Finite frames and quantum detection

John J. Benedetto and Andrew Kebo
Department of Mathematics
University of Maryland

Outline

1. Finite frame theory

Outline

1. Finite frame theory
2. A quantum detection problem

Outline

1. Finite frame theory
2. A quantum detection problem
3. Equations of motion

Outline

1. Finite frame theory
2. A quantum detection problem
3. Equations of motion

This is an l^{2} theory, but there are relevant analogous l^{∞} problems, for example finding Grassmannian frames.

PART 1: Finite frame theory

Frames

Frames $F=\left\{e_{n}\right\}_{n=1}^{N}$ for d-dimensional Hilbert space H, e.g., $H=\mathbb{K}^{d}$, where $\mathbb{K}=\mathbb{C}$ or $\mathbb{K}=\mathbb{R}$.

- Any spanning set of vectors in \mathbb{K}^{d} is a frame for \mathbb{K}^{d}.

PART 1: Finite frame theory

Frames

Frames $F=\left\{e_{n}\right\}_{n=1}^{N}$ for d-dimensional Hilbert space H, e.g., $H=\mathbb{K}^{d}$, where $\mathbb{K}=\mathbb{C}$ or $\mathbb{K}=\mathbb{R}$.

- Any spanning set of vectors in \mathbb{K}^{d} is a frame for \mathbb{K}^{d}.
- $F \subseteq \mathbb{K}^{d}$ is A-tight if

$$
\forall x \in \mathbb{K}^{d}, A\|x\|^{2}=\sum_{n=1}^{N}\left|\left\langle x, e_{n}\right\rangle\right|^{2}
$$

($\mathrm{A}=1$ defines Parseval frames).

PART 1: Finite frame theory

Frames

Frames $F=\left\{e_{n}\right\}_{n=1}^{N}$ for d-dimensional Hilbert space H, e.g., $H=\mathbb{K}^{d}$, where $\mathbb{K}=\mathbb{C}$ or $\mathbb{K}=\mathbb{R}$.

- Any spanning set of vectors in \mathbb{K}^{d} is a frame for \mathbb{K}^{d}.
- $F \subseteq \mathbb{K}^{d}$ is A-tight if

$$
\forall x \in \mathbb{K}^{d}, A\|x\|^{2}=\sum_{n=1}^{N}\left|\left\langle x, e_{n}\right\rangle\right|^{2}
$$

($\mathrm{A}=1$ defines Parseval frames).

- F is unit norm if each $\left\|e_{n}\right\|=1$.

PART 1: Finite frame theory

Frames

Frames $F=\left\{e_{n}\right\}_{n=1}^{N}$ for d-dimensional Hilbert space H, e.g., $H=\mathbb{K}^{d}$, where $\mathbb{K}=\mathbb{C}$ or $\mathbb{K}=\mathbb{R}$.

- Any spanning set of vectors in \mathbb{K}^{d} is a frame for \mathbb{K}^{d}.
- $F \subseteq \mathbb{K}^{d}$ is A-tight if

$$
\forall x \in \mathbb{K}^{d}, A\|x\|^{2}=\sum_{n=1}^{N}\left|\left\langle x, e_{n}\right\rangle\right|^{2}
$$

($\mathrm{A}=1$ defines Parseval frames).

- F is unit norm if each $\left\|e_{n}\right\|=1$.
- Bessel map - L: $H \longrightarrow \ell^{2}\left(\mathbb{Z}_{N}\right)$,

$$
x \longmapsto\left\{\left\langle x, e_{n}\right\rangle\right\} .
$$

PART 1: Finite frame theory

Frames

Frames $F=\left\{e_{n}\right\}_{n=1}^{N}$ for d-dimensional Hilbert space H, e.g., $H=\mathbb{K}^{d}$, where $\mathbb{K}=\mathbb{C}$ or $\mathbb{K}=\mathbb{R}$.

- Any spanning set of vectors in \mathbb{K}^{d} is a frame for \mathbb{K}^{d}.
- $F \subseteq \mathbb{K}^{d}$ is A-tight if

$$
\forall x \in \mathbb{K}^{d}, A\|x\|^{2}=\sum_{n=1}^{N}\left|\left\langle x, e_{n}\right\rangle\right|^{2}
$$

($\mathrm{A}=1$ defines Parseval frames).

- F is unit norm if each $\left\|e_{n}\right\|=1$.
- Bessel map - L: $H \longrightarrow \ell^{2}\left(\mathbb{Z}_{N}\right)$,

$$
x \longmapsto\left\{\left\langle x, e_{n}\right\rangle\right\} .
$$

- Frame operator $-S=L^{*} L: H \longrightarrow H$, in fact,

$$
S(x)=\sum_{n=1}^{N}\left\langle x, e_{n}\right\rangle e_{n} .
$$

Tight frames and applications

Theorem $\left\{e_{n}\right\}_{n=1}^{N} \subseteq \mathbb{K}^{d}$ is an A-tight frame for $\mathbb{K}^{d} \Longleftrightarrow$

$$
S=L^{*} L=A I: \mathbb{K}^{d} \longrightarrow \mathbb{K}^{d}
$$

Tight frames and applications

Theorem $\left\{e_{n}\right\}_{n=1}^{N} \subseteq \mathbb{K}^{d}$ is an A-tight frame for $\mathbb{K}^{d} \Longleftrightarrow$

$$
S=L^{*} L=A I: \mathbb{K}^{d} \longrightarrow \mathbb{K}^{d} .
$$

For all $x \in H$,

$$
x=\frac{1}{A} S x=\frac{1}{A} \sum_{i=1}^{N}\left\langle x, e_{i}\right\rangle e_{i} .
$$

Tight frames and applications

Theorem $\left\{e_{n}\right\}_{n=1}^{N} \subseteq \mathbb{K}^{d}$ is an A-tight frame for $\mathbb{K}^{d} \Longleftrightarrow$

$$
S=L^{*} L=A I: \mathbb{K}^{d} \longrightarrow \mathbb{K}^{d}
$$

For all $x \in H$,

$$
x=\frac{1}{A} S x=\frac{1}{A} \sum_{i=1}^{N}\left\langle x, e_{i}\right\rangle e_{i} .
$$

- Robust transmission of data over erasure channels such as the Internet. [Casazza, Goyal, Kelner, Kovačević]
- Multiple antenna code design for wireless communications. [Hochwald, Marzetta, T. Richardson, Sweldens, Urbanke]
- Multiple description coding. [Goyal, Heath, Kovačević, Strohmer, Vetterli]
- Quantum detection.
- Chandler Davis - mathematics
- Eldar, Forney, Oppenheim - signal processing
- Brandt, Kennedy, Helstrom - quantum mechanics quantum detection

Finite unit norm tight frames (FUN-TFs)

- If $\left\{e_{n}\right\}_{n=1}^{N}$ is a finite unit norm tight frame (A-FUN-TF) for \mathbb{K}^{d}, then $A=N / d$.

Finite unit norm tight frames (FUN-TFs)

- If $\left\{e_{n}\right\}_{n=1}^{N}$ is a finite unit norm tight frame (A-FUN-TF) for \mathbb{K}^{d}, then $A=N / d$.
- Let $\left\{e_{n}\right\}$ be an A-unit norm TF for any separable Hilbert space $H . A \geq 1$, and $A=1 \Leftrightarrow\left\{e_{n}\right\}$ is an ONB for H (Vitali). Thus, 1-FUN-TF \Rightarrow ONB.

