∈ F} ⊆ C. By
hypothesis, there exists∑

h,�∈F
chc�qk[h− �]

= lim
N→∞

1
2N + 1

∑
|m|≤N

∑
h,�∈F

chc�e
2πi(h−�)(θm+k−θm)

= lim
N→∞

1
2N + 1

∑
|m|≤N

∣∣∣∣
∑
h∈F

che
2πih(θm+k−θm)

∣∣∣∣
2

≥ 0.

Lemma 6.4. For all h ∈ Z, assume ph : Z → C exists, and for all k ∈ Z,
assume qk : Z → C exists. Then for each h, k ∈ Z, there exist positive
measures μh, νk ∈M(T) such that

∀h, k ∈ Z, μ∨
h [k] = ph[k] = ρh,k = qk[h] = ν∨k [h].

This is a consequence of Herglotz’ theorem and Lemmas 6.2 and 6.3.

Lemma 6.5. Let x ∈ �∞(Z) and assume

Ax,{Nm} : Z −→ C

exists, where {Nm} ⊆ N and

∀k ∈ Z, Ax,{Nm}[k] = lim
Nm→∞

1
2Nm + 1

∑
|n|≤Nm

x[k + n]x[n]. (6.5)

Ax,{Nm} = μ∨
x,{Nm} >> 0, where μ = μx,{Nm} ∈ M(T) is a non-negative

Radon measure, and

∃ lim
N→∞

1
2N + 1

∑
|k|≤N

Ax,{Nm}[k] = μ({0}) ≥ 0, (6.6)

where μ({0}) is the μ-measure of the Borel set {0} ⊆ T. (Since x ∈ �∞(Z)
we know there is at least one subsequence {Nm} ⊆ N for which Ax,{Nm}
exists.)

Proof: The argument of Lemma 6.2 is easily extended to giveAx,{Nm} >>
0, so that by Herglotz’ theorem we have Ax,{Nm} = μ∨ for some non-
negative Radon measure, and, in particular, μ({0}) ≥ 0.
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Next,

1
2N + 1

∑
|k|≤N

A[k] =
1

2N + 1

∑
|k|≤N

lim
Nm→∞

1
2Nm + 1

∑
|n|≤Nm

x[k + n]x[n]

=
1

2N + 1

∑
|k|≤N

μ∨[k] =
1

2N + 1

∑
|k|≤N

∫
T

e2πikγ dμ(γ)

=
∫
T

(
1

2N + 1

∑
|k|≤N

e2πikγ
)
dμ(γ).

Therefore,

lim
N→∞

1
2N + 1

∑
|k|≤N

A[k] = lim
N→∞

∫
T

(
1

2N + 1

∑
|k|≤N

e2πikγ
)
dμ(γ)

=
∫
T

(
lim
N→∞

1
2N + 1

∑
|k|≤N

e2πikγ
)
dμ(γ),

where the second equality is valid by the Lebesgue dominated convergence
theorem. In fact, if

fN (γ) =
1

2N + 1

∑
|k|≤N

e2πikγ ,

then |fN (γ)| ≤ 1 ∈ L1
μ(T), fN (0) → 1, and fN (γ) → 0 for γ ∈ [−1/2, 1/2)\

{0}. Because of this convergence we can also assert that the right side of
the second equality is μ({0}).

We have the following generalization of a theorem due to van der
Corput, see [13].

Theorem 6.6. Given {θm} ⊆ R and the notation ρh,k, ph, qk, μh, νk de-
fined above. Assume ρh,k exists for all h, k ∈ Z. Also assume that

∀h �= 0, lim
K→∞

1
2K + 1

∑
|k|≤K

∣∣∣∣
∫
T

e2πihγdνk(γ)
∣∣∣∣
2

= 0. (6.7)

Then {θm} is uniformly distributed mod 1.

Proof: Using Weyl’s criterion, Theorem 4.2, we shall prove our result by
proving that

∀h ∈ Z \ {0}, lim
N→∞

1
2N + 1

∑
|n|≤N

e2πihθn = 0. (6.8)
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Suppose (6.8) is not true. We shall obtain a contradiction.
There is h ∈ Z \ {0} such that

limN→∞|MN (φh)| = r > 0, (6.9)

where

MN (φh) =
1

2N + 1

∑
|n|≤N

φh[n] and φh[n] = e2πihθn .

Choose {N ′
m} ⊆ N such that

lim
N ′

m→∞
|MN ′

m
(φh)| = r,

and, without loss of generality, assume that

∀m, r

2
≤ |MN ′

m
(φh)| ≤ 3r

2
.

