Finite frames and quantum detection

John J. Benedetto and Andrew Kebo Department of Mathematics University of Maryland

1. Finite frame theory

- 1. Finite frame theory
- 2. A quantum detection problem

- 1. Finite frame theory
- 2. A quantum detection problem
- 3. Equations of motion

- 1. Finite frame theory
- 2. A quantum detection problem
- 3. Equations of motion

This is an l^2 theory, but there are relevant analogous l^∞ problems, for example finding Grassmannian frames.

Frames

Frames $F = \{e_n\}_{n=1}^N$ for d-dimensional Hilbert space H, e.g., $H = \mathbb{K}^d$, where $\mathbb{K} = \mathbb{C}$ or $\mathbb{K} = \mathbb{R}$.

• Any spanning set of vectors in \mathbb{K}^d is a *frame* for \mathbb{K}^d .

Frames

Frames $F = \{e_n\}_{n=1}^N$ for d-dimensional Hilbert space H, e.g., $H = \mathbb{K}^d$, where $\mathbb{K} = \mathbb{C}$ or $\mathbb{K} = \mathbb{R}$.

- Any spanning set of vectors in \mathbb{K}^d is a *frame* for \mathbb{K}^d .
- $F \subseteq \mathbb{K}^d$ is A-tight if

$$\forall x \in \mathbb{K}^d, \ A \|x\|^2 = \sum_{n=1}^N |\langle x, e_n \rangle|^2$$

(A=1 defines Parseval frames).

Frames

Frames $F = \{e_n\}_{n=1}^N$ for d-dimensional Hilbert space H, e.g., $H = \mathbb{K}^d$, where $\mathbb{K} = \mathbb{C}$ or $\mathbb{K} = \mathbb{R}$.

- Any spanning set of vectors in \mathbb{K}^d is a *frame* for \mathbb{K}^d .
- $F \subseteq \mathbb{K}^d$ is A-tight if

$$\forall x \in \mathbb{K}^d, \ A \|x\|^2 = \sum_{n=1}^N |\langle x, e_n \rangle|^2$$

(A=1 defines Parseval frames).

• F is unit norm if each $||e_n|| = 1$.

Frames

Frames $F = \{e_n\}_{n=1}^N$ for d-dimensional Hilbert space H, e.g., $H = \mathbb{K}^d$, where $\mathbb{K} = \mathbb{C}$ or $\mathbb{K} = \mathbb{R}$.

- Any spanning set of vectors in \mathbb{K}^d is a *frame* for \mathbb{K}^d .
- $F \subseteq \mathbb{K}^d$ is A-tight if

$$\forall x \in \mathbb{K}^d, \ A \|x\|^2 = \sum_{n=1}^N |\langle x, e_n \rangle|^2$$

(A=1 defines *Parseval frames*).

- F is unit norm if each $||e_n|| = 1$.
- Bessel map $-L: H \longrightarrow \ell^2(\mathbb{Z}_N),$

 $x\longmapsto \{\langle x,e_n\rangle\}.$

Frames

Frames $F = \{e_n\}_{n=1}^N$ for d-dimensional Hilbert space H, e.g., $H = \mathbb{K}^d$, where $\mathbb{K} = \mathbb{C}$ or $\mathbb{K} = \mathbb{R}$.

- Any spanning set of vectors in \mathbb{K}^d is a *frame* for \mathbb{K}^d .
- $F \subseteq \mathbb{K}^d$ is A-tight if

$$\forall x \in \mathbb{K}^d, \ A \|x\|^2 = \sum_{n=1}^N |\langle x, e_n \rangle|^2$$

(A=1 defines *Parseval frames*).

- F is unit norm if each $||e_n|| = 1$.
- Bessel map $-L: H \longrightarrow \ell^2(\mathbb{Z}_N),$

$$x\longmapsto \{\langle x,e_n\rangle\}.$$

• Frame operator $-S = L^*L : H \longrightarrow H$, in fact,

$$S(x) = \sum_{n=1}^{N} \langle x, e_n \rangle e_n.$$

Tight frames and applications

Theorem $\{e_n\}_{n=1}^N \subseteq \mathbb{K}^d$ is an *A*-tight frame for $\mathbb{K}^d \iff$

 $S = L^*L = AI : \mathbb{K}^d \longrightarrow \mathbb{K}^d.$

Tight frames and applications

Theorem $\{e_n\}_{n=1}^N \subseteq \mathbb{K}^d$ is an A-tight frame for $\mathbb{K}^d \iff$

 $S = L^*L = AI : \mathbb{K}^d \longrightarrow \mathbb{K}^d.$

For all $x \in H$,

$$x = \frac{1}{A}Sx = \frac{1}{A}\sum_{i=1}^{N} \langle x, e_i \rangle e_i.$$

Tight frames and applications

Theorem $\{e_n\}_{n=1}^N \subseteq \mathbb{K}^d$ is an A-tight frame for $\mathbb{K}^d \iff$

$$S = L^*L = AI : \mathbb{K}^d \longrightarrow \mathbb{K}^d.$$

For all $x \in H$,

$$x = \frac{1}{A}Sx = \frac{1}{A}\sum_{i=1}^{N} \langle x, e_i \rangle e_i.$$

- Robust transmission of data over erasure channels such as the Internet. [Casazza, Goyal, Kelner, Kovačević]
- Multiple antenna code design for wireless communications. [Hochwald, Marzetta, T. Richardson, Sweldens, Urbanke]
- Multiple description coding. [Goyal, Heath, Kovačević, Strohmer, Vetterli]
- Quantum detection.
 - Chandler Davis mathematics
 - Eldar, Forney, Oppenheim signal processing
 - Brandt, Kennedy, Helstrom quantum mechanics quantum detection

Finite unit norm tight frames (FUN-TFs)

• If $\{e_n\}_{n=1}^N$ is a finite unit norm tight frame (A-FUN-TF) for \mathbb{K}^d , then A = N/d.