Finite unit norm tight frames (FUN-TFs)

- If $\left\{e_{n}\right\}_{n=1}^{N}$ is a finite unit norm tight frame (A-FUN-TF) for \mathbb{K}^{d}, then $A=N / d$.
- Let $\left\{e_{n}\right\}$ be an A-unit norm TF for any separable Hilbert space $H . A \geq 1$, and $A=1 \Leftrightarrow\left\{e_{n}\right\}$ is an ONB for H (Vitali). Thus, 1-FUN-TF \Rightarrow ONB.
- The geometry of finite tight frames:
- The vertices of platonic solids are FUN-TFs.
- Points that constitute FUN-TFs do not have to be equidistributed, e.g., ONBs, Grassmanian frames.
- FUN-TFs can be characterized as minimizers of a "frame potential function" (with Fickus) analogous to

Coulomb's Law.

Frame force and potential energy

A force

$$
F: S^{d-1} \times S^{d-1} \backslash D \longrightarrow \mathbb{R}^{d}
$$

is a central force with potential

$$
P: S^{d-1} \times S^{d-1} \backslash D \longrightarrow \mathbb{R}
$$

if

$$
F(a, b)=f(\|a-b\|)(a-b), \quad P(a, b)=p(\|a-b\|) .
$$

Frame force and potential energy

A force

$$
F: S^{d-1} \times S^{d-1} \backslash D \longrightarrow \mathbb{R}^{d}
$$

is a central force with potential

$$
P: S^{d-1} \times S^{d-1} \backslash D \longrightarrow \mathbb{R}
$$

if

$$
F(a, b)=f(\|a-b\|)(a-b), \quad P(a, b)=p(\|a-b\|)
$$

Note that

$$
\nabla_{a} P=-F \Longleftrightarrow p^{\prime}(x)=-x f(x) .
$$

- Coulomb force

$$
C F(a, b)=(a-b) /\|a-b\|^{3}, \quad f(x)=1 / x^{3}
$$

Frame force and potential energy

A force

$$
F: S^{d-1} \times S^{d-1} \backslash D \longrightarrow \mathbb{R}^{d}
$$

is a central force with potential

$$
P: S^{d-1} \times S^{d-1} \backslash D \longrightarrow \mathbb{R}
$$

if

$$
F(a, b)=f(\|a-b\|)(a-b), \quad P(a, b)=p(\|a-b\|) .
$$

Note that

$$
\nabla_{a} P=-F \Longleftrightarrow p^{\prime}(x)=-x f(x) .
$$

- Coulomb force

$$
C F(a, b)=(a-b) /\|a-b\|^{3}, \quad f(x)=1 / x^{3}
$$

- Frame force

$$
F F(a, b)=\langle a, b\rangle(a-b), \quad f(x)=1-x^{2} / 2
$$

Frame force and potential energy

A force

$$
F: S^{d-1} \times S^{d-1} \backslash D \longrightarrow \mathbb{R}^{d}
$$

is a central force with potential

$$
P: S^{d-1} \times S^{d-1} \backslash D \longrightarrow \mathbb{R}
$$

if

$$
F(a, b)=f(\|a-b\|)(a-b), \quad P(a, b)=p(\|a-b\|) .
$$

Note that

$$
\nabla_{a} P=-F \Longleftrightarrow p^{\prime}(x)=-x f(x) .
$$

- Coulomb force

$$
C F(a, b)=(a-b) /\|a-b\|^{3}, \quad f(x)=1 / x^{3}
$$

- Frame force

$$
F F(a, b)=\langle a, b\rangle(a-b), \quad f(x)=1-x^{2} / 2
$$

- Total potential energy for the frame force of $\left\{x_{n}\right\}_{n=1}^{N} \subset S^{d-1}$

$$
\operatorname{TFP}\left(\left\{x_{n}\right\}\right)=\Sigma_{m=1}^{N} \Sigma_{n=1}^{N}\left|\left\langle x_{m}, x_{n}\right\rangle\right|^{2}
$$

Local minimizers and frame bounds

Theorem Given d, N, and central force $F .\left\{x_{n}\right\}_{n=1}^{N} \subset\left(S^{d-1}\right)^{N}$ a local minimizer for the total potential energy function \Rightarrow

$$
\forall m=1, \ldots, N, \exists c_{m} \in \mathbb{R} \text { such that } c_{m} x_{m}=\sum_{n \neq m} F\left(x_{m}, x_{n}\right) \in \mathbb{R}^{d}
$$

(by Lagrange multipliers).

Local minimizers and frame bounds

Theorem Given d, N, and central force $F .\left\{x_{n}\right\}_{n=1}^{N} \subset\left(S^{d-1}\right)^{N}$ a local minimizer for the total potential energy function \Rightarrow

$$
\forall m=1, \ldots, N, \exists c_{m} \in \mathbb{R} \text { such that } c_{m} x_{m}=\sum_{n \neq m} F\left(x_{m}, x_{n}\right) \in \mathbb{R}^{d}
$$

(by Lagrange multipliers).

- By Theorem and frame operator $S=A I$ characterization of A-tight we were led to definition of frame force.
- $\left\{x_{n}\right\}_{n=1}^{N} \subset \mathbb{R}^{d}$ with frame operator S implies

$$
\operatorname{TFP}\left(\left\{x_{n}\right\}\right)=\operatorname{Tr}\left(S^{2}\right)
$$

Local minimizers and frame bounds

Theorem Given d, N, and central force $F .\left\{x_{n}\right\}_{n=1}^{N} \subset\left(S^{d-1}\right)^{N}$ a local minimizer for the total potential energy function \Rightarrow

$$
\forall m=1, \ldots, N, \exists c_{m} \in \mathbb{R} \text { such that } c_{m} x_{m}=\sum_{n \neq m} F\left(x_{m}, x_{n}\right) \in \mathbb{R}^{d}
$$

(by Lagrange multipliers).

- By Theorem and frame operator $S=A I$ characterization of A-tight we were led to definition of frame force.
- $\left\{x_{n}\right\}_{n=1}^{N} \subset \mathbb{R}^{d}$ with frame operator S implies

$$
\operatorname{TFP}\left(\left\{x_{n}\right\}\right)=\operatorname{Tr}\left(S^{2}\right)
$$

Theorem Given d, N, and frame force $F F .\left\{x_{n}\right\}_{n=1}^{N} \subset\left(S^{d-1}\right)^{N} \Rightarrow$

$$
N \max \left(1, \frac{N}{d}\right) \leq \operatorname{TFP}\left(\left\{x_{n}\right\}\right) \leq N^{2}
$$

(by Lagrange multipliers).

Local minimizers and frame bounds

Theorem Given d, N, and central force $F .\left\{x_{n}\right\}_{n=1}^{N} \subset\left(S^{d-1}\right)^{N}$ a local minimizer for the total potential energy function \Rightarrow

$$
\forall m=1, \ldots, N, \exists c_{m} \in \mathbb{R} \text { such that } c_{m} x_{m}=\sum_{n \neq m} F\left(x_{m}, x_{n}\right) \in \mathbb{R}^{d}
$$

(by Lagrange multipliers).

