
INTRODUCTION

JOHN J. BENEDETTO

1. Background

If ever there was a collection of articles that needed no introduction, this is it. Undaunted,

I shall fulfill my charge as introducer by describing some of the intellectual background of

wavelet theory, and by relating this background to the articles in this volume and to their

expert introductions by Jelena Kovačević, Jean-Pierre Antoine, Hans Feichtinger, Yves

Meyer, Guido Weiss, and Victor Wickerhauser.

I was not a contributor to wavelet theory, but was close enough in the mid-1980s to

hear the commotion. I was in the enviable position of having talented graduate students

(including the editors of this volume), and so I felt obliged to make a serious judgement

about whether to pursue wavelet theory. Timewise, this was before the wavelet stampede

and sporadic tarantisms of hype and eventual catharsis. I recall saying to Heil and Walnut

late in 1986 that I hoped I was not leading them down a primrose path by studying Meyer’s

Séminaire Bourbaki article from 1985/1986 (which is translated into English in this volume)

with them. I assured them that Meyer was brilliant and deep, and hoped that he was on

target since the material seemed so compelling.

Early in 1987 we also read the articles of Grossmann and Morlet and Grossmann, Morlet,

and Paul (both reprinted in this volume). In April 1987 I attended the Zygmund lectures

by Meyer (this volume) with Ray Johnson. Zygmund appeared and Meyer was dazzling.

He gave an alternative proof of (the recently proved and not yet published) Daubechies’

theorem constructing smooth compactly supported wavelets; see the article by Daubechies

reprinted in this volume. It was during the Zygmund lectures that Salem prize winner

Dahlberg reminded me from high in the Hancock Center that the view was better than that

in College Park.

The author gratefully acknowledges support from NSF DMS Grant 0139759 and ONR Grant

N000140210398.
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My wavelet excitement in the spring of 1987 was juxtaposed with my existing research

interests, some of which seemed too inbred, a veritable “Glass Bead Game”. These inter-

ests included several significant problems which seemed out of reach, e.g., fathoming the

arithmetic structure of some of the spectral synthesis problems originally formulated by

Wiener and Beurling. On the other hand, and perhaps naively, many of us believed in the

regenerative and centralizing power of harmonic analysis, and, then, voila! — les ondelettes

arrived.

I became hooked during those exhilarating nascent days of wavelets and made an effort

to study wavelet theory: where it came from and where it was going. To the extent that I

understand it, this is a beautiful and intricate story relating the signal (sic) contributions of

this volume with significant paths through twentieth-century engineering, mathematics, and

science. We shall tell parts of the story, in a mix of vignettes and perspectives, as appetizers

for the seven course feast that follows. To fix ideas we describe Figure 1 in Section 2. The

figure itself is meant as a mise-en-scène to get started. The technical definitions in Section 2

associated with the figure can be omitted by the reader without substantial damage to our

storyline. They can also be examined more carefully while reading the descriptive parts of

the Introduction related to them.

2. Definitions

The problem of signal representation at the top of Figure 1 is to provide effective decom-

positions of given signals f in terms of harmonics. The terms “effective” and “harmonics”

are problem-specific notions.

To define the next level of Figure 1, recall that Fourier series S(f) of 1-periodic functions

f have the form

S(f)(x) =
∑

n∈Z

cn(f) en(−x), (2.1)

where en(x) = e2πixn. Equation (2.1) is an example of a discrete representation, with har-

monics {en}n∈Z, since we are representing the signal f as a sum (over the integers Z). In a

continuous integral representation the right side of (2.1) is replaced by an integral such as

the Calderón reproducing formula (4.2) below.
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These continuous integral representations frequently depend on an underlying locally

compact group. The affine group in Figure 1 is the underlying group associated with the

Calderón reproducing formula or continuous wavelet transform. Part II of the volume is

devoted to this topic, and the articles by Grossmann, Morlet, and Paul and Feichtinger and

Gröchenig (both reprinted in this volume) are particularly important, cf., our preliminary

remarks in Section 4.2.
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Formally, the Fourier transform f̂ : Rd → C of f : Rd → C is defined as f̂(γ) =
∫

Rdf(x) e−2πix·γ dx. τy denotes translation defined by (τyf)(x) = f(x − y). The next

part of Figure 1 is described in the following definitions.

Definition 2.1 (Gabor and wavelet systems).

1. Let ψ ∈ L2(R). The associated wavelet or affine system is the sequence {ψm,n :

(m,n) ∈ Z × Z}, where ψm,n is defined by

ψm,n(t) = 2m/2ψ (2mt− n) . (2.2)

Clearly,

ψ̂m,n(γ) = 2−m/2 (e−nψ̂)(γ/2m).

2. Let g ∈ L2(R) and let a, b > 0. The associated Gabor or Weyl-Heisenberg system is

the sequence {gm,n : (m,n) ∈ Z × Z}, where gm,n is defined by

gm,n(t) = e2πitmbg(t− na).

Clearly,

ĝm,n(γ) = τmb(e−naĝ)(γ).

3. Let Λ ⊆ R be countable and let R > 0. The associated Fourier system is {eλ : λ ∈ Λ}

considered as a subset of L2[−R,R].