Finite unit norm tight frames (FUN-TFs)

- If $\{e_n\}_{n=1}^N$ is a finite unit norm tight frame (A-FUN-TF) for \mathbb{K}^d , then A = N/d.
- Let $\{e_n\}$ be an A-unit norm TF for any separable Hilbert space H. $A \ge 1$, and $A = 1 \Leftrightarrow \{e_n\}$ is an ONB for H (*Vitali*). Thus, 1-FUN-TF \Rightarrow ONB.

Finite unit norm tight frames (FUN-TFs)

- If $\{e_n\}_{n=1}^N$ is a finite unit norm tight frame (A-FUN-TF) for \mathbb{K}^d , then A = N/d.
- Let $\{e_n\}$ be an A-unit norm TF for any separable Hilbert space H. $A \ge 1$, and $A = 1 \Leftrightarrow \{e_n\}$ is an ONB for H (*Vitali*). Thus, 1-FUN-TF \Rightarrow ONB.
- The geometry of finite tight frames:
 - The vertices of platonic solids are FUN-TFs.
 - Points that constitute FUN-TFs do not have to be equidistributed, e.g., ONBs, Grassmanian frames.
 - FUN-TFs can be characterized as minimizers of a "frame potential function" (with Fickus) analogous to

Coulomb's Law.

A force

$$F: S^{d-1} \times S^{d-1} \setminus D \longrightarrow \mathbb{R}^d$$

is a *central force* with potential

$$P: S^{d-1} \times S^{d-1} \setminus D \longrightarrow \mathbb{R},$$

if

$$F(a,b) = f(||a - b||)(a - b), \qquad P(a,b) = p(||a - b||).$$

A force

$$F: S^{d-1} \times S^{d-1} \setminus D \longrightarrow \mathbb{R}^d$$

is a *central force* with potential

$$P: S^{d-1} \times S^{d-1} \setminus D \longrightarrow \mathbb{R},$$

if

$$F(a,b) = f(||a - b||)(a - b), \qquad P(a,b) = p(||a - b||).$$

Note that

$$\nabla_a P = -F \iff p'(x) = -xf(x).$$

 \bullet Coulomb force

$$CF(a,b) = (a-b)/||a-b||^3, \qquad f(x) = 1/x^3$$

A force

$$F: S^{d-1} \times S^{d-1} \setminus D \longrightarrow \mathbb{R}^d$$

is a *central force* with potential

$$P: S^{d-1} \times S^{d-1} \setminus D \longrightarrow \mathbb{R},$$

if

$$F(a,b) = f(||a - b||)(a - b), \qquad P(a,b) = p(||a - b||).$$

Note that

$$\nabla_a P = -F \iff p'(x) = -xf(x).$$

 \bullet Coulomb force

$$CF(a,b) = (a-b)/||a-b||^3, \qquad f(x) = 1/x^3$$

• Frame force

$$FF(a,b) = \langle a,b \rangle (a-b), \qquad f(x) = 1 - x^2/2$$

A force

$$F: S^{d-1} \times S^{d-1} \setminus D \longrightarrow \mathbb{R}^d$$

is a *central force* with potential

$$P: S^{d-1} \times S^{d-1} \setminus D \longrightarrow \mathbb{R},$$

if

$$F(a,b) = f(||a - b||)(a - b), \qquad P(a,b) = p(||a - b||).$$

Note that

$$\nabla_a P = -F \iff p'(x) = -xf(x).$$

• Coulomb force

$$CF(a,b) = (a-b)/||a-b||^3, \qquad f(x) = 1/x^3$$

• Frame force

$$FF(a,b) = \langle a,b\rangle(a-b), \qquad f(x) = 1 - x^2/2$$

• Total potential energy for the frame force of $\{x_n\}_{n=1}^N \subset S^{d-1}$ $TFP(\{x_n\}) = \sum_{m=1}^N \sum_{n=1}^N |\langle x_m, x_n \rangle|^2$

Theorem Given d, N, and central force F. $\{x_n\}_{n=1}^N \subset (S^{d-1})^N$ a local minimizer for the total potential energy function \Rightarrow

$$\forall m = 1, \dots, N, \exists c_m \in \mathbb{R} \text{ such that } c_m x_m = \sum_{n \neq m} F(x_m, x_n) \in \mathbb{R}^d$$

(by Lagrange multipliers).

Theorem Given d, N, and central force F. $\{x_n\}_{n=1}^N \subset (S^{d-1})^N$ a local minimizer for the total potential energy function \Rightarrow

$$\forall m = 1, \dots, N, \ \exists c_m \in \mathbb{R} \text{ such that } c_m x_m = \sum_{n \neq m} F(x_m, x_n) \in \mathbb{R}^d$$

(by Lagrange multipliers).

- By Theorem and frame operator S = AI characterization of A-tight we were led to definition of frame force.
- $\{x_n\}_{n=1}^N \subset \mathbb{R}^d$ with frame operator S implies

 $TFP(\{x_n\}) = Tr(S^2).$

Theorem Given d, N, and central force F. $\{x_n\}_{n=1}^N \subset (S^{d-1})^N$ a local minimizer for the total potential energy function \Rightarrow

$$\forall m = 1, \dots, N, \ \exists c_m \in \mathbb{R} \text{ such that } c_m x_m = \sum_{n \neq m} F(x_m, x_n) \in \mathbb{R}^d$$

(by Lagrange multipliers).

- By Theorem and frame operator S = AI characterization of A-tight we were led to definition of frame force.
- $\{x_n\}_{n=1}^N \subset \mathbb{R}^d$ with frame operator S implies

 $TFP(\{x_n\}) = Tr(S^2).$

Theorem Given d, N, and frame force FF. $\{x_n\}_{n=1}^N \subset (S^{d-1})^N \Rightarrow$

$$N \max\left(1, \frac{N}{d}\right) \le TFP(\{x_n\}) \le N^2$$

(by Lagrange multipliers).

Theorem Given d, N, and central force F. $\{x_n\}_{n=1}^N \subset (S^{d-1})^N$ a local minimizer for the total potential energy function \Rightarrow

$$\forall m = 1, \dots, N, \ \exists c_m \in \mathbb{R} \text{ such that } c_m x_m = \sum_{n \neq m} F(x_m, x_n) \in \mathbb{R}^d$$

(by Lagrange multipliers).