- By Theorem and frame operator $S=A I$ characterization of A-tight we were led to definition of frame force.
- $\left\{x_{n}\right\}_{n=1}^{N} \subset \mathbb{R}^{d}$ with frame operator S implies

$$
\operatorname{TFP}\left(\left\{x_{n}\right\}\right)=\operatorname{Tr}\left(S^{2}\right)
$$

Theorem Given d, N, and frame force $F F .\left\{x_{n}\right\}_{n=1}^{N} \subset\left(S^{d-1}\right)^{N} \Rightarrow$

$$
N \max \left(1, \frac{N}{d}\right) \leq T F P\left(\left\{x_{n}\right\}\right) \leq N^{2}
$$

(by Lagrange multipliers).

- This Theorem is a basic input to following characterization.

Characterization of FUN-TFs

For the Hilbert space $H=\mathbb{R}^{d}$ and N, consider

$$
\left\{x_{n}\right\}_{1}^{N} \in S^{d-1} \times \ldots \times S^{d-1}
$$

and

$$
\operatorname{TFP}\left(\left\{x_{n}\right\}\right)=\Sigma_{m=1}^{N} \Sigma_{n=1}^{N}\left|\left\langle x_{m}, x_{n}\right\rangle\right|^{2} .
$$

Theorem Let $N \leq d$. The minimum value of TFP, for the frame force and N variables, is N; and the minimizers are precisely the orthonormal sets of N elements for \mathbb{R}^{d}.

Theorem Let $N \geq d$. The minimum value of TFP, for the frame force and N variables, is N^{2} / d; and the minimizers are precisely the FUN-TFs of N elements for \mathbb{R}^{d}.

Characterization of FUN-TFs

For the Hilbert space $H=\mathbb{R}^{d}$ and N, consider

$$
\left\{x_{n}\right\}_{1}^{N} \in S^{d-1} \times \ldots \times S^{d-1}
$$

and

$$
\operatorname{TFP}\left(\left\{x_{n}\right\}\right)=\Sigma_{m=1}^{N} \Sigma_{n=1}^{N}\left|\left\langle x_{m}, x_{n}\right\rangle\right|^{2} .
$$

Theorem Let $N \leq d$. The minimum value of TFP, for the frame force and N variables, is N; and the minimizers are precisely the orthonormal sets of N elements for \mathbb{R}^{d}.

Theorem Let $N \geq d$. The minimum value of TFP, for the frame force and N variables, is N^{2} / d; and the minimizers are precisely the FUN-TFs of N elements for \mathbb{R}^{d}.

Problem Find these FUN-TFs analytically, effectively, and computationally.

PART 2: A quantum detection problem

Positive-operator-valued measures

Let \mathcal{B} be a σ-algebra of sets of X. A positive operator-valued measure (POM) is a function $\Pi: \mathcal{B} \rightarrow \mathcal{L}(H)$ such that

1. $\forall U \in \mathcal{B}, \Pi(U)$ is a positive self-adjoint operator,
2. $\Pi(\emptyset)=0$ (zero operator),
3. \forall disjoint $\left\{U_{i}\right\}_{i=1}^{\infty} \subset \mathcal{B}$ and $x, y \in H$,

$$
\left\langle\Pi\left(\bigcup_{i=1}^{\infty} U_{i}\right) x, y\right\rangle=\sum_{i=1}^{\infty}\left\langle\Pi\left(U_{i}\right) x, y\right\rangle,
$$

4. $\Pi(X)=I$ (identity operator).

PART 2: A quantum detection problem

Positive-operator-valued measures

Let \mathcal{B} be a σ-algebra of sets of X. A positive operator-valued measure (POM) is a function $\Pi: \mathcal{B} \rightarrow \mathcal{L}(H)$ such that

1. $\forall U \in \mathcal{B}, \Pi(U)$ is a positive self-adjoint operator,
2. $\Pi(\emptyset)=0$ (zero operator),
3. \forall disjoint $\left\{U_{i}\right\}_{i=1}^{\infty} \subset \mathcal{B}$ and $x, y \in H$,

$$
\left\langle\Pi\left(\bigcup_{i=1}^{\infty} U_{i}\right) x, y\right\rangle=\sum_{i=1}^{\infty}\left\langle\Pi\left(U_{i}\right) x, y\right\rangle,
$$

4. $\Pi(X)=I$ (identity operator).

- A POM Π on \mathcal{B} has the property that given any fixed $x \in H, p_{x}(\cdot)=\langle x, \Pi(\cdot) x\rangle$ is a measure on \mathcal{B}. (Probability if $\|x\|=1$).
- A dynamical quantity Q gives rise to a measurable space (X, \mathcal{B}) and POM. When measuring $Q, p_{x}(U)$ is the probability that the outcome of the measurement is in $U \in \mathcal{B}$.

Example

- Suppose we want to measure the position of an electron.

Example

- Suppose we want to measure the position of an electron.
- The space of all possible positions is given by $X=\mathbb{R}^{3}$.

Example

- Suppose we want to measure the position of an electron.
- The space of all possible positions is given by $X=\mathbb{R}^{3}$.
- The Hilbert space is given by $H=L^{2}\left(\mathbb{R}^{3}\right)$.

Example

- Suppose we want to measure the position of an electron.
- The space of all possible positions is given by $X=\mathbb{R}^{3}$.
- The Hilbert space is given by $H=L^{2}\left(\mathbb{R}^{3}\right)$.
- The corresponding POM is defined for all $U \in \mathcal{B}$ by

$$
\Pi(U)=\mathbb{1}_{U} .
$$

Example

- Suppose we want to measure the position of an electron.
- The space of all possible positions is given by $X=\mathbb{R}^{3}$.
- The Hilbert space is given by $H=L^{2}\left(\mathbb{R}^{3}\right)$.
- The corresponding POM is defined for all $U \in \mathcal{B}$ by

$$
\Pi(U)=\mathbb{1}_{U} .
$$

- Suppose the state of the electron is given by $x \in H$ with unit norm. Then the probability that the electron is found to be in the region $U \in \mathcal{B}$ is given by

$$
p(U)=\langle x, \Pi(U) x\rangle=\int_{U}|x(t)|^{2} d t
$$

Parseval frames correspond to POMs

- Let $F=\left\{e_{n}\right\}_{n=1}^{N}$ be a Parseval frame for a d-dimensional Hilbert space H and let $X=\mathbb{Z}_{N}$.

Parseval frames correspond to POMs

- Let $F=\left\{e_{n}\right\}_{n=1}^{N}$ be a Parseval frame for a d-dimensional Hilbert space H and let $X=\mathbb{Z}_{N}$.
- For all $x \in H$ and $U \subseteq X$ define

$$
\Pi(U) x=\sum_{i \in U}\left\langle x, e_{i}\right\rangle e_{i} .
$$

Parseval frames correspond to POMs

- Let $F=\left\{e_{n}\right\}_{n=1}^{N}$ be a Parseval frame for a d-dimensional Hilbert space H and let $X=\mathbb{Z}_{N}$.
- For all $x \in H$ and $U \subseteq X$ define

$$
\Pi(U) x=\sum_{i \in U}\left\langle x, e_{i}\right\rangle e_{i} .
$$

- Clear that Π satisfies conditions (1)-(3) for a POM. Since F is Parseval, we have condition (4) $\left(\Pi(X) x=\sum_{i \in X}\left\langle x, e_{i}\right\rangle e_{i}=x\right)$. Thus Π defines a POM.

