Constructive Approximation in
Wavetorm Design

John J. Benedetto

Abstract. Effective waveform design, for topics such as code di-
vision multiple access (CDMA), is essential to transmit many mes-
sages clearly and simultaneously on the same frequency band so that
one user’s message does not become another user’s noise. Unimod-
ular sequences are an essential characteristic for the applicability in
communications and radar of waveforms whose autocorrelations have
prescribed zero sets. Constructive approximations of unimodular se-
quences whose autocorrelations vanish on prescribed sets are made.
The analysis depends significantly on Wiener’s Generalized Harmonic
Analysis and on some number theoretic properties from the theory of
uniform distribution of sequences. Periodic CAZAC (constant ampli-
tude zero autocorrelation) codes are also designed.

§1. Introduction
1.1 Basic problem

Let Z be the integers and let p = {px : k € Z} be a positive definite
sequence with a prescribed zero-set on Z. We shall address the basic
problem of constructing unimodular digital codes u defined on Z and with
the property that the autocorrelation A, of u is p. Let C be the complex
numbers and recall that p = {p} is positive definite, denoted by p >> 0,
if
VN > 1 and Veq,...,cy € C, Z CkCmPl—m > 0.
1<k,m<N

The autocorrelation A, : Z — C of u : Z — C is defined as

1 N
7, Akl = lim —— ,
Vk € Z, (k] m T Z ulk + mjum]

N—oo
|m|<N
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when the limit exists; and w is unimodular if |u[n]| =1 for all n € Z.

We shall distinguish between algebraic and analytic approaches to the
basic problem.

There are established algebraic approaches for constructing unimod-
ular codes for solving the basic problem, e.g., [16]. Our algebraic con-
struction is in terms of periodic codes, and it is introduced in Section 7,
see Section 1.3.

The main part of this paper deals with the analytic approach for
solving the basic problem, and it is inspired by work of L. Auslander and
Barbano [2]. Our analytic contribution is in terms of codes on Z. The
contribution itself is a technique involving Wiener’s Generalized Harmonic
Analysis (GHA) and methods from uniform distribution of sequences. The
technique is introduced for a special example in Section 5, with supporting
material in Sections 3, 4, and 6, see Section 1.4. The purpose of analytic
constructions to solve the basic problem, whether it be our technique or
that in [2] or others, is to provide flexibility and adaptivity in designing
robust codes which are stable under modest perturbations.

1.2 Reason for the basic problem

The basic problem arises in several applications in the areas of radar and
communications. In the former such codes play a role in effective target
recognition, e.g., [2], [19], [22], [25]; and in the latter they are used to
address synchronization issues in cellular (phone) access technologies, es-
pecially code division multiple access (CDMA), e.g., [27], [28]. The radar
and communications methods combine in recent advanced multifunction
RF systems (AMRFS).

Because of these applications, the codes to be constructed should
exhibit a quantifiable stability under doppler shifts and/or with various
additive noises. Our software package, referenced in Section 7, is a tool
to evaluate such stability for the periodic algebraic codes constructed in
Section 7.

There are two significant reasons that the codes u for solving the
basic problem should have constant amplitude. First, a transmitter can
operate at peak power if u has constant peak amplitude-the system does
not have to deal with the surprise of greater than expected amplitudes.
Second, amplitude variations during transmission due to additive noise
can be (theoretically) eliminated at the receiver without distorting the
message.

1.3 Algebraic periodic version of the basic problem

A strong version of the basic problem is to construct unimodular K-
periodic sequences u with the property that A, vanishes outside of the
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periodic de-domain points nK, n € Z. As posed, this is a solvable alge-
braic problem, e.g., [1], [12], [14], [15], [20], [23], [26]; and such sequences
are called CAZAC codes, where the palindromic acronym (another scien-
tific one along with “radar”) stands for constant amplitude zero autocor-
relation. Using the ingenious method due to Milewski, we shall compute
several such codes in Section 7. In both radar and CDMA there must
also be optimal crosscorrelation behavior among sets of such codes, and
our present algebraic CAZAC crosscorrelation results and software are
documented in [8].