- By Theorem and frame operator S = AI characterization of A-tight we were led to definition of frame force.
- $\{x_n\}_{n=1}^N \subset \mathbb{R}^d$ with frame operator S implies

 $TFP(\{x_n\}) = Tr(S^2).$

Theorem Given d, N, and frame force FF. $\{x_n\}_{n=1}^N \subset (S^{d-1})^N \Rightarrow$

$$N \max\left(1, \frac{N}{d}\right) \le TFP(\{x_n\}) \le N^2$$

(by Lagrange multipliers).

• This Theorem is a basic input to following characterization.

Characterization of FUN-TFs

For the Hilbert space $H = \mathbb{R}^d$ and N, consider

$$\{x_n\}_1^N \in S^{d-1} \times \ldots \times S^{d-1}$$

and

$$TFP(\{x_n\}) = \sum_{m=1}^N \sum_{n=1}^N |\langle x_m, x_n \rangle|^2 .$$

Theorem Let $N \leq d$. The minimum value of *TFP*, for the frame force and N variables, is N; and the minimizers are precisely the orthonormal sets of N elements for \mathbb{R}^d .

Theorem Let $N \ge d$. The minimum value of TFP, for the frame force and N variables, is N^2/d ; and the minimizers are precisely the FUN-TFs of N elements for \mathbb{R}^d .

Characterization of FUN-TFs

For the Hilbert space $H = \mathbb{R}^d$ and N, consider

$$\{x_n\}_1^N \in S^{d-1} \times \ldots \times S^{d-1}$$

and

$$TFP(\{x_n\}) = \sum_{m=1}^N \sum_{n=1}^N |\langle x_m, x_n \rangle|^2 .$$

Theorem Let $N \leq d$. The minimum value of *TFP*, for the frame force and N variables, is N; and the minimizers are precisely the orthonormal sets of N elements for \mathbb{R}^d .

Theorem Let $N \ge d$. The minimum value of TFP, for the frame force and N variables, is N^2/d ; and the minimizers are precisely the FUN-TFs of N elements for \mathbb{R}^d .

Problem Find these FUN-TFs analytically, effectively, and computationally.

PART 2: A quantum detection problem

Positive-operator-valued measures

Let \mathcal{B} be a σ -algebra of sets of X. A positive operator-valued measure (POM) is a function $\Pi: \mathcal{B} \to \mathcal{L}(H)$ such that

- 1. $\forall U \in \mathcal{B}, \ \Pi(U)$ is a positive self-adjoint operator,
- 2. $\Pi(\emptyset) = 0$ (zero operator),
- 3. \forall disjoint $\{U_i\}_{i=1}^{\infty} \subset \mathcal{B}$ and $x, y \in H$,

$$\left\langle \Pi\left(\bigcup_{i=1}^{\infty}U_{i}\right)x,y\right\rangle =\sum_{i=1}^{\infty}\langle \Pi(U_{i})x,y\rangle,$$

4. $\Pi(X) = I$ (identity operator).

PART 2: A quantum detection problem

Positive-operator-valued measures

Let \mathcal{B} be a σ -algebra of sets of X. A positive operator-valued measure (POM) is a function $\Pi: \mathcal{B} \to \mathcal{L}(H)$ such that

- 1. $\forall U \in \mathcal{B}, \ \Pi(U)$ is a positive self-adjoint operator,
- 2. $\Pi(\emptyset) = 0$ (zero operator),
- 3. \forall disjoint $\{U_i\}_{i=1}^{\infty} \subset \mathcal{B}$ and $x, y \in H$,

$$\left\langle \Pi\left(\bigcup_{i=1}^{\infty} U_i\right)x,y\right\rangle = \sum_{i=1}^{\infty} \langle \Pi(U_i)x,y\rangle,$$

- 4. $\Pi(X) = I$ (identity operator).
- A POM Π on \mathcal{B} has the property that given any fixed $x \in H$, $p_x(\cdot) = \langle x, \Pi(\cdot)x \rangle$ is a measure on \mathcal{B} . (Probability if ||x|| = 1).
- A dynamical quantity Q gives rise to a measurable space (X, \mathcal{B}) and POM. When measuring Q, $p_x(U)$ is the probability that the outcome of the measurement is in $U \in \mathcal{B}$.

• Suppose we want to measure the position of an electron.

- Suppose we want to measure the position of an electron.
- The space of all possible positions is given by $X = \mathbb{R}^3$.

- Suppose we want to measure the position of an electron.
- The space of all possible positions is given by $X = \mathbb{R}^3$.
- The Hilbert space is given by $H = L^2(\mathbb{R}^3)$.

• Suppose we want to measure the position of an electron.

- The space of all possible positions is given by $X = \mathbb{R}^3$.
- The Hilbert space is given by $H = L^2(\mathbb{R}^3)$.
- The corresponding POM is defined for all $U \in \mathcal{B}$ by

 $\Pi(U) = \mathbb{1}_U.$

• Suppose we want to measure the position of an electron.

• The space of all possible positions is given by $X = \mathbb{R}^3$.

- The Hilbert space is given by $H = L^2(\mathbb{R}^3)$.
- The corresponding POM is defined for all $U \in \mathcal{B}$ by

 $\Pi(U) = \mathbb{1}_U.$

• Suppose the state of the electron is given by $x \in H$ with unit norm. Then the probability that the electron is found to be in the region $U \in \mathcal{B}$ is given by

$$p(U) = \langle x, \Pi(U)x \rangle = \int_U |x(t)|^2 dt.$$

Parseval frames correspond to POMs

• Let $F = \{e_n\}_{n=1}^N$ be a Parseval frame for a *d*-dimensional Hilbert space *H* and let $X = \mathbb{Z}_N$.