Parseval frames correspond to POMs

- Let $F=\left\{e_{n}\right\}_{n=1}^{N}$ be a Parseval frame for a d-dimensional Hilbert space H and let $X=\mathbb{Z}_{N}$.
- For all $x \in H$ and $U \subseteq X$ define

$$
\Pi(U) x=\sum_{i \in U}\left\langle x, e_{i}\right\rangle e_{i} .
$$

- Clear that Π satisfies conditions (1)-(3) for a POM. Since F is Parseval, we have condition (4) $\left(\Pi(X) x=\sum_{i \in X}\left\langle x, e_{i}\right\rangle e_{i}=x\right)$. Thus Π defines a POM.
- Conversely, let (X, \mathcal{B}) be a measurable space with corresponding POM Π for a d dimensional Hilbert space H. If X is countable then there exists a subset $K \subseteq \mathbb{Z}$, a Parseval frame $\left\{e_{i}\right\}_{i \in K}$, and a disjoint partition $\left\{B_{j}\right\}_{j \in X}$ of K such that for all $j \in X$ and $y \in H$,

$$
\Pi(j) y=\sum_{i \in B_{j}}\left\langle y, e_{i}\right\rangle e_{i} .
$$

Quantum detection for finite frames

- H a finite dimensional Hilbert space (corresponding to a physical system).

Quantum detection for finite frames

- H a finite dimensional Hilbert space (corresponding to a physical system).
- Suppose that the state of the system is limited to be in one of a finite number of possible unit normed states $\left\{x_{i}\right\}_{i=1}^{N} \subset H$ with corresponding probabilities $\left\{\rho_{i}\right\}_{i=1}^{N}$ that sum to 1 .

Quantum detection for finite frames

- H a finite dimensional Hilbert space (corresponding to a physical system).
- Suppose that the state of the system is limited to be in one of a finite number of possible unit normed states $\left\{x_{i}\right\}_{i=1}^{N} \subset H$ with corresponding probabilities $\left\{\rho_{i}\right\}_{i=1}^{N}$ that sum to 1 .
- Our goal is to determine what state the system is in by performing a "good" measurement. That is, we want to construct a POM with outcomes $X=\mathbb{Z}_{N}$ such that if the state of the system is x_{i} for some $1 \leq i \leq N$, then

$$
p_{x_{i}}(j)=\left\langle x_{i}, \Pi(j) x_{i}\right\rangle \approx \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

Quantum detection for finite frames

- H a finite dimensional Hilbert space (corresponding to a physical system).
- Suppose that the state of the system is limited to be in one of a finite number of possible unit normed states $\left\{x_{i}\right\}_{i=1}^{N} \subset H$ with corresponding probabilities $\left\{\rho_{i}\right\}_{i=1}^{N}$ that sum to 1 .
- Our goal is to determine what state the system is in by performing a "good" measurement. That is, we want to construct a POM with outcomes $X=\mathbb{Z}_{N}$ such that if the state of the system is x_{i} for some $1 \leq i \leq N$, then

$$
p_{x_{i}}(j)=\left\langle x_{i}, \Pi(j) x_{i}\right\rangle \approx \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

- Since $\left\langle x_{i}, \Pi(i) x_{i}\right\rangle$ is the probability of a successful detection of the state x_{i}, then the probability of a detection error is given by

$$
P_{e}=1-\sum_{i=1}^{N} \rho_{i}\left\langle x_{i}, \Pi(i) x_{i}\right\rangle .
$$

Quantum detection problem

- If we construct our POM using Parseval frames, the error becomes

$$
\begin{aligned}
P_{e} & =1-\sum_{i=1}^{N} \rho_{i}\left\langle x_{i}, \Pi(i) x_{i}\right\rangle \\
& =1-\sum_{i=1}^{N} \rho_{i}\left\langle x_{i},\left\langle x_{i}, e_{i}\right\rangle e_{i}\right\rangle \\
& =1-\sum_{i=1}^{N} \rho_{i}\left|\left\langle x_{i}, e_{i}\right\rangle\right|^{2}
\end{aligned}
$$

Quantum detection problem

- If we construct our POM using Parseval frames, the error becomes

$$
\begin{aligned}
P_{e} & =1-\sum_{i=1}^{N} \rho_{i}\left\langle x_{i}, \Pi(i) x_{i}\right\rangle \\
& =1-\sum_{i=1}^{N} \rho_{i}\left\langle x_{i},\left\langle x_{i}, e_{i}\right\rangle e_{i}\right\rangle \\
& =1-\sum_{i=1}^{N} \rho_{i}\left|\left\langle x_{i}, e_{i}\right\rangle\right|^{2}
\end{aligned}
$$

- Quantum detection problem: Given a unit normed set $\left\{x_{i}\right\}_{i=1}^{N} \subset H$ and positive weights $\left\{\rho_{i}\right\}_{i=1}^{N}$ that sum to 1 . Construct a Parseval frame $\left\{e_{i}\right\}_{i=1}^{N}$ that minimizes

$$
P_{e}=1-\sum_{i=1}^{N} \rho_{i}\left|\left\langle x_{i}, e_{i}\right\rangle\right|^{2}
$$

over all N-element Parseval frames. ($\left\{e_{i}\right\}_{i=1}^{N}$ exists by a compactness argument.)

Naimark theorem

Naimark Theorem Let H be a d-dimensional Hilbert space and let $\left\{e_{i}\right\}_{i=1}^{N} \subset H$, $N \geq d$, be a Parseval frame for H. Then there exists an N-dimensional Hilbert space H^{\prime} and an orthonormal basis $\left\{e_{i}^{\prime}\right\}_{i=1}^{N} \subset H^{\prime}$ such that H is a subspace of H^{\prime} and

$$
\forall i=1, \ldots, N, \mathcal{P}_{H} e_{i}^{\prime}=e_{i},
$$

where \mathcal{P}_{H} is the orthogonal projection $H^{\prime} \rightarrow H$.

Naimark theorem

Naimark Theorem Let H be a d-dimensional Hilbert space and let $\left\{e_{i}\right\}_{i=1}^{N} \subset H$, $N \geq d$, be a Parseval frame for H. Then there exists an N-dimensional Hilbert space H^{\prime} and an orthonormal basis $\left\{e_{i}^{\prime}\right\}_{i=1}^{N} \subset H^{\prime}$ such that H is a subspace of H^{\prime} and

$$
\forall i=1, \ldots, N, \mathcal{P}_{H} e_{i}^{\prime}=e_{i},
$$

where \mathcal{P}_{H} is the orthogonal projection $H^{\prime} \rightarrow H$.

- Given $\left\{x_{i}\right\}_{i=1}^{N} \subset H$ and a Parseval frame $\left\{e_{i}\right\}_{i=1}^{N} \subset H$. If $\left\{e_{i}^{\prime}\right\}_{i=1}^{N}$ is its corresonding orthonormal basis for H^{\prime}, then, for all $i=1, \ldots, N,\left\langle x_{i}, e_{i}\right\rangle=\left\langle x_{i}, e_{i}^{\prime}\right\rangle$.