Thus, {MN ′
m

(φh)} ⊆ {z ∈ C : r/2 ≤ |z| ≤ 3r/2}, and so we can choose a
subsequence {Nm} ⊆ {N ′

m} for which

∃ lim
Nm→∞

MNm(φh) = m(φh) ∈ C, (6.10)

where 0 < r/2 ≤ |m(φh)| ≤ 3r/2.
For h ∈ Z \ {0} as in (6.9) and {Nm} as in (6.10), we invoke Lemma

6.5 for the case x = φh. Equation (6.5) is satisfied in this case by our
hypothesis on the existence of ph on Z, since the limit is taken over all
N ∈ N in (6.3). Thus, by Lemma 6.5, since

∀k ∈ Z, ∃ lim
Nm→∞

1
2Nm + 1

∑
|n|≤Nm

e2πih(θn+k−θn) = A[k],

we have A = Aφh,{Nm} >> 0, A = μ∨ = μ∨
φh,{Nm}, μ ∈ M(T) is non-

negative, and

lim
N→∞

1
2N + 1

∑
|n|≤N

A[n] = μ({0}) ≥ 0.

Let ψh = φh −m(φh) so that

lim
Nm→∞

MNm(ψh) = 0. (6.11)
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Also,
φh[k + n]φh[n]

= |m(φh)|2 + ψh[k + n]ψh[n] +m(φh)ψh[n] +m(φh)ψh[k + n]. (6.12)

SinceAφh,{Nm} exists and because of (6.11), we obtain from (6.12) thatAψh,{Nm}
exists and

∀k ∈ Z, Aφh,{Nm}[k] = |m(φh)|2 +Aψh,{Nm}[k]. (6.13)

Applying Lemma 6.5 to (6.13) we see that

∃ lim
N→∞

MN (Aφh,{Nm}) = |m(φh)|2 + lim
N→∞

MN (Aψh,{Nm})

= |m(φh)|2 + μψh,{Nm}({0}) ≥ |m(φh)|2. (6.14)

Thus,
μφh,{Nm}({0}) ≥ |m(φh)|2,

and, in fact,
μh({0}) ≥ |m(φh)|2 (6.15)

since μφh,{Nm} = μh by our hypothesis on the existence of ph = μ∨
h .

Because of (6.7) and Lemma 6.4 we have

∀j �= 0, lim
K→∞

1
2K + 1

∑
|k|≤K

∣∣∣∣
∫
T

e2πikγdμj(γ)
∣∣∣∣
2

= 0.

We invoke Wiener’s theorem characterizing continuous measures, e.g.,
[17], page 42, cf., [5], pages 84 and 98, for an analogous result for con-
tinuous pseudo-measures. Thus, μj ∈ Mc(T) for j �= 0, and of course we
know that μ0 = δ0 �∈Mc(T). Hence,

∀j �= 0 and ∀γ ∈ T, μj({γ}) = 0. (6.16)

Combining (6.15) and (6.16) we see that m(φh) = 0, and this is the desired
contradiction.

Remark 6.7a. Besides the aforementioned work of Cigler, the argument
of Theorem 6.6 has close connections to work of Bass [3], [4] and Bertran-
dias [9], [10]. Our point of view is to present it with an eye to generalization
in terms of pseudo-measures to study further number theoretic properties
in spectral synthesis, e.g., [5].

b. The proof of Wiener’s theorem used in Theorem 6.6 involves the
following elementary facts, e.g., [17], page 42:

∀μ ∈M(T) and ∀γ ∈ T, μ({γ}) = lim
N→∞

1
2N + 1

∑
|m|≤N

μ∨[m]e−2πimγ
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and in particular

∑
λ∈T

|μ{γ}|2 = lim
N→∞

1
2N + 1

∑
|m|≤N

|μ∨[m]|2.

c. Using (6.7) and its implication (6.16), we make the following cal-
culation. By (6.16), for every h �= 0,

0 = μh({0})
= lim
K→∞

1
2K + 1

∑
|k|≤K

μ∨
h [k]

= lim
K→∞

1
2K + 1

∑
|k|≤K

∫
T

e2πikγdμh(γ)

= lim
K→∞

1
2K + 1

∑
|k|≤K

ρh,k

= lim
K→∞

1
2K + 1

∑
|k|≤K

lim
N→∞

1
2N + 1

∑
|m|≤N

e2πih(θm+k−θm)

= lim
N→∞

1
2N + 1

∑
|m|≤N

e−2πihθm

⎛
⎝ lim
K→∞

1
2K + 1

∑
|k|≤K

e2πihθm+k

⎞
⎠

= lim
N→∞

1
2N + 1

∑
|m|≤N

e−2πihθm

⎛
⎝ lim
K→∞

1
2K + 1

K+m∑
p=−K+m

e2πihθp

⎞
⎠

=
∣∣∣∣ lim
N→∞

1
2N + 1

∑
|m|≤N

e2πhiθm

∣∣∣∣
2

.