1.4 Analytic methods to address the basic problem

In the non-periodic version of the basic problem, a natural initial approach
for the solution is to invoke analytic methods from GHA [29], cf., [6] for
a recent extension of Wiener’s methods as related to the construction
of codes u whose autocorrelations are given positive definite functions.
Adapting Wiener’s techniques allows one to construct in Section 3 a code
x : Z — C for which A, = p for a given p >> 0; however, = is not
unimodular.

In order to address the unimodularity constraint, we invoke classical
results from the theory of uniform distribution in Section 4, see [18]. As
such we deal with certain Gauss-like sums, and this is probably related to
code-design in terms of the Heisenberg group by Strohmer.

Using uniform distribution we deal with the basic problem for the
case p = {px}, where pg = 1 and p; = 0 for all k£ # 0. Because of the
severe restriction of the zero-set of p we can not solve the basic problem
completely in this case. However, the simplicity of p allows us to demon-
strate in a relatively straightforward way how the results from Section
4 are implemented to ensure the unimodularity constraint. This is the
content of Section 5.

A more powerful uniform distribution tool than those listed in Section
4 is the van der Corput difference theorem. In Section 6 we prove a
generalization due to Cigler [13]. We fomulate this generalization with
the primary goal of solving the basic problem for a given p, and, in the
process, of specifying the required constraints on the zero set of p in order
to ensure a unimodular code u for which A, = p. Our secondary goal,
since the proof uses methods from abstract harmonic analysis (although
this may not be obvious), is to prove a version of the difference theorem
for pseudo-measures with an eye to spectral synthesis, e.g., [5].

Section 2 assembles some facts needed in the remaining sections.

1.5 Notation

We use the standard notation from harmonic analysis, e.g., [24], [7]. For
the real numbers R, we write T = R/Z. C(T) is the space of 1-periodic
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complex valued continuous functions on R, and A(T) is the subspace of
absolutely convergent Fourier series. If F' € A(T) we write 'V = f = {fx},
i.e., FV[k] = fi; and F(v) = Y, 7 fre”?™*7. There is an analogous
definition for ¥ in the case that u € M(T). M(T) is the space of Radon
measures on T, i.e., M (T) is the dual space of the Banach space C(T) taken
with the sup norm. M.(T) C M(T) designates the space of continuous
Radon measures p, so that p({v}) = 0 for each v € T.

62. Mathematical Preliminaries

Because of the basic problem in Section 1.1 the following elementary fact
is necessary.

Lemma 2.1. Let Sk = {k € Z : 1 < |k| < K}. There is positive
P e A(T) \ {1} for which py = 1 and py, = 0 for each k € Sk, where

P(v) = Y 1c7 pre’ ™.

Proof: Recall that if p = {px} >> 0 then p_,, = p, and |p,| < po for
each n € Z. Choose {p,} C R; and suppose p,, = p_,, for each n, py = 1,
and p, =0 for all n € Sk. Set

oo
Pv)=1+2 Z i COS 2k-y.
k=K+1

Clearly, |P(v)—1| < 23772 ;1 Ipk| so that if {p;} is absolutely summable
and 23772 1 [pk| < 1 then

VyeT, P(y)>1-2 Y  |ml>0.
k=K+1

Hence, P is positive and P € A(T); in particular, P¥ =p >> 0. O

Remark 2.2.

a) Since P > 0 on T in Lemma 2.1, we can use Wiener’s lemma on the
inversion of absolutely convergent Fourier series.

b) If FF € A(T) then limy_oo || F — SN<F>||Loo(’JI‘) = 0. In particular, if
F'>0on T then

JN such that Vn > N and Vv € T,

> FY[k]e ™" > 0.
k| <n
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Notationally we let L,, have the property that