Naimark theorem

Naimark Theorem Let H be a d-dimensional Hilbert space and let $\left\{e_{i}\right\}_{i=1}^{N} \subset H$, $N \geq d$, be a Parseval frame for H. Then there exists an N-dimensional Hilbert space H^{\prime} and an orthonormal basis $\left\{e_{i}^{\prime}\right\}_{i=1}^{N} \subset H^{\prime}$ such that H is a subspace of H^{\prime} and

$$
\forall i=1, \ldots, N, \mathcal{P}_{H} e_{i}^{\prime}=e_{i},
$$

where \mathcal{P}_{H} is the orthogonal projection $H^{\prime} \rightarrow H$.

- Given $\left\{x_{i}\right\}_{i=1}^{N} \subset H$ and a Parseval frame $\left\{e_{i}\right\}_{i=1}^{N} \subset H$. If $\left\{e_{i}^{\prime}\right\}_{i=1}^{N}$ is its corresonding orthonormal basis for H^{\prime}, then, for all $i=1, \ldots, N,\left\langle x_{i}, e_{i}\right\rangle=\left\langle x_{i}, e_{i}^{\prime}\right\rangle$.
- Minimizing P_{e} over all N-element Parseval frames for H is equivalent to minimizing P_{e} over all N-element orthonormal bases for H^{\prime}.

Naimark theorem

Naimark Theorem Let H be a d-dimensional Hilbert space and let $\left\{e_{i}\right\}_{i=1}^{N} \subset H$, $N \geq d$, be a Parseval frame for H. Then there exists an N-dimensional Hilbert space H^{\prime} and an orthonormal basis $\left\{e_{i}^{\prime}\right\}_{i=1}^{N} \subset H^{\prime}$ such that H is a subspace of H^{\prime} and

$$
\forall i=1, \ldots, N, \mathcal{P}_{H} e_{i}^{\prime}=e_{i},
$$

where \mathcal{P}_{H} is the orthogonal projection $H^{\prime} \rightarrow H$.

- Given $\left\{x_{i}\right\}_{i=1}^{N} \subset H$ and a Parseval frame $\left\{e_{i}\right\}_{i=1}^{N} \subset H$. If $\left\{e_{i}^{\prime}\right\}_{i=1}^{N}$ is its corresonding orthonormal basis for H^{\prime}, then, for all $i=1, \ldots, N,\left\langle x_{i}, e_{i}\right\rangle=\left\langle x_{i}, e_{i}^{\prime}\right\rangle$.
- Minimizing P_{e} over all N-element Parseval frames for H is equivalent to minimizing P_{e} over all N-element orthonormal bases for H^{\prime}.
- Thus we simplify the problem by minimizing P_{e} over all N-element orthonormal sets in H^{\prime}.

Quantum detection error as a potential

- Treat the error term as a potential.

$$
P=P_{e}=\sum_{i=1}^{N} \rho_{i}\left(1-\left|\left\langle x_{i}, e_{i}^{\prime}\right\rangle\right|^{2}\right)=\sum_{i=1}^{N} P_{i} .
$$

where we have used the fact that $\sum_{i=1}^{N} \rho_{i}=1$ and each

$$
P_{i}=\rho_{i}\left(1-\left|\left\langle x_{i}, e_{i}^{\prime}\right\rangle\right|^{2}\right)
$$

Quantum detection error as a potential

- Treat the error term as a potential.

$$
P=P_{e}=\sum_{i=1}^{N} \rho_{i}\left(1-\left|\left\langle x_{i}, e_{i}^{\prime}\right\rangle\right|^{2}\right)=\sum_{i=1}^{N} P_{i} .
$$

where we have used the fact that $\sum_{i=1}^{N} \rho_{i}=1$ and each

$$
P_{i}=\rho_{i}\left(1-\left|\left\langle x_{i}, e_{i}^{\prime}\right\rangle\right|^{2}\right)
$$

- For $H^{\prime}=\mathbb{R}^{N}$, we have the relation,

$$
\left\|e_{i}^{\prime}-x_{i}\right\|^{2}=2-2\left\langle x_{i}, e_{i}^{\prime}\right\rangle
$$

where we have used the fact that $\left\|e_{i}^{\prime}\right\|=\left\|x_{i}\right\|=1$. We can rewrite the potential P_{i} as

$$
P_{i}=\rho_{i}\left(1-\left[1-\frac{1}{2}\left\|x_{i}-e_{i}^{\prime}\right\|^{2}\right]^{2}\right) .
$$

A central force corresponds to quantum detection error
Given P_{i}, define the function $p_{i}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
p_{i}(x)=\rho_{i}\left(1-\left[1-\frac{1}{2} x^{2}\right]^{2}\right) .
$$

A central force corresponds to quantum detection error

Given P_{i}, define the function $p_{i}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
p_{i}(x)=\rho_{i}\left(1-\left[1-\frac{1}{2} x^{2}\right]^{2}\right) .
$$

Thus P_{i} is a potential corresponding to a central force in the following way:

$$
\begin{aligned}
& -x f_{i}(x)=p_{i}^{\prime}(x)=2 \rho_{i}\left(1-\frac{1}{2} x^{2}\right) x \\
\Rightarrow & f_{i}(x)=-2 \rho_{i}\left(1-\frac{1}{2} x^{2}\right) .
\end{aligned}
$$

A central force corresponds to quantum detection error

Given P_{i}, define the function $p_{i}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
p_{i}(x)=\rho_{i}\left(1-\left[1-\frac{1}{2} x^{2}\right]^{2}\right) .
$$

Thus P_{i} is a potential corresponding to a central force in the following way:

$$
\begin{aligned}
& -x f_{i}(x)=p_{i}^{\prime}(x)=2 \rho_{i}\left(1-\frac{1}{2} x^{2}\right) x \\
\Rightarrow & f_{i}(x)=-2 \rho_{i}\left(1-\frac{1}{2} x^{2}\right) .
\end{aligned}
$$

Hence, the force $F_{i}=-\nabla P_{i}$ is

$$
F_{i}\left(x_{i}, e_{i}^{\prime}\right)=f_{i}\left(\left\|x_{i}-e_{i}^{\prime}\right\|\right)\left(x_{i}-e_{i}^{\prime}\right)=-2 \rho_{i}\left\langle x_{i}, e_{i}^{\prime}\right\rangle\left(x_{i}-e_{i}^{\prime}\right),
$$

a multiple of the frame force! The total force is given by

$$
F=\sum_{i=1}^{N} F_{i} .
$$

A reformulation of the quantum detection problem

- We reformulate the quantum detection problem in terms of frame force and the Naimark Theorem.
- The given elements $\left\{x_{i}\right\}_{i=1}^{N} \subset H^{\prime}$ can be viewed as fixed points on the sphere $S^{N-1} \subset H^{\prime}$.