If this calculation were valid we would have

∀h �= 0, lim
N→∞

1
2N + 1

∑
|m|≤N

e2πihθm = 0;

and so, by Weyl’s theorem (Theorem 4.2), we would obtain the assertion
of Theorem 6.6 that {θm} is uniformly distributed mod 1. This direct
calculational “proof” of Theorem 6.6 is flawed by the fact that we have
not been able to verify the interchange of limits in the middle of the
calculation.

Remark 6.8. Fix k �= 0. Suppose

∀h �= 0, qk[h] = 0. (6.17)
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Equation (6.17) is the assertion that

∀h �= 0, lim
N→∞

1
2N + 1

∑
|m|≤N

e2πih(θm+k−θm) = 0,

i.e., by Weyl’s theorem, (6.17) is the assertion that for this k �= 0, {θm+k−
θm}m∈Z is uniformly distributed mod 1. Further, if (6.17) is valid for all
k �= 0, then

∀h �= 0, lim
K→∞

1
2K + 1

∑
|k|≤K

∣∣∣∣
∫
T

e−2πihγdνk(γ)
∣∣∣∣
2

= 0. (6.18)

In fact, for h �= 0 and k �= 0,

∫
T

e−2πihγdνk(γ) = qk[h] = 0.

Thus, we have shown that if {θm+k−θm}m∈Z is uniformly distributed mod
1 for each k �= 0 then (6.18) is valid. Hence the hypothesis of Theorem 6.6
is more general than assuming {θm+k − θm}m∈Z is uniformly distributed
mod 1 for each k �= 0; but we must prove this is strict generality.

Van der Corput’s original formulation of Theorem 6.6 assumed that
{θm+k − θm}m∈Z is uniformly distributed mod 1 for each k �= 0; and
his proof used his so-called “fundamental inequality”, e.g., [18], page 25.
This formulation is called the van der Corput difference theorem: Let
{θm}m∈Z ⊆ R. If for each k ∈ Z\{0}, {θm+k − θm}m∈Z is uniformly
distributed mod 1, then {θm}m∈Z is uniformly distributed mod 1.

As mentioned in Remark 4.4, a consequence of the van der Corput
difference theorem is Weyl’s uniform distribution theorem for polynomi-
als (Theorem 4.3), which we used in our unimodular argument. This is
Theorem 3.2 of [18].

§7. Periodic CAZAC codes

We now list some K-periodic CAZAC codes that we have computed
“by hand” using an algebraic method introduced by Milewski [20]. Recall
from Section 1 that the usefulness of CAZAC codes often depends on
cross-correlation properties of sets of such codes having the same length
K. These properties, along with critical symmetry and anti-symmetry
properties, are not included in this section and will appear in forthcoming
work. Let e(x) = e2πix. For several values of K ≥ 3, an associated
CAZAC code is listed.
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K = 3 :
1, 1, e(1/3).

K = 4 :
1, 1, 1,−1.

K = 8 :
1, 1, e(1/4),−1, 1,−1, e(1/4), 1.

K = 12 :
1, 1, 1, e(1/6), e(1/3), e(2/3), 1,−1, 1, e(2/3), e(1/3), e(1/6).

K = 27 :
1, 1, 1, 1, e(1/9), e(2/9), e(1/3), e(5/9), (7/9),
1, e(1/3), e(2/3), 1, e(4/9), e(8/9), e(1/3), e(8/9), e(4/9),
1, e(2/3), e(1/3), 1, e(7/9), e(5/9), e(1/3), e(2/9), e(1/9).

K = 48 :
1, 1, 1, 1, 1, e(1/12), e(1/6), e(1/4), e(1/3),−1, e(2/3), e(5/6),
1, e(1/4),−1, e(3/4),
1, e(1/3), e(2/3), 1, e(1/3), e(3/4), e(1/6), e(7/12),
1,−1, 1,−1, 1, e(7/12), e(1/6), e(3/4),
e(1/3), 1, e(2/3), e(1/3), 1, e(3/4),−1, e(1/4),
1, e(5/6), e(2/3),−1, e(1/3), e(1/4), e(1/6), e(1/12).

Inspired by Milewski’s procedure, we have constructed user friendly
computer software with the following properties:
• It is a CAZAC code generator for codes of arbitrary length;
• It provides automatic autocorrelation and crosscorrelation computa-

tion;
• It provides computation and graphics for analyzing the behavior of

CAZAC codes under doppler shifts and for some additive noises. The
associated computer program can be accessed at

http://www.math.umd.edu/∼jjb /cazac,
and the associated documentation and report is [8].
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