Parseval frames correspond to POMs

- Let $F = \{e_n\}_{n=1}^N$ be a Parseval frame for a *d*-dimensional Hilbert space *H* and let $X = \mathbb{Z}_N$.
- For all $x \in H$ and $U \subseteq X$ define

$$\Pi(U)x = \sum_{i \in U} \langle x, e_i \rangle e_i.$$

Parseval frames correspond to POMs

- Let $F = \{e_n\}_{n=1}^N$ be a Parseval frame for a *d*-dimensional Hilbert space *H* and let $X = \mathbb{Z}_N$.
- For all $x \in H$ and $U \subseteq X$ define

$$\Pi(U)x = \sum_{i \in U} \langle x, e_i \rangle e_i.$$

• Clear that Π satisfies conditions (1)-(3) for a POM. Since F is Parseval, we have condition (4) $(\Pi(X)x = \sum_{i \in X} \langle x, e_i \rangle e_i = x)$. Thus Π defines a POM.
Parseval frames correspond to POMs

- Let $F = \{e_n\}_{n=1}^N$ be a Parseval frame for a *d*-dimensional Hilbert space *H* and let $X = \mathbb{Z}_N$.
- For all $x \in H$ and $U \subseteq X$ define

$$\Pi(U)x = \sum_{i \in U} \langle x, e_i \rangle e_i.$$

- Clear that Π satisfies conditions (1)-(3) for a POM. Since F is Parseval, we have condition (4) $(\Pi(X)x = \sum_{i \in X} \langle x, e_i \rangle e_i = x)$. Thus Π defines a POM.
- Conversely, let (X, \mathcal{B}) be a measurable space with corresponding POM Π for a *d*dimensional Hilbert space *H*. If *X* is countable then there exists a subset $K \subseteq \mathbb{Z}$, a Parseval frame $\{e_i\}_{i \in K}$, and a disjoint partition $\{B_j\}_{j \in X}$ of *K* such that for all $j \in X$ and $y \in H$,

$$\Pi(j)y = \sum_{i \in B_j} \langle y, e_i \rangle e_i.$$

• *H* a finite dimensional Hilbert space (corresponding to a physical system).

- *H* a finite dimensional Hilbert space (corresponding to a physical system).
- Suppose that the state of the system is limited to be in one of a finite number of possible unit normed states $\{x_i\}_{i=1}^N \subset H$ with corresponding probabilities $\{\rho_i\}_{i=1}^N$ that sum to 1.

- *H* a finite dimensional Hilbert space (corresponding to a physical system).
- Suppose that the state of the system is limited to be in one of a finite number of possible unit normed states $\{x_i\}_{i=1}^N \subset H$ with corresponding probabilities $\{\rho_i\}_{i=1}^N$ that sum to 1.
- Our goal is to determine what state the system is in by performing a "good" measurement. That is, we want to construct a POM with outcomes $X = \mathbb{Z}_N$ such that if the state of the system is x_i for some $1 \le i \le N$, then

$$p_{x_i}(j) = \langle x_i, \Pi(j) x_i \rangle \approx \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

• *H* a finite dimensional Hilbert space (corresponding to a physical system).

- Suppose that the state of the system is limited to be in one of a finite number of possible unit normed states $\{x_i\}_{i=1}^N \subset H$ with corresponding probabilities $\{\rho_i\}_{i=1}^N$ that sum to 1.
- Our goal is to determine what state the system is in by performing a "good" measurement. That is, we want to construct a POM with outcomes $X = \mathbb{Z}_N$ such that if the state of the system is x_i for some $1 \le i \le N$, then

$$p_{x_i}(j) = \langle x_i, \Pi(j) x_i \rangle \approx \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

• Since $\langle x_i, \Pi(i)x_i \rangle$ is the probability of a successful detection of the state x_i , then the probability of a detection error is given by

$$P_e = 1 - \sum_{i=1}^{N} \rho_i \langle x_i, \Pi(i) x_i \rangle.$$

Quantum detection problem

• If we construct our POM using Parseval frames, the error becomes

$$P_e = 1 - \sum_{i=1}^{N} \rho_i \langle x_i, \Pi(i) x_i \rangle$$
$$= 1 - \sum_{i=1}^{N} \rho_i \langle x_i, \langle x_i, e_i \rangle e_i \rangle$$
$$= 1 - \sum_{i=1}^{N} \rho_i |\langle x_i, e_i \rangle|^2$$

Quantum detection problem

• If we construct our POM using Parseval frames, the error becomes

$$P_e = 1 - \sum_{i=1}^{N} \rho_i \langle x_i, \Pi(i) x_i \rangle$$
$$= 1 - \sum_{i=1}^{N} \rho_i \langle x_i, \langle x_i, e_i \rangle e_i \rangle$$
$$= 1 - \sum_{i=1}^{N} \rho_i |\langle x_i, e_i \rangle|^2$$

• Quantum detection problem: Given a unit normed set $\{x_i\}_{i=1}^N \subset H$ and positive weights $\{\rho_i\}_{i=1}^N$ that sum to 1. Construct a Parseval frame $\{e_i\}_{i=1}^N$ that minimizes

$$P_e = 1 - \sum_{i=1}^{N} \rho_i |\langle x_i, e_i \rangle|^2$$

over all N-element Parseval frames. ($\{e_i\}_{i=1}^N$ exists by a compactness argument.)

Naimark Theorem Let H be a d-dimensional Hilbert space and let $\{e_i\}_{i=1}^N \subset H$, $N \geq d$, be a Parseval frame for H. Then there exists an N-dimensional Hilbert space H' and an orthonormal basis $\{e'_i\}_{i=1}^N \subset H'$ such that H is a subspace of H' and

 $\forall i = 1, \dots, N, \ \mathcal{P}_H e'_i = e_i,$

where \mathcal{P}_H is the orthogonal projection $H' \to H$.

Naimark Theorem Let H be a d-dimensional Hilbert space and let $\{e_i\}_{i=1}^N \subset H$, $N \geq d$, be a Parseval frame for H. Then there exists an N-dimensional Hilbert space H' and an orthonormal basis $\{e'_i\}_{i=1}^N \subset H'$ such that H is a subspace of H' and

 $\forall i = 1, \dots, N, \ \mathcal{P}_H e'_i = e_i,$

where \mathcal{P}_H is the orthogonal projection $H' \to H$.