. 1
Vy €T, }:zwmpﬂmwziquQyAeT}
|k|<Ln

Lemma 2.3. Let x : Z — C be K-periodic. Then

K
VkeZ, JA.] }: [k +m]x

Proof: The result is a consequence of the following regrouping for a fixed
k and a given N:

2K
Z z[k + m)z[m] = Z + Z
|m|<N m=1 m=K+1

KNk N

+eed D>+ Y+ i

m:K(NK—1)+1 m=KNg-+1 m=—K+1

—K(Ng—1) —KNk
>
=—KNg+1 m=—N
K —KNg

VS SEED VIR 3

m=1 m=KNg-+1 m=—N

where Nk satisfies KNy < N < K(Ng +1). O

Let F' € A(T) have Fourier coefficients p = {p}, and for any K,
define the discrete measure

K-—1 1
=D | 2o mee T g, (2.1)
=0

|k[<Mx

where 4 ,, is the Dirac measure at j/n € T.

Lemma 2.4. Let F' € A(T) have Fourier coefficients p = {py } and define
W asin (2.1). Assume Mg — oo as K — oo. Then

wrec). Jm [ feduty / 1y



6 John J. Benedetto

Proof: We have the estimate

'/Ef(v)dux(v)—/Ef(v)F('y)d’y‘

< 3 (g Ii:lf(%ﬂ)

[k|>Mg
+ Z Pk
kel

It is straightforward to check that the right side goes to 0 as K — oo. O

1 K-1 .
—2mikY ]~ E : J N 2mik(j/K)

The following is immediate from the previous discussion.

Lemma 2.5. Let F' € A(T) have Fourier coefficients p = {py} and define
pg asin (2.1).
a) puy : Z — C is K-periodic.

b) VkeZ, pYlk]=LYr (Z denr pee—zm'eu/m>ezmw/m_

c) If F >0 on T, then for each fixed K we can choose Lk (see Remark
2.2b) such that

Vi=0,1,...,K—1,

Z pee—Qwié(j/K)‘: Z poe— 2t/ K),
e|<Lx e1<Lx

63. The Basic Problem and Wiener’s GHA

Suppose we weaken the basic problem and pose the following problem:
Let p = {pr} >> 0 have a prescribed zero set; construct a digital code
x : Z — C such that A, = p. We have temporarily dropped the constraint
of unimodularity.

By the definition of autocorrelation it is not unreasonable to define
x in terms of a square root, and in some sense this was the approach of
Wiener in his original GHA on R [29].

Using the approach from Section 2, we set

K-1 1/2
Vk€Z, xklk]= Z( > %e—%mﬂ'/f‘f)) 2RI (3.1)
J=0 *e|<Lk

where we have chosen Lx as in Lemma 2.5c¢.

The proof of the following result is straightforward.
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Proposition 3.1. Let F' € A(T) be positive on T with Fourier coefficients
{pr}, and let pyj. and xx be as in Lemma 2.5a (with Ly instead of M)
and (3.1), respectively. Then py,,xx : Z — C are K-periodic and

Vk €L, Ag[k] = pilk]-

Example 3.2. Let ' =1 onT. Then for any positive K € Z, xx[mK| =
V'K for allm € 7 and zx vanishes otherwise.

The methods to prove the following result go back to Wiener [29],
cf., [6]. We shall only outline the proof because of the “non-unimodular”
nature of the construction, e.g., Example 3.2, and the subsequent approach
with uniform distribution, e.g., Sections 4 and 5.

Theorem 3.3. Let F' € A(T) be positive on T with Fourier coefficients
p = {pr}. There is a constructible sequence x : Z — C for which A, = p.
(x is not unimodular.)

Outline of Proof.
Using the notation in Proposition 3.1 we can prove that there is an
increasing positive sequence { Lk}, as K — oo, such that

Vk € Z and VN > Ly,
1
2N +1

_ 1
> ik +mlzg[m] — pic[k]| < SKT1
|m|[<N

It is advantageous to choose the smallest possible L at each step. Next,
set
Nk =(L1+1)(La+2)...(Lx + K).