A reformulation of the quantum detection problem

- We reformulate the quantum detection problem in terms of frame force and the Naimark Theorem.
- The given elements $\left\{x_{i}\right\}_{i=1}^{N} \subset H^{\prime}$ can be viewed as fixed points on the sphere $S^{N-1} \subset H^{\prime}$.
- The elements $\left\{e_{i}^{\prime}\right\}_{i=1}^{N} \subset H^{\prime}$ form an orthonormal set which move according to the interaction between each x_{i} and e_{i}^{\prime} by the frame force

$$
F_{i}\left(x_{i}, e_{i}^{\prime}\right)=-2 \rho_{i}\left\langle x_{i}, e_{i}^{\prime}\right\rangle\left(e_{i}^{\prime}-x_{i}\right)
$$

A reformulation of the quantum detection problem

- We reformulate the quantum detection problem in terms of frame force and the Naimark Theorem.
- The given elements $\left\{x_{i}\right\}_{i=1}^{N} \subset H^{\prime}$ can be viewed as fixed points on the sphere $S^{N-1} \subset H^{\prime}$.
- The elements $\left\{e_{i}^{\prime}\right\}_{i=1}^{N} \subset H^{\prime}$ form an orthonormal set which move according to the interaction between each x_{i} and e_{i}^{\prime} by the frame force

$$
F_{i}\left(x_{i}, e_{i}^{\prime}\right)=-2 \rho_{i}\left\langle x_{i}, e_{i}^{\prime}\right\rangle\left(e_{i}^{\prime}-x_{i}\right)
$$

- The equilibrium position of the points $\left\{e_{i}^{\prime}\right\}_{i=1}^{N}$ is the position where all the forces produce no net motion. In this situation, the potential P is minimized.

A reformulation of the quantum detection problem

- We reformulate the quantum detection problem in terms of frame force and the Naimark Theorem.
- The given elements $\left\{x_{i}\right\}_{i=1}^{N} \subset H^{\prime}$ can be viewed as fixed points on the sphere $S^{N-1} \subset H^{\prime}$.
- The elements $\left\{e_{i}^{\prime}\right\}_{i=1}^{N} \subset H^{\prime}$ form an orthonormal set which move according to the interaction between each x_{i} and e_{i}^{\prime} by the frame force

$$
F_{i}\left(x_{i}, e_{i}^{\prime}\right)=-2 \rho_{i}\left\langle x_{i}, e_{i}^{\prime}\right\rangle\left(e_{i}^{\prime}-x_{i}\right)
$$

- The equilibrium position of the points $\left\{e_{i}^{\prime}\right\}_{i=1}^{N}$ is the position where all the forces produce no net motion. In this situation, the potential P is minimized.
- For the remainder, let $\left\{e_{i}^{\prime}\right\}_{i=1}^{N}$ be an ONB for \mathbb{R}^{N} that minimizes P. Recall that $\left\{e_{i}^{\prime}\right\}_{i=1}^{N}$ exists by compactness. The quantum detection problem is to construct or compute $\left\{e_{i}^{\prime}\right\}_{i=1}^{N}$.

PART 3: Equations of motion

A parameterization of $O(N)$

- Consider the orthogonal group

$$
O(N)=\left\{\Theta \in G L(N, \mathbb{R}): \Theta^{\tau} \Theta=I\right\}
$$

PART 3: Equations of motion

A parameterization of $O(N)$

- Consider the orthogonal group

$$
O(N)=\left\{\Theta \in G L(N, \mathbb{R}): \Theta^{\tau} \Theta=I\right\}
$$

- Since $O(N)$ is an $N(N-1) / 2$-dimensional smooth manifold, we can locally parameterize $O(N)$ by $N(N-1) / 2$ variables, i.e., $\Theta=\Theta\left(q_{1}, \ldots, q_{N(N-1) / 2}\right)$ for each $\Theta \in O(N)$.

PART 3: Equations of motion

A parameterization of $O(N)$

- Consider the orthogonal group

$$
O(N)=\left\{\Theta \in G L(N, \mathbb{R}): \Theta^{\tau} \Theta=I\right\}
$$

- Since $O(N)$ is an $N(N-1) / 2$-dimensional smooth manifold, we can locally parameterize $O(N)$ by $N(N-1) / 2$ variables, i.e., $\Theta=\Theta\left(q_{1}, \ldots, q_{N(N-1) / 2}\right)$ for each $\Theta \in O(N)$.
Hence, for all $\theta \in O(N)$ there is a surjective diffeomorphism b_{θ}

$$
\begin{aligned}
& O(N) \\
& \cup \\
b_{\theta}: & \mathcal{U}_{\theta} \quad \longrightarrow \mathcal{U} \subset \mathbb{R}^{N(N-1) / 2}
\end{aligned}
$$

for relatively compact neighborhoods $\mathcal{U}_{\theta} \subseteq O(N)$ and $\mathcal{U} \subseteq \mathbb{R}^{N(N-1) / 2}, \theta \in \mathcal{U}_{\theta}$.

A parameterization of ONBs

- Let $\left\{w_{i}\right\}_{i=1}^{N}$ be the standard ONB for $H^{\prime}=\mathbb{R}^{N}: w_{i}=(0, \ldots, 0, \underbrace{1}_{i^{\mathrm{th}}}, 0, \ldots, 0)$.

A parameterization of ONBs

- Let $\left\{w_{i}\right\}_{i=1}^{N}$ be the standard ONB for $H^{\prime}=\mathbb{R}^{N}: w_{i}=(0, \ldots, 0, \underbrace{1}_{i^{\mathrm{th}}}, 0, \ldots, 0)$.
- Since any two orthonormal sets are related by an orthogonal transformation, we can smoothly parameterize an orthonormal set $\left\{e_{i}\right\}_{i=1}^{N}$ with N elements by $N(N-1) / 2$ variables, i.e.,

$$
\left\{e_{i}\left(q_{1}, \ldots, q_{N(N-1) / 2}\right)\right\}_{i=1}^{N}=\left\{\Theta\left(q_{1}, \ldots, q_{N(N-1) / 2}\right) w_{i}\right\}_{i=1}^{N} \subset H^{\prime} .
$$

A parameterization of ONBs

- Let $\left\{w_{i}\right\}_{i=1}^{N}$ be the standard ONB for $H^{\prime}=\mathbb{R}^{N}: w_{i}=(0, \ldots, 0, \underbrace{1}_{i^{\mathrm{th}}}, 0, \ldots, 0)$.
- Since any two orthonormal sets are related by an orthogonal transformation, we can smoothly parameterize an orthonormal set $\left\{e_{i}\right\}_{i=1}^{N}$ with N elements by $N(N-1) / 2$ variables, i.e.,

$$
\begin{aligned}
& \left\{e_{i}\left(q_{1}, \ldots, q_{N(N-1) / 2}\right)\right\}_{i=1}^{N}=\left\{\Theta\left(q_{1}, \ldots, q_{N(N-1) / 2}\right) w_{i}\right\}_{i=1}^{N} \subset H^{\prime} . \\
& \mathbb{R}^{N(N-1) / 2} O(N) \\
& \quad \cup \cup \mathcal{U}_{\theta} \xrightarrow[W_{i}]{ } \quad \begin{array}{l}
\text { U } \\
\quad \underset{b_{\theta}^{-1}=\Theta}{ } \quad H^{\prime}=\mathbb{R}^{N}
\end{array} .
\end{aligned}
$$

where for all $\Psi \in O(N), W_{i}(\Psi)=\Psi w_{i}$.

$$
e_{i}(\vec{q})=e_{i}\left(q_{1}, \ldots, q_{N(N-1) / 2}\right)=W_{i} \circ b_{\theta}^{-1}(\vec{q})=\left(b_{\theta}^{-1}(\vec{q})\right) w_{i} \in \mathbb{R}^{N} .
$$