• Given $\{x_i\}_{i=1}^N \subset H$ and a Parseval frame $\{e_i\}_{i=1}^N \subset H$. If $\{e'_i\}_{i=1}^N$ is its corresonding orthonormal basis for H', then, for all $i = 1, \ldots, N$, $\langle x_i, e_i \rangle = \langle x_i, e'_i \rangle$.

Naimark Theorem Let H be a d-dimensional Hilbert space and let $\{e_i\}_{i=1}^N \subset H$, $N \geq d$, be a Parseval frame for H. Then there exists an N-dimensional Hilbert space H' and an orthonormal basis $\{e'_i\}_{i=1}^N \subset H'$ such that H is a subspace of H' and

 $\forall i = 1, \dots, N, \ \mathcal{P}_H e'_i = e_i,$

where \mathcal{P}_H is the orthogonal projection $H' \to H$.

- Given $\{x_i\}_{i=1}^N \subset H$ and a Parseval frame $\{e_i\}_{i=1}^N \subset H$. If $\{e'_i\}_{i=1}^N$ is its corresonding orthonormal basis for H', then, for all $i = 1, \ldots, N$, $\langle x_i, e_i \rangle = \langle x_i, e'_i \rangle$.
- Minimizing P_e over all N-element Parseval frames for H is equivalent to minimizing P_e over all N-element orthonormal bases for H'.

Naimark Theorem Let H be a d-dimensional Hilbert space and let $\{e_i\}_{i=1}^N \subset H$, $N \geq d$, be a Parseval frame for H. Then there exists an N-dimensional Hilbert space H' and an orthonormal basis $\{e'_i\}_{i=1}^N \subset H'$ such that H is a subspace of H' and

 $\forall i = 1, \dots, N, \ \mathcal{P}_H e'_i = e_i,$

where \mathcal{P}_H is the orthogonal projection $H' \to H$.

- Given $\{x_i\}_{i=1}^N \subset H$ and a Parseval frame $\{e_i\}_{i=1}^N \subset H$. If $\{e'_i\}_{i=1}^N$ is its corresonding orthonormal basis for H', then, for all $i = 1, \ldots, N$, $\langle x_i, e_i \rangle = \langle x_i, e'_i \rangle$.
- Minimizing P_e over all N-element Parseval frames for H is equivalent to minimizing P_e over all N-element orthonormal bases for H'.
- Thus we simplify the problem by minimizing P_e over all N-element orthonormal sets in H'.

Quantum detection error as a potential

• Treat the error term as a potential.

$$P = P_e = \sum_{i=1}^{N} \rho_i (1 - |\langle x_i, e'_i \rangle|^2) = \sum_{i=1}^{N} P_i.$$

where we have used the fact that $\sum_{i=1}^N \rho_i = 1$ and each

$$P_i = \rho_i (1 - |\langle x_i, e'_i \rangle|^2).$$

Quantum detection error as a potential

• Treat the error term as a potential.

$$P = P_e = \sum_{i=1}^{N} \rho_i (1 - |\langle x_i, e'_i \rangle|^2) = \sum_{i=1}^{N} P_i.$$

where we have used the fact that $\sum_{i=1}^{N} \rho_i = 1$ and each

$$P_i = \rho_i (1 - |\langle x_i, e_i' \rangle|^2).$$

• For $H' = \mathbb{R}^N$, we have the relation,

$$||e'_i - x_i||^2 = 2 - 2\langle x_i, e'_i \rangle$$

where we have used the fact that $||e'_i|| = ||x_i|| = 1$. We can rewrite the potential P_i as

$$P_i = \rho_i \left(1 - \left[1 - \frac{1}{2} \| x_i - e'_i \|^2 \right]^2 \right).$$

A central force corresponds to quantum detection error

Given P_i , define the function $p_i : \mathbb{R} \to \mathbb{R}$ by

$$p_i(x) = \rho_i \left(1 - \left[1 - \frac{1}{2} x^2 \right]^2 \right).$$

A central force corresponds to quantum detection error

Given P_i , define the function $p_i : \mathbb{R} \to \mathbb{R}$ by

$$p_i(x) = \rho_i \left(1 - \left[1 - \frac{1}{2} x^2 \right]^2 \right).$$

Thus P_i is a potential corresponding to a central force in the following way:

$$-xf_i(x) = p'_i(x) = 2\rho_i \left(1 - \frac{1}{2}x^2\right) x$$
$$\Rightarrow \quad f_i(x) = -2\rho_i \left(1 - \frac{1}{2}x^2\right).$$

A central force corresponds to quantum detection error

Given P_i , define the function $p_i : \mathbb{R} \to \mathbb{R}$ by

$$p_i(x) = \rho_i \left(1 - \left[1 - \frac{1}{2} x^2 \right]^2 \right).$$

Thus P_i is a potential corresponding to a central force in the following way:

$$-xf_i(x) = p'_i(x) = 2\rho_i \left(1 - \frac{1}{2}x^2\right) x$$
$$\Rightarrow \quad f_i(x) = -2\rho_i \left(1 - \frac{1}{2}x^2\right).$$

Hence, the force $F_i = -\nabla P_i$ is

$$F_i(x_i, e'_i) = f_i(||x_i - e'_i||)(x_i - e'_i) = -2\rho_i \langle x_i, e'_i \rangle (x_i - e'_i),$$

a multiple of the frame force! The total force is given by

$$F = \sum_{i=1}^{N} F_i.$$

- We reformulate the quantum detection problem in terms of frame force and the Naimark Theorem.
- The given elements $\{x_i\}_{i=1}^N \subset H'$ can be viewed as fixed points on the sphere $S^{N-1} \subset H'$.