Therefore N > K!, and the sequences { Nk }, {Nk1+1/Nk}, and {Ng 41—
Nk} tend to infinity. Using the definition of xx in (3.1) we define x : Z —
C as follows: z[k] = 0 for |k| < Ny and z[k] = zxk] for Nk < |K| <
Ng 1. It must now be checked that A, = p.

84. Uniform Distribution
A sequence {6, : n = 1,...} C R is uniformly distributed mod 1 if, for
every interval [a,b) C [0,1),
i card{0, : 1 <n < N,0, —[0,] € [a,b)}
im
N —o0 N

=b—a.

Here, “card” stands for “cardinality” and [f] is the greatest integer less
than or equal to 8 € R, the so-called integer part of 6. An excellent
reference on uniform distribution is Kuipers and Niederreiter’s book [18],
cf., [21] for recent advanced results.

We shall need the following three theorems due to Hermann Weyl
(1914 and 1916).
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Theorem 4.1. {6, : n = 1,...} C R is uniformly distributed mod 1 if
and only if

K

1 1
vieom), Jim 3" f(0) = /O f(@)de.

Theorem 4.2. {6, : n = 1,...} C R is uniformly distributed mod 1 if
and only if

N
1 .
Vh € Z\{0}, A}l_lr)réoﬁ g eZmihtn —
n=1

Theorem 4.3. Let Q(z) = 2™ + c¢pp_12™ 4+ -4+ ¢y, m > 1, be a
polynomial where each c¢; € R and where some c;j,j > 0, is irrational.
Then {Q(n) : n =1,...} is uniformly distributed mod 1.

Remark 4.4. Van der Corput (1929 and 1931) gave a simpler proof than
Weyl of Theorem 4.3, using the van der Corput difference theorem, see
Remark 6.7.

§5. Constructive Approximation to Unimodular Solution

The purpose of this section is to illustrate our GHA — uniform distribution
technique for the construction of unimodular digital codes u defined on Z
whose autocorrelation is a prescribed positive definite sequence p.

For simplicity, we choose the particular sequence p = F'V where F' = 1
on T. Thus, FY[k] = pr = 0 for all k # 0. We provide details to the
approximation of unimodular u, in which A4,, = p = {py}, for certain sum-
mands arising in the overall approximation of u. The remaining summands
use uniform distribution discrepancy methods with additional complexity
[11]. These will be presented in the sequel, combined with an error analysis
of unimodular approximants whose autocorrelations are associated with a
given positive definite sequence for which there is no exact solution to the
basic problem on Z.

Using the idea of Wiener’s construction of x in terms of {zx}, see
Section 3, we let positive K € Z be fixed and define

K1/? if k = mK, some m € Z,
Vk € Z,UK[k] = (51)
e2mik i if # qK for any q € 7Z,

where each vx is irrational. Each ug is “almost” unimodular, and it is not
K periodic. Using Wiener’s construction from Section 3, for ux instead
of xx, the resulting digital code u will have longer and longer unimodular
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segments as | k| increases. Since autocorrelations are characterized by their
behavior at infinity this is what we shall mean by the unimodularity of w.

Setting
]_ -
AN ylk] = INF1 | %:N’y[k + mly[m], (5.2)

we shall analyze a special but not untypical case of Ay, as N — oo; and
then, as mentioned above, we define unimodular u in terms of {ux} as
was done for x and {xx} in Section 3.

Writing
> ylk +mlyfm] =) ylk +mly[m], (5.3)
|m|<N
in (5.2), we have
1 (N) 1 (N)
AN = =1 1
N,ug [K] ON 1 1 m;K+2N+ 1 m:ZqK 1,i,N (k) + T2,k N (K)

with ug replacing y in (5.3). It is easy to check that
Jim Do g (PK) = 1 = pic[pK], (5-4)

uniformly in p € Z, where the quadratic term in (5.1) can be replaced by
any unimodular term. Also, using the irrationality of vx, we compute

Vp € Z\{0}, A}Enoo I kN (pK) = 0; (5.5)

and a direct computation shows that

. 1
A}gnoo I gkn(0) =1~ e (5.6)
Thus,
. 1
AuK [0] = ngnoo AN»“K [0] =2- ?