Lagrangian dynamics on $O(N)$

- We now convert the frame force F acting on the orthonormal set $\left\{e_{i}\right\}_{i=1}^{N}$ into a set of equations governing the motion of the parameterization points $\vec{q}(t)=$ $\left(q_{1}(t), \ldots, q_{N(N-1) / 2}(t)\right)$, see (1). We define the Lagrangian L and total energy E defined for $\vec{q}(t)$ by:

$$
L=T-P_{e}, \quad E=T+P_{e}
$$

where

$$
T=\frac{1}{2} \sum_{j=1}^{N(N-1) / 2}\left(\frac{d}{d t} q_{j}(t)\right)^{2}
$$

Lagrangian dynamics on $O(N)$

- We now convert the frame force F acting on the orthonormal set $\left\{e_{i}\right\}_{i=1}^{N}$ into a set of equations governing the motion of the parameterization points $\vec{q}(t)=$ $\left(q_{1}(t), \ldots, q_{N(N-1) / 2}(t)\right)$, see (1). We define the Lagrangian L and total energy E defined for $\vec{q}(t)$ by:

$$
L=T-P_{e}, \quad E=T+P_{e}
$$

where

$$
T=\frac{1}{2} \sum_{j=1}^{N(N-1) / 2}\left(\frac{d}{d t} q_{j}(t)\right)^{2}
$$

- Using the Euler-Lagrange equations for the potential P_{e}

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right)-\frac{\partial L}{\partial q_{j}}=0
$$

we obtain the equations of motion

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} q_{j}(t)=-2 \sum_{i=1}^{N} \rho_{i}\left\langle x_{i}, e_{i}(\vec{q}(t))\right\rangle\left\langle x_{i}, \frac{\partial e_{i}}{\partial q_{j}}(\vec{q}(t))\right\rangle . \tag{1}
\end{equation*}
$$

Point of view

- Choose $\vec{q}^{\prime} \in \mathbb{R}^{N(N-1) / 2}$ such that $e_{i}\left(\vec{q}^{\prime}\right)=e_{i}^{\prime} \in \mathbb{R}^{N}$ for all $i=1, \ldots, N$.

Point of view

- Choose $\vec{q}^{\prime} \in \mathbb{R}^{N(N-1) / 2}$ such that $e_{i}\left(\vec{q}^{\prime}\right)=e_{i}^{\prime} \in \mathbb{R}^{N}$ for all $i=1, \ldots, N$.
- Define $\tilde{q}: \mathbb{R} \rightarrow \mathbb{R}^{N(N-1) / 2}$ such that $\tilde{q}(t)=\vec{q}^{\prime}$ (a constant function).

Point of view

- Choose $\vec{q}^{\prime} \in \mathbb{R}^{N(N-1) / 2}$ such that $e_{i}\left(\vec{q}^{\prime}\right)=e_{i}^{\prime} \in \mathbb{R}^{N}$ for all $i=1, \ldots, N$.
- Define $\tilde{q}: \mathbb{R} \rightarrow \mathbb{R}^{N(N-1) / 2}$ such that $\tilde{q}(t)=\vec{q}^{\prime}$ (a constant function).
- Recall

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} q_{j}(t)=-2 \sum_{i=1}^{N} \rho_{i}\left\langle x_{i}, e_{i}(\vec{q}(t))\right\rangle\left\langle x_{i}, \frac{\partial e_{i}}{\partial q_{j}}(\vec{q}(t))\right\rangle . \tag{1}
\end{equation*}
$$

Remark The definition of \tilde{q} and equation (1) introduce t into play for solving the quantum detection problem.

Point of view

- Choose $\vec{q}^{\prime} \in \mathbb{R}^{N(N-1) / 2}$ such that $e_{i}\left(\vec{q}^{\prime}\right)=e_{i}^{\prime} \in \mathbb{R}^{N}$ for all $i=1, \ldots, N$.
- Define $\tilde{q}: \mathbb{R} \rightarrow \mathbb{R}^{N(N-1) / 2}$ such that $\tilde{q}(t)=\vec{q}^{\prime}$ (a constant function).
- Recall

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} q_{j}(t)=-2 \sum_{i=1}^{N} \rho_{i}\left\langle x_{i}, e_{i}(\vec{q}(t))\right\rangle\left\langle x_{i}, \frac{\partial e_{i}}{\partial q_{j}}(\vec{q}(t))\right\rangle . \tag{1}
\end{equation*}
$$

Remark The definition of \tilde{q} and equation (1) introduce t into play for solving the quantum detection problem.

Point of view

- Choose $\vec{q}^{\prime} \in \mathbb{R}^{N(N-1) / 2}$ such that $e_{i}\left(\vec{q}^{\prime}\right)=e_{i}^{\prime} \in \mathbb{R}^{N}$ for all $i=1, \ldots, N$.
- Define $\tilde{q}: \mathbb{R} \rightarrow \mathbb{R}^{N(N-1) / 2}$ such that $\tilde{q}(t)=\vec{q}^{\prime}$ (a constant function).
- Recall

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} q_{j}(t)=-2 \sum_{i=1}^{N} \rho_{i}\left\langle x_{i}, e_{i}(\vec{q}(t))\right\rangle\left\langle x_{i}, \frac{\partial e_{i}}{\partial q_{j}}(\vec{q}(t))\right\rangle . \tag{1}
\end{equation*}
$$

Remark The definition of \tilde{q} and equation (1) introduce t into play for solving the quantum detection problem.

Theorem Constant function $\tilde{q}: \mathbb{R} \rightarrow \mathbb{R}^{N(N-1) / 2}$ is a minimum energy solution of (1).

Results

It can be shown that

- Theorem Denote by $\vec{q}(t)=\left(q_{1}(t), \ldots, q_{N(N-1) / 2}(t)\right)$ a solution of the equations of motion that minimizes the energy E and denote by \mathcal{P}_{H} the orthogonal projection from H^{\prime} into H. Then $\vec{q}(t)$ is a constant solution and the set of vectors

$$
\left\{\mathcal{P}_{H} e_{i}(\vec{q}(t))\right\}_{i=1}^{N} \subset H
$$

is a Parseval frame for H that minimizes P_{e}.

Results

It can be shown that

- Theorem Denote by $\vec{q}(t)=\left(q_{1}(t), \ldots, q_{N(N-1) / 2}(t)\right)$ a solution of the equations of motion that minimizes the energy E and denote by \mathcal{P}_{H} the orthogonal projection from H^{\prime} into H. Then $\vec{q}(t)$ is a constant solution and the set of vectors

$$
\left\{\mathcal{P}_{H} e_{i}(\vec{q}(t))\right\}_{i=1}^{N} \subset H
$$

is a Parseval frame for H that minimizes P_{e}.

- Theorem A minimum energy solution is obtained in the $S O(N)$ component of $O(N)$.

Results

It can be shown that

- Theorem Denote by $\vec{q}(t)=\left(q_{1}(t), \ldots, q_{N(N-1) / 2}(t)\right)$ a solution of the equations of motion that minimizes the energy E and denote by \mathcal{P}_{H} the orthogonal projection from H^{\prime} into H. Then $\vec{q}(t)$ is a constant solution and the set of vectors

$$
\left\{\mathcal{P}_{H} e_{i}(\vec{q}(t))\right\}_{i=1}^{N} \subset H
$$

is a Parseval frame for H that minimizes P_{e}.

- Theorem A minimum energy solution is obtained in the $S O(N)$ component of $O(N)$.
- So we need only consider parameterizing $S O(N)$.