- We reformulate the quantum detection problem in terms of frame force and the Naimark Theorem.
- The given elements $\{x_i\}_{i=1}^N \subset H'$ can be viewed as fixed points on the sphere $S^{N-1} \subset H'$.
- The elements $\{e'_i\}_{i=1}^N \subset H'$ form an orthonormal set which move according to the interaction between each x_i and e'_i by the frame force

 $F_i(x_i, e'_i) = -2\rho_i \langle x_i, e'_i \rangle (e'_i - x_i).$

- We reformulate the quantum detection problem in terms of frame force and the Naimark Theorem.
- The given elements $\{x_i\}_{i=1}^N \subset H'$ can be viewed as fixed points on the sphere $S^{N-1} \subset H'$.
- The elements $\{e'_i\}_{i=1}^N \subset H'$ form an orthonormal set which move according to the interaction between each x_i and e'_i by the frame force

 $F_i(x_i, e'_i) = -2\rho_i \langle x_i, e'_i \rangle (e'_i - x_i).$

• The equilibrium position of the points $\{e'_i\}_{i=1}^N$ is the position where all the forces produce no net motion. In this situation, the potential P is minimized.

- We reformulate the quantum detection problem in terms of frame force and the Naimark Theorem.
- The given elements $\{x_i\}_{i=1}^N \subset H'$ can be viewed as fixed points on the sphere $S^{N-1} \subset H'$.
- The elements $\{e'_i\}_{i=1}^N \subset H'$ form an orthonormal set which move according to the interaction between each x_i and e'_i by the frame force

 $F_i(x_i, e'_i) = -2\rho_i \langle x_i, e'_i \rangle (e'_i - x_i).$

- The equilibrium position of the points $\{e'_i\}_{i=1}^N$ is the position where all the forces produce no net motion. In this situation, the potential P is minimized.
- For the remainder, let $\{e'_i\}_{i=1}^N$ be an ONB for \mathbb{R}^N that minimizes P. Recall that $\{e'_i\}_{i=1}^N$ exists by compactness. The quantum detection problem is to construct or compute $\{e'_i\}_{i=1}^N$.

PART 3: Equations of motion

- A parameterization of O(N)
 - Consider the orthogonal group

 $O(N) = \{ \Theta \in GL(N, \mathbb{R}) : \Theta^{\tau} \Theta = I \}.$

PART 3: Equations of motion

- A parameterization of O(N)
 - Consider the orthogonal group

 $O(N) = \{ \Theta \in GL(N, \mathbb{R}) : \Theta^{\tau} \Theta = I \}.$

• Since O(N) is an N(N-1)/2-dimensional smooth manifold, we can locally parameterize O(N) by N(N-1)/2 variables, i.e., $\Theta = \Theta(q_1, \ldots, q_{N(N-1)/2})$ for each $\Theta \in O(N)$.

PART 3: Equations of motion

- A parameterization of O(N)
 - Consider the orthogonal group

 $O(N) = \{ \Theta \in GL(N, \mathbb{R}) : \Theta^{\tau} \Theta = I \}.$

• Since O(N) is an N(N-1)/2-dimensional smooth manifold, we can locally parameterize O(N) by N(N-1)/2 variables, i.e., $\Theta = \Theta(q_1, \ldots, q_{N(N-1)/2})$ for each $\Theta \in O(N)$.

Hence, for all $\theta \in O(N)$ there is a surjective diffeomorphism b_{θ}

$$O(N)$$

 \cup
 $b_{ heta}: \quad \mathcal{U}_{ heta} \longrightarrow \mathcal{U} \subset \mathbb{R}^{N(N-1)/2}$

for relatively compact neighborhoods $\mathcal{U}_{\theta} \subseteq O(N)$ and $\mathcal{U} \subseteq \mathbb{R}^{N(N-1)/2}, \ \theta \in \mathcal{U}_{\theta}$.

A parameterization of ONBs

• Let $\{w_i\}_{i=1}^N$ be the standard ONB for $H' = \mathbb{R}^N$: $w_i = (0, \dots, 0, \underbrace{1}_{i^{\text{th}}}, 0, \dots, 0)$.

A parameterization of ONBs

- Let $\{w_i\}_{i=1}^N$ be the standard ONB for $H' = \mathbb{R}^N$: $w_i = (0, \dots, 0, \underbrace{1}_{i^{\text{th}}}, 0, \dots, 0)$.
- Since any two orthonormal sets are related by an orthogonal transformation, we can smoothly parameterize an orthonormal set $\{e_i\}_{i=1}^N$ with N elements by N(N-1)/2 variables, i.e.,

$$\{e_i(q_1,\ldots,q_{N(N-1)/2})\}_{i=1}^N = \{\Theta(q_1,\ldots,q_{N(N-1)/2})w_i\}_{i=1}^N \subset H'.$$

A parameterization of ONBs

- Let $\{w_i\}_{i=1}^N$ be the standard ONB for $H' = \mathbb{R}^N$: $w_i = (0, \dots, 0, \underbrace{1}_{i^{\text{th}}}, 0, \dots, 0).$
- Since any two orthonormal sets are related by an orthogonal transformation, we can smoothly parameterize an orthonormal set $\{e_i\}_{i=1}^N$ with N elements by N(N-1)/2 variables, i.e.,

$$\{e_i(q_1,\ldots,q_{N(N-1)/2})\}_{i=1}^N = \{\Theta(q_1,\ldots,q_{N(N-1)/2})w_i\}_{i=1}^N \subset H'.$$

where for all $\Psi \in O(N)$, $W_i(\Psi) = \Psi w_i$.

$$e_i(\vec{q}) = e_i(q_1, \dots, q_{N(N-1)/2}) = W_i \circ b_{\theta}^{-1}(\vec{q}) = (b_{\theta}^{-1}(\vec{q})) w_i \in \mathbb{R}^N.$$

Lagrangian dynamics on O(N)

• We now convert the frame force F acting on the orthonormal set $\{e_i\}_{i=1}^N$ into a set of equations governing the motion of the parameterization points $\vec{q}(t) = (q_1(t), \ldots, q_{N(N-1)/2}(t))$, see (1). We define the Lagrangian L and total energy Edefined for $\vec{q}(t)$ by:

$$L = T - P_e, \quad E = T + P_e,$$

where

$$T = \frac{1}{2} \sum_{j=1}^{N(N-1)/2} \left(\frac{d}{dt} q_j(t)\right)^2.$$

Lagrangian dynamics on O(N)