With the flexibility of adding non-zero py for |k| large, for a given non-
negative ' € A(T) with Fourier coefficients p = {px }, we can compute the
desired A,[0] = 1. It remains to evaluate

VEk 7& pK, th Ij’K7N(kJ), ] = 1,2 (57)

We shall do the case j = 2.
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Proposition 5.1. If k # pK then

Jim Do g n (k) = 0= pue[k]. (5.8)
Proof: First note that if k € Z\{pK}, p € Z, then u).[k] = 0. In fact, if

k/K ¢ Z then k/K = m + (k/K), where (k/K) € (0,1) is the fractional
part of k/K. Thus, e>™*/K £ 1 and so

K—1
Kpj[k] = > (eXT+/5Y]
7=0
1— 627riK(%—m)
T T _eemik/K 0.
Next, for k € Z\{pK}, we compute
1 (N) , K—1 1 1/2
T k) = 2mwi(k+m) vk - —2mim(j/K)
2en(k) = 5y D e 2 (%)
m=qK 7=0
5 (N/K)
2N +1 < ’

(5.9)
since m = qK implies k +m # (K. {Q(q) = (k+ qK)*yx : q € Z} is
uniformly distributed mod 1 by Weyl’s Theorem 4.3. The right side of
(5.9) is

(N/K)

KY? (2N 1 :
~ A | 2miQ(q)
2N+1(K+)2[%]+1§e ’

and so it tends to 0 as N — oo by Weyl’s theorem. Equation (5.8) is
proved. O

§6. Implications of Unimodularity
Proposition 6.1. Let p = {px} >> 0 and assume
Z={keZ:p,=0}#0.

Let {x[n] = Ce~ : C > 0} have the property that

S alk+ mlafm] = .

|m|<N

Vk € Z li
< ’ Ngnoo 2N + 1
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Then py = C? and {0,,} can not have the property that
Jk € Z such that Vm € Z, efktm = ¢ireilm, (6.1)

Proof: Suppose there is k such that (6.1) holds. Take any € > 0 for which
C? > ¢. By definition of k € Z,

1
2N +1

N, such that VN > N, ‘ Z x[k + m]x[m]’ <e (6.2)

|m|<N

Equation (6.2) implies

C? 0 —i6
VN > N, IN T 1 Z e'ktmeTWm| <€

Nl |m|<N

and so from (6.1) we have

02

YN > N, ——
= Neks 5N

ei0r Z 1‘<6,

|m|[<N

i.e., C? < ¢, the desired contradiction. [

Given {6,, : m € Z} C R and consider the formal mean

o 1 278 (Ot — O )
Vh,k € Z, phi = ]\;1—H>loo N T 1 | Z|<:N€ . (6.3)

If h is fixed we write

P,k = Prlk];
and if k is fixed we write
Pk = qr[h].
Note that
Vh,k € Z, poy =1and ppo=1. (6.4)

Lemma 6.2. Fix h € Z and assume py|k| exists for all k € Z. Then
pn >> 0.

Proof: If h = 0 then po[k] =1 for all k € Z by (6.4). Thus, pg >> 0. In
fact, 6§ = po, and of course dq is a positive measure.

Let h € Z\{0}. Also consider the function P, y = ﬁ(gplN) *
(pln)™, where ¢ : Z — C, 15 : Z — C is the characteristic function of
{=N,...,0,1,..., N}, and ~ designates involution. For this h set p[m] =
on[m] = €279 Since py, exists on Z it can be shown that

Vk € Z, ph[k‘] = A}EHOO P¢h7N[k].
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Since
A 1

P = —
en,N 2N +1
we have p;, >> 0. O

[(enln) | >0

Lemma 6.3. Fix k € 7Z and assume qi[h] exists for all h € Z. Then
qr >> 0.