Results

It can be shown that

- Theorem Denote by $\vec{q}(t)=\left(q_{1}(t), \ldots, q_{N(N-1) / 2}(t)\right)$ a solution of the equations of motion that minimizes the energy E and denote by \mathcal{P}_{H} the orthogonal projection from H^{\prime} into H. Then $\vec{q}(t)$ is a constant solution and the set of vectors

$$
\left\{\mathcal{P}_{H} e_{i}(\vec{q}(t))\right\}_{i=1}^{N} \subset H
$$

is a Parseval frame for H that minimizes P_{e}.

- Theorem A minimum energy solution is obtained in the $S O(N)$ component of $O(N)$.
- So we need only consider parameterizing $S O(N)$.
- Theorem A minimum energy solution, a minimizer of P_{e}, satisfies the expression

$$
\sum_{i=1}^{N} \rho_{i}\left\langle x_{i}, e_{i}\right\rangle\left\langle x_{i}, \frac{\partial e_{i}}{\partial q_{j}}\right\rangle=0
$$

Numerical problems

- The use of Lagrangia provides a point of view for computing the TF minimizers of P_{e}. (Some independent, direct calculations are possible (Kebo), but not feasible for large values of d and N.)
- The minimum energy solution theorem opens the possibility of using numerical methods to find the optimal orthonormal set. For example, a type of Newton's method could be used to find the zeros of the function

$$
\sum_{i=1}^{N} \rho_{i}\left\langle x_{i}, e_{i}\right\rangle\left\langle x_{i}, \frac{\partial e_{i}}{\partial q_{j}}\right\rangle .
$$

Numerical problems

- The use of Lagrangia provides a point of view for computing the TF minimizers of P_{e}. (Some independent, direct calculations are possible (Kebo), but not feasible for large values of d and N.)
- The minimum energy solution theorem opens the possibility of using numerical methods to find the optimal orthonormal set. For example, a type of Newton's method could be used to find the zeros of the function

$$
\sum_{i=1}^{N} \rho_{i}\left\langle x_{i}, e_{i}\right\rangle\left\langle x_{i}, \frac{\partial e_{i}}{\partial q_{j}}\right\rangle .
$$

- With the parameterization of $S O(N)$, the error P_{e} is a smooth function of the variables $\left(q_{1}, \ldots, q_{N(N-1) / 2}\right)$, that is,

$$
P_{e}\left(q_{1}, \ldots, q_{N(N-1) / 2}\right)=1-\sum_{i=1}^{N} \rho_{i}\left|\left\langle x_{i}, e_{i}\left(q_{1}, \ldots, q_{N(N-1) / 2}\right)\right\rangle\right|^{2}
$$

A conjugate gradient method can be used to find the minimum values of P_{e}.

Another error criterion

- Problem Given a unit normed set $\left\{x_{i}\right\}_{i=1}^{N} \subset H$, where H is d-dimensional, and positive weights $\left\{\rho_{i}\right\}_{i=1}^{N} \subset \mathbb{R}$ that sum to 1 . Construct the Parseval frame $\left\{e_{i}\right\}_{i=1}^{N}$ that minimizes

$$
E=\sum_{i=1}^{N} \rho_{i}\left\|x_{i}-e_{i}\right\|^{2}
$$

over all N-element Parseval frames for H.

Another error criterion

- Problem Given a unit normed set $\left\{x_{i}\right\}_{i=1}^{N} \subset H$, where H is d-dimensional, and positive weights $\left\{\rho_{i}\right\}_{i=1}^{N} \subset \mathbb{R}$ that sum to 1 . Construct the Parseval frame $\left\{e_{i}\right\}_{i=1}^{N}$ that minimizes

$$
E=\sum_{i=1}^{N} \rho_{i}\left\|x_{i}-e_{i}\right\|^{2}
$$

over all N-element Parseval frames for H.

- A unique solution is constructed when the weights are all equal and $\left\{x_{i}\right\}_{i=1}^{N}$ spans H. (Casazza \& Kutyniok; Bölcskei, Eldar, Forney):

Another error criterion

- Problem Given a unit normed set $\left\{x_{i}\right\}_{i=1}^{N} \subset H$, where H is d-dimensional, and positive weights $\left\{\rho_{i}\right\}_{i=1}^{N} \subset \mathbb{R}$ that sum to 1 . Construct the Parseval frame $\left\{e_{i}\right\}_{i=1}^{N}$ that minimizes

$$
E=\sum_{i=1}^{N} \rho_{i}\left\|x_{i}-e_{i}\right\|^{2}
$$

over all N-element Parseval frames for H.

- A unique solution is constructed when the weights are all equal and $\left\{x_{i}\right\}_{i=1}^{N}$ spans H. (Casazza \& Kutyniok; Bölcskei, Eldar, Forney):

Theorem Let $\left\{x_{i}\right\}_{i=1}^{N}$ be a frame for H with frame operator $S .\left\{S^{-1 / 2} x_{i}\right\}_{i=1}^{N}$ is the unique Parseval frame such that

$$
\sum_{i=1}^{N}\left\|x_{i}-S^{-1 / 2} x_{i}\right\|^{2}=\inf \left\{\sum_{i=1}^{N}\left\|x_{i}-e_{i}\right\|^{2}:\left\{e_{i}\right\}_{i=1}^{N} \text { Parseval frame for } H\right\}
$$

and, with S having eigenvalues $\left\{\lambda_{j}\right\}_{j=1}^{d}$,

$$
\sum_{i=1}^{N}\left\|x_{i}-S^{-1 / 2} x_{i}\right\|^{2}=\sum_{j=1}^{d}\left(\lambda_{j}-2 \sqrt{\lambda_{j}}+1\right)
$$

Geometrically uniform frames

$\mathcal{Q}=\left\{U_{i} \in \mathcal{L}(H): 1 \leq i \leq N\right\}$-finite Abelian group of unitary linear operators.

A set of vectors $\left\{x_{i} \in H: 1 \leq i \leq N\right\}$ is geometrically uniform if there exists $x \in H$ such that

$$
\left\{x_{i}: 1 \leq i \leq N\right\}=\left\{U_{i} x: 1 \leq i \leq N\right\} .
$$

x is a generating vector.

Geometrically uniform frames

$\mathcal{Q}=\left\{U_{i} \in \mathcal{L}(H): 1 \leq i \leq N\right\}$-finite Abelian group of unitary linear operators.

A set of vectors $\left\{x_{i} \in H: 1 \leq i \leq N\right\}$ is geometrically uniform if there exists $x \in H$ such that

$$
\left\{x_{i}: 1 \leq i \leq N\right\}=\left\{U_{i} x: 1 \leq i \leq N\right\} .
$$

x is a generating vector.

Minimizers of the least-squares error are also minimizers of the quantum detection error when the given set is a geometrically uniform frame. (Bölcskei, Edlar, Forney):

Theorem Let H be a Hilbert space, let $\left\{x_{i}\right\}_{i=1}^{N} \subset H$ be a frame for H, and let S be its frame operator. If $\left\{x_{i}\right\}_{i=1}^{N}$ is geometrically uniform then,

1. $\left\{S^{-1 / 2} x_{i}\right\}_{i=1}^{N}$ minimizes the detection error P_{e} when the weights are all equal,
2. $\left\{S^{-1 / 2} x_{i}\right\}_{i=1}^{N}$ is a geometrically uniform set under the same abelian group \mathcal{Q}.
gtalultul