• We now convert the frame force F acting on the orthonormal set $\{e_i\}_{i=1}^N$ into a set of equations governing the motion of the parameterization points $\vec{q}(t) = (q_1(t), \ldots, q_{N(N-1)/2}(t))$, see (1). We define the Lagrangian L and total energy Edefined for $\vec{q}(t)$ by:

$$L = T - P_e, \quad E = T + P_e,$$

where

$$T = \frac{1}{2} \sum_{j=1}^{N(N-1)/2} \left(\frac{d}{dt} q_j(t)\right)^2.$$

• Using the Euler-Lagrange equations for the potential P_e

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_j}\right) - \frac{\partial L}{\partial q_j} = 0,$$

we obtain the equations of motion

(1)
$$\frac{d^2}{dt^2}q_j(t) = -2\sum_{i=1}^N \rho_i \langle x_i, e_i(\vec{q}(t)) \rangle \left\langle x_i, \frac{\partial e_i}{\partial q_j}(\vec{q}(t)) \right\rangle.$$

• Choose $\vec{q}' \in \mathbb{R}^{N(N-1)/2}$ such that $e_i(\vec{q}') = e'_i \in \mathbb{R}^N$ for all $i = 1, \ldots, N$.

- Choose $\vec{q}' \in \mathbb{R}^{N(N-1)/2}$ such that $e_i(\vec{q}') = e'_i \in \mathbb{R}^N$ for all $i = 1, \dots, N$.
- Define $\tilde{q} : \mathbb{R} \to \mathbb{R}^{N(N-1)/2}$ such that $\tilde{q}(t) = \vec{q}'$ (a constant function).

- Choose $\vec{q}' \in \mathbb{R}^{N(N-1)/2}$ such that $e_i(\vec{q}') = e'_i \in \mathbb{R}^N$ for all $i = 1, \dots, N$.
- Define $\tilde{q}: \mathbb{R} \to \mathbb{R}^{N(N-1)/2}$ such that $\tilde{q}(t) = \vec{q}'$ (a constant function).
- Recall

(1)
$$\frac{d^2}{dt^2}q_j(t) = -2\sum_{i=1}^N \rho_i \langle x_i, e_i(\vec{q}(t)) \rangle \left\langle x_i, \frac{\partial e_i}{\partial q_j}(\vec{q}(t)) \right\rangle.$$

Remark The definition of \tilde{q} and equation (1) introduce t into play for solving the quantum detection problem.

- Choose $\vec{q}' \in \mathbb{R}^{N(N-1)/2}$ such that $e_i(\vec{q}') = e'_i \in \mathbb{R}^N$ for all $i = 1, \dots, N$.
- Define $\tilde{q} : \mathbb{R} \to \mathbb{R}^{N(N-1)/2}$ such that $\tilde{q}(t) = \vec{q}'$ (a constant function).
- \bullet Recall

(1)
$$\frac{d^2}{dt^2}q_j(t) = -2\sum_{i=1}^N \rho_i \langle x_i, e_i(\vec{q}(t)) \rangle \left\langle x_i, \frac{\partial e_i}{\partial q_j}(\vec{q}(t)) \right\rangle.$$

Remark The definition of \tilde{q} and equation (1) introduce t into play for solving the quantum detection problem.

- Choose $\vec{q}' \in \mathbb{R}^{N(N-1)/2}$ such that $e_i(\vec{q}') = e'_i \in \mathbb{R}^N$ for all $i = 1, \dots, N$.
- Define $\tilde{q} : \mathbb{R} \to \mathbb{R}^{N(N-1)/2}$ such that $\tilde{q}(t) = \vec{q}'$ (a constant function).
- \bullet Recall

(1)
$$\frac{d^2}{dt^2}q_j(t) = -2\sum_{i=1}^N \rho_i \langle x_i, e_i(\vec{q}(t)) \rangle \left\langle x_i, \frac{\partial e_i}{\partial q_j}(\vec{q}(t)) \right\rangle.$$

Remark The definition of \tilde{q} and equation (1) introduce t into play for solving the quantum detection problem.

$$\mathbb{R} \xrightarrow{\vec{q}} \mathcal{U} \xrightarrow{\mathcal{U}} \begin{array}{c} \mathcal{U} \\ \mathcal{U}$$

Theorem Constant function $\tilde{q} : \mathbb{R} \to \mathbb{R}^{N(N-1)/2}$ is a minimum energy solution of (1).

Results

It can be shown that

• Theorem Denote by $\vec{q}(t) = (q_1(t), \ldots, q_{N(N-1)/2}(t))$ a solution of the equations of motion that minimizes the energy E and denote by \mathcal{P}_H the orthogonal projection from H' into H. Then $\vec{q}(t)$ is a constant solution and the set of vectors

$\{\mathcal{P}_H e_i(\vec{q}(t))\}_{i=1}^N \subset H$

is a Parseval frame for H that minimizes P_e .

Results

It can be shown that

• Theorem Denote by $\vec{q}(t) = (q_1(t), \ldots, q_{N(N-1)/2}(t))$ a solution of the equations of motion that minimizes the energy E and denote by \mathcal{P}_H the orthogonal projection from H' into H. Then $\vec{q}(t)$ is a constant solution and the set of vectors

$\{\mathcal{P}_H e_i(\vec{q}(t))\}_{i=1}^N \subset H$

is a Parseval frame for H that minimizes P_e .

• **Theorem** A minimum energy solution is obtained in the SO(N) component of O(N).

Results

It can be shown that

• Theorem Denote by $\vec{q}(t) = (q_1(t), \ldots, q_{N(N-1)/2}(t))$ a solution of the equations of motion that minimizes the energy E and denote by \mathcal{P}_H the orthogonal projection from H' into H. Then $\vec{q}(t)$ is a constant solution and the set of vectors

$\{\mathcal{P}_H e_i(\vec{q}(t))\}_{i=1}^N \subset H$

is a Parseval frame for H that minimizes P_e .

- **Theorem** A minimum energy solution is obtained in the SO(N) component of O(N).
- So we need only consider parameterizing SO(N).
Results

It can be shown that

• Theorem Denote by $\vec{q}(t) = (q_1(t), \ldots, q_{N(N-1)/2}(t))$ a solution of the equations of motion that minimizes the energy E and denote by \mathcal{P}_H the orthogonal projection from H' into H. Then $\vec{q}(t)$ is a constant solution and the set of vectors

$\{\mathcal{P}_H e_i(\vec{q}(t))\}_{i=1}^N \subset H$

is a Parseval frame for H that minimizes P_e .