Proof: If h,/ € F C Z, F a finite set, and let {c¢; : h € F} C C. By
hypothesis, there exists

> entigelh — 0]

htcF

1 )
— 1 § E : — 27t (h—£) (Ot —Om)
Nl—r>rcl>o 2N +1 Cheee
|m|<N h{cF

2
heF

1
— i
N ON + 1 >

|m|<N

Lemma 6.4. For all h € Z, assume py, : Z. — C exists, and for all k € 7Z,
assume qy, : 7Z — C exists. Then for each h,k € 7Z, there exist positive
measures fup, v, € M(T) such that

Vhk € Z, pylk] = prlk] = pus = axlh] = v/ [h].
This is a consequence of Herglotz’ theorem and Lemmas 6.2 and 6.3.

Lemma 6.5. Let x € (*°(Z) and assume
Am,{Nm} :Z — C

exists, where {N,,} C N and

1 -
Yk €L, Agqn,ylk = lim SN 1 > alk+nfzln].  (6.5)
" " In|<Nm

Ag N,y = 1 (N} >> 0, where i = jiy (.} € M (T) is a non-negative
Radon measure, and

. 1
3 Jim o WZjN Aq w3 K] = u({0}) >0, (6.6)

where p({0}) is the p-measure of the Borel set {0} C T. (Since x € {*°(7Z)
we know there is at least one subsequence {N,,} C N for which A, (n, }
exists. )

Proof: The argument of Lemma 6.2 is easily extended to give A, ¢n,.3 >>|}
0, so that by Herglotz’ theorem we have A, (n,.} = p" for some non-
negative Radon measure, and, in particular, u({0}) > 0.
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Next,
LS = Y dim o ST ek el
2N + 1 2N +1 Np—oo 2N, + 1
|k|<N |k|<N In|<Nm
Ty Thn /T
1 2 'k'y)
= > ) du(v).
T(QN +1 W=
Therefore,
lim ! Z Alk] = lim ! Z XY ) du(y)
N—oo 2N +1 N—oo JT\ 2N +1
k<N k| <N
— lim 1 Z e2miky du(y)
T N —oo 2N—|— 1 ’
|k|<N

where the second equality is valid by the Lebesgue dominated convergence
theorem. In fact, if

_ 1 2mik~y
v =gy 2 &
k| <N

then |fx ()] < 1€ L (T), fn(0) — 1, and fx(y) — 0fory € [-1/2,1/2)\
{0}. Because of this convergence we can also assert that the right side of
the second equality is u({0}). O

We have the following generalization of a theorem due to van der
Corput, see [13].

Theorem 6.6. Given {0,,} C R and the notation py, i, P, Gk, fth, Vi de-
fined above. Assume py, i, exists for all h,k € Z. Also assume that

2

Vh#£0, lim =0.  (6.7)

1 ‘/ 2mwihy
S| LM (y)
K—oo 2K 41 <K T

Then {0,,} is uniformly distributed mod 1.

Proof: Using Weyl’s criterion, Theorem 4.2, we shall prove our result by
proving that

1 .
vhe Z\{0},  lim —— — > et =, (6.8)
n|<N
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Suppose (6.8) is not true. We shall obtain a contradiction.
There is h € Z \ {0} such that

MN_,OO]MN(@LH =7r > O, (69)
where
1 .
My (¢n) = N T 1 > énln] and  gpln] = >0,
[n|<N

Choose {N, } C N such that

lim  |My: (¢n)] =,

N;n—>oo
and, without loss of generality, assume that

3r

Vm, < |MN;n(¢h)| < ?

N3

Thus, {Mpy' (¢n)} C{z € C:r/2 <|z| < 3r/2}, and so we can choose a
subsequence {N,,} C {N, } for which

3 lim MNm (¢h) = m(gbh) eC, (6.10)

Ny —00

where 0 < /2 < |m(¢p)| < 3r/2.