- **Theorem** A minimum energy solution is obtained in the SO(N) component of O(N).
- So we need only consider parameterizing SO(N).
- Theorem A minimum energy solution, a minimizer of P_e , satisfies the expression

$$\sum_{i=1}^{N} \rho_i \langle x_i, e_i \rangle \left\langle x_i, \frac{\partial e_i}{\partial q_j} \right\rangle = 0.$$

Numerical problems

- The use of Lagrangia provides a point of view for computing the TF minimizers of P_{e} . (Some independent, direct calculations are possible (Kebo), but not feasible for large values of d and N.)
- The minimum energy solution theorem opens the possibility of using numerical methods to find the optimal orthonormal set. For example, a type of Newton's method could be used to find the zeros of the function

$$\sum_{i=1}^{N} \rho_i \langle x_i, e_i \rangle \left\langle x_i, \frac{\partial e_i}{\partial q_j} \right\rangle.$$

Numerical problems

- The use of Lagrangia provides a point of view for computing the TF minimizers of P_{e} . (Some independent, direct calculations are possible (Kebo), but not feasible for large values of d and N.)
- The minimum energy solution theorem opens the possibility of using numerical methods to find the optimal orthonormal set. For example, a type of Newton's method could be used to find the zeros of the function

$$\sum_{i=1}^{N} \rho_i \langle x_i, e_i \rangle \left\langle x_i, \frac{\partial e_i}{\partial q_j} \right\rangle.$$

• With the parameterization of SO(N), the error P_e is a smooth function of the variables $(q_1, \ldots, q_{N(N-1)/2})$, that is,

$$P_e(q_1,\ldots,q_{N(N-1)/2}) = 1 - \sum_{i=1}^N \rho_i |\langle x_i, e_i(q_1,\ldots,q_{N(N-1)/2}) \rangle|^2$$

A conjugate gradient method can be used to find the minimum values of P_e .

Another error criterion

• Problem Given a unit normed set $\{x_i\}_{i=1}^N \subset H$, where H is *d*-dimensional, and positive weights $\{\rho_i\}_{i=1}^N \subset \mathbb{R}$ that sum to 1. Construct the Parseval frame $\{e_i\}_{i=1}^N$ that minimizes

$$E = \sum_{i=1}^{N} \rho_i ||x_i - e_i||^2$$

over all N-element Parseval frames for H.

Another error criterion

• Problem Given a unit normed set $\{x_i\}_{i=1}^N \subset H$, where H is d-dimensional, and positive weights $\{\rho_i\}_{i=1}^N \subset \mathbb{R}$ that sum to 1. Construct the Parseval frame $\{e_i\}_{i=1}^N$ that minimizes

$$E = \sum_{i=1}^{N} \rho_i ||x_i - e_i||^2$$

over all N-element Parseval frames for H.

• A unique solution is constructed when the weights are all equal and $\{x_i\}_{i=1}^N$ spans H. (Casazza & Kutyniok; Bölcskei, Eldar, Forney):

Another error criterion

• Problem Given a unit normed set $\{x_i\}_{i=1}^N \subset H$, where H is d-dimensional, and positive weights $\{\rho_i\}_{i=1}^N \subset \mathbb{R}$ that sum to 1. Construct the Parseval frame $\{e_i\}_{i=1}^N$ that minimizes

$$E = \sum_{i=1}^{N} \rho_i ||x_i - e_i||^2$$

over all N-element Parseval frames for H.

• A unique solution is constructed when the weights are all equal and $\{x_i\}_{i=1}^N$ spans H. (Casazza & Kutyniok; Bölcskei, Eldar, Forney):

Theorem Let $\{x_i\}_{i=1}^N$ be a frame for H with frame operator S. $\{S^{-1/2}x_i\}_{i=1}^N$ is the unique Parseval frame such that

$$\sum_{i=1}^{N} \|x_i - S^{-1/2} x_i\|^2 = \inf\left\{\sum_{i=1}^{N} \|x_i - e_i\|^2 : \{e_i\}_{i=1}^{N} \text{ Parseval frame for } H\right\}$$

and, with S having eigenvalues $\{\lambda_j\}_{j=1}^d$,

$$\sum_{i=1}^{N} \|x_i - S^{-1/2} x_i\|^2 = \sum_{j=1}^{d} (\lambda_j - 2\sqrt{\lambda_j} + 1).$$

Geometrically uniform frames

 $\mathcal{Q} = \{U_i \in \mathcal{L}(H) : 1 \le i \le N\}$ -finite Abelian group of unitary linear operators.

A set of vectors $\{x_i \in H : 1 \leq i \leq N\}$ is geometrically uniform if there exists $x \in H$ such that

 $\{x_i : 1 \le i \le N\} = \{U_i x : 1 \le i \le N\}.$

x is a generating vector.

Geometrically uniform frames

 $\mathcal{Q} = \{U_i \in \mathcal{L}(H) : 1 \le i \le N\}$ -finite Abelian group of unitary linear operators.

A set of vectors $\{x_i \in H : 1 \leq i \leq N\}$ is geometrically uniform if there exists $x \in H$ such that

 $\{x_i : 1 \le i \le N\} = \{U_i x : 1 \le i \le N\}.$

x is a generating vector.

Minimizers of the least-squares error are also minimizers of the quantum detection error when the given set is a geometrically uniform frame. (Bölcskei, Edlar, Forney):

Theorem Let H be a Hilbert space, let $\{x_i\}_{i=1}^N \subset H$ be a frame for H, and let S be its frame operator. If $\{x_i\}_{i=1}^N$ is geometrically uniform then,

- 1. $\{S^{-1/2}x_i\}_{i=1}^N$ minimizes the detection error P_e when the weights are all equal,
- 2. $\{S^{-1/2}x_i\}_{i=1}^N$ is a geometrically uniform set under the same abelian group \mathcal{Q} .