For h € Z\ {0} as in (6.9) and {N,,} as in (6.10), we invoke Lemma
6.5 for the case x = ¢5,. Equation (6.5) is satisfied in this case by our
hypothesis on the existence of p; on Z, since the limit is taken over all
N € Nin (6.3). Thus, by Lemma 6.5, since

. 1 2mih(Opn4+k—0rn)

Vk € Z, HNSIBOOMMH d e = A[k],
[n|<Nm

we have A = Ay, rn, 3 >> 0, A =p¥ = “;h,{Nm}’ p € M(T) is non-

negative, and

i 1
11m
N—oo 2N +1

S Aln] = u({0}) > 0.

In|<N
Let ¥, = ¢, — m(¢pn) so that

lim My, (¢5) = 0. (6.11)

N,, —00
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Also,

onlk + nlon[n]
= |m(én)* + Vulk + n]Pn[n] + m(on)yn[n] + m(én)nlk +n].  (6.12)

Since Ay, (n,.} exists and because of (6.11), we obtain from (6.12) thatAy, (~, .1}
exists and

VheZ, Akl = m@0l + Ay vl (613)

Applying Lemma 6.5 to (6.13) we see that

3 lim My (Ag, qw,.3) = [m(en)]* + lim My (Ay, (v,.3)

= |m(on)]* + p 13,y ({03) = [m(en)|*. (6.14)
Thus,
Hen (N3 ({01) > [m(n) %,
and, in fact,

pn({0}) > [m(on)]? (6.15)

since (g, (N,,} = Mn by our hypothesis on the existence of p, = g
Because of (6.7) and Lemma 6.4 we have

2
= 0.

1 )
Vji#0, i 2R dp
j#0, KgnooquLl'%K‘/Te 15(7)

We invoke Wiener’s theorem characterizing continuous measures, e.g.,
[17], page 42, cf., [5], pages 84 and 98, for an analogous result for con-
tinuous pseudo-measures. Thus, p; € M.(T) for j # 0, and of course we
know that g = dg & M.(T). Hence,

Vji#0and VyeT, p;({y}) =0. (6.16)

Combining (6.15) and (6.16) we see that m(¢p) = 0, and this is the desired
contradiction. [

Remark 6.7a. Besides the aforementioned work of Cigler, the argument
of Theorem 6.6 has close connections to work of Bass [3], [4] and Bertran-
dias [9], [10]. Our point of view is to present it with an eye to generalization
in terms of pseudo-measures to study further number theoretic properties
in spectral synthesis, e.g., [5].

b. The proof of Wiener’s theorem used in Theorem 6.6 involves the
following elementary facts, e.g., [17], page 42:

e MM and ¥y €T, p({7}) = lim oo

Z MV [m] e—27m'm'y

|m|<N
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and in particular

Sl = Jim e ST

xeT |m|<N

c. Using (6.7) and its implication (6.16), we make the following cal-
culation. By (6.16), for every h # 0,

0 = un({0})

1 y
_;}511002K+1 D milk
k|<K

— 2mik~y
Jim s [

|k|<K

-l gy X

|k|<K
1 1 ,
— i li 27ih (O 4k —0m,)
KEHOO2K+1 Z NEnOOQN—I—l Z €
|k|<K |m|<N

1 - 1 ,
— 1 —2mih6,, li 27wih6 4k
NOL 2N + 1 > e Ko 2K + 1 > e

imI<N Ik|<K
— lim 1 Z e—27rih9m lim 1 Kin 627rih9p
Im|<N p=—K+m
1 2
— lim 27hi6,,
gy 2 ¢
Im|<N

If this calculation were valid we would have

. 1 27th6,, __ A.
vh#0, M SN T > e =0

Im|<N

and so, by Weyl’s theorem (Theorem 4.2), we would obtain the assertion
of Theorem 6.6 that {6,,} is uniformly distributed mod 1. This direct
calculational “proof” of Theorem 6.6 is flawed by the fact that we have
not been able to verify the interchange of limits in the middle of the
calculation.

Remark 6.8. Fix k& # 0. Suppose

Vh #0, qi[h] =0. (6.17)



Unimodularity Constraints 17

Equation (6.17) is the assertion that

1 .
1' 27T2h(9m+k—9m) —
Vh # 0, NEICIXDQN_Fl';Ne 0,

i.e., by Weyl’s theorem, (6.17) is the assertion that for this & # 0, {0+ —
Om } ez, is uniformly distributed mod 1. Further, if (6.17) is valid for all
k # 0, then

2

Vh#£0, lim =0. (6.18)

1 ‘ / —2mihy
g e T dvk ()
K—oo 2K 41 WK T

In fact, for h # 0 and k # 0,

/T 2" dyy () = qilh] = 0.

Thus, we have shown that if {0, — 0. },, 7, is uniformly distributed mod
1 for each k # 0 then (6.18) is valid. Hence the hypothesis of Theorem 6.6
is more general than assuming {0,,4% — 0m},, .7 is uniformly distributed
mod 1 for each k # 0; but we must prove this is strict generality.

Van der Corput’s original formulation of Theorem 6.6 assumed that
{0m+r — em}meZ is uniformly distributed mod 1 for each k£ # 0; and
his proof used his so-called “fundamental inequality”, e.g., [18], page 25.
This formulation is called the van der Corput difference theorem: Let
{Om},e7 © R f for each k € Z\{0}, {Omir — Om},, o7 s uniformly
distributed mod 1, then {0, },, 7, is uniformly distributed mod 1.

As mentioned in Remark 4.4, a consequence of the van der Corput
difference theorem is Weyl’s uniform distribution theorem for polynomi-
als (Theorem 4.3), which we used in our unimodular argument. This is
Theorem 3.2 of [18].

§7. Periodic CAZAC codes

We now list some K-periodic CAZAC codes that we have computed
“by hand” using an algebraic method introduced by Milewski [20]. Recall
from Section 1 that the usefulness of CAZAC codes often depends on
cross-correlation properties of sets of such codes having the same length
K. These properties, along with critical symmetry and anti-symmetry
properties, are not included in this section and will appear in forthcoming
work. Let e(z) = e?™*. For several values of K > 3, an associated
CAZAC code is listed.
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K =3
1,1,e(1/3).
K=4
1,1,1,—1.
K =38
1,1,e(1/4), —1,1,—1,¢(1/4), 1.
K =12
1,1,1,e(1/6),e(1/3),e(2/3),1,—1,1,¢(2/3),e(1/3),e(1/6).
K =27

1,1,1,1,e(1/9),e(2/9),e(1/3),e(5/9), (7/9),
1,e(1/3),e(2/3),1,e(4/9),e(8/9),e(1/3),e(8/9), e(4/9),
1,e(2/3),e(1/3),1,e(7/9),e(5/9),e(1/3),e(2/9),e(1/9).

17 17 17 17 17 6(1/12)7 6(1/6)7 6(1/4)7 6(1/3)7 _17 6(2/3)7 6(5/6)7
1e(1/4), ~1,¢(3/4),
1,e(1/3),e(2/3),1,e(1/3),e(3/4),e(1/6),e(7/12),
1,—1,1,-1,1,e(7/12),e(1/6),e(3/4),
e(1/3),1,e(2/3),e(1/3),1,e(3/4), —1,e(1/4),
1,e(5/6),e(2/3),—1,e(1/3),e(1/4),e(1/6),e(1/12).
Inspired by Milewski’s procedure, we have constructed user friendly
computer software with the following properties:
e It is a CAZAC code generator for codes of arbitrary length;
e It provides automatic autocorrelation and crosscorrelation computa-
tion;
o It p’rovides computation and graphics for analyzing the behavior of
CAZAC codes under doppler shifts and for some additive noises. The
associated computer program can be accessed at

http://www.math.umd.edu/~jjb /cazac,
and the associated documentation and report is [8].
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