Definition 2.2 (Bases and frames).

Let H be a separable Hilbert space and let {xn : n ∈ Z} ⊆ H be a sequence in H.

1. The sequence {xn} is a basis or Schauder basis for H if each x ∈ H has a unique

decomposition

x =
∑

n∈Z

cn(x)xn in H.

A basis {xn} for H is an orthonormal basis (ONB) for H if it is orthonormal .

2. A basis {xn} for H is an unconditional basis for H if
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∃C > 0 such that ∀F ⊆ Z, where cardF < ∞, and ∀ bn, cn ∈ C, where

n ∈ F and |bn| < |cn|,
∥∥∥∥
∑

n∈F

bnxn

∥∥∥∥ ≤ C

∥∥∥∥
∑

n∈F

cnxn

∥∥∥∥.

An unconditional basis is a bounded unconditional basis for H if

∃A,B > 0 such that ∀n ∈ Z, A ≤ ‖xn‖ ≤ B.

3. A basis for H is a Riesz basis if there is a bounded invertible operator on H mapping

{xn} onto an ONB for H.

4. The sequence {xn} is a frame for H if there are A,B > 0 such that

∀x ∈ H, A ‖x‖2 ≤
∑

n∈Z

|〈x, xn〉|
2 ≤ B ‖x‖2.

The constants A and B are frame bounds, and a frame is tight if A = B. A frame is

an exact frame if it is no longer a frame whenever any of its elements is removed.

Remark 2.3. Frames give rise to discrete representations; see, for example, the articles

by Duffin and Schaeffer, Daubechies, Grossmann, and Meyer, and Daubechies (all in this

volume). It is natural to analyze wavelet, Gabor, and Fourier frames. The theme of this

volume is the wavelet case in both the discrete and continuous setting. However, the Gabor

and Fourier cases play a role even when the theme is wavelets.

Finally, the bottom of Figure 1 is meant to indicate that sampling formulas are discrete

representations associated with various frame decompositions. For example, the Classical

Sampling Formula (going back to Cauchy, see [BF01, Chapter 1]),

f = T
∑

n∈Z

f(nT ) τnT s, (2.3)

is a discrete representation of functions f in the Paley-Wiener space of Ω-bandlimited

functions, where 2TΩ ≤ 1, and where the sampling function s is a 1/(2T )-bandlimited

function satisfying some natural properties. In the special case that 2TΩ = 1 and ŝ = 1

on [−Ω,Ω], equation (2.3) gives rise to the so-called Shannon wavelet ONB for L2(R); and,

in this case, the wavelet decomposition of functions f ∈ L2(R) that are not Ω-bandlimited

provides an interpretation of aliasing error. The sequence {nT} in (2.3) indicates uniform

sampling; see Figure 1.



6 JOHN J. BENEDETTO

3. Frames

3.1. General frames. From the point of view of harmonic analysis, many of us learned

about frames from the 1952 article of Duffin and Schaeffer reprinted in this volume, and

then from the influential book by Young [You80], now deservedly enjoying a revised first

edition. Duffin and Schaeffer defined frames in the Hilbert space setting, but their basic

examples were Fourier frames; see Section 3.2.

From a functional analytic point of view, in 1921 Vitali (1875–1932) [Vit21] proved that,

if {xn} is a tight frame with A = B = 1 and with ‖xn‖ = 1 for all n, then {xn} is an ONB.

Actually, Vitali’s result is stronger for the setting H = L2[a, b] in which he dealt.

In 1936 Köthe [Köt36] proved that bounded unconditional bases are exact frames, and

the converse is straightforward. Also, the category of Riesz bases is precisely that of exact

frames. Thus, the following three notions are equivalent: Riesz bases, exact frames, and

bounded unconditional bases. Besides the article by Duffin and Schaeffer, Bari’s charac-

terization of Riesz bases [Bar51] is fundamental in this realm of ideas. From my point

of view, her work has all the more impact because it was motivated in part by her early

research, with others in the Russian school, in analyzing Riemann’s sets of uniqueness for

trigonometric series.

Frames have also been studied in terms of the celebrated Naimark dilation theorem

(1943), a special case of which asserts that any frame can be obtained by “compression” from

a basis. The rank 1 case of Naimark’s theorem is the previous assertion for tight frames. The

finite decomposition rank 1 case of Naimark’s theorem antedates Naimark’s paper, and it is

due to Hadwiger [Had40] and Gaston Julia [Jul42]. This is particularly interesting in light

of modern applications of finite normalized tight frames in communications theory. Because

they will arise later, we mention Chandler Davis’ use of Walsh functions to give explicit

constructions of dilations [Dav77]. Davis [Dav79] also provides an in-depth perspective on

the results referred to in this paragraph.

Other applications of Naimark’s theorem in the context of frames include feasibility issues

for von Neumann measurements in quantum signal processing.
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3.2. Fourier frames. Fourier frames go back to Dini (1880) and his book on Fourier

series [Din80, pages 190 ff]. There he gives Fourier expansions in terms of the set {eλ} of

harmonics, where each λ is a solution of the equation

x cos πx+ a sin πx = 0. (3.1)

Equation (3.1) was chosen because of a problem in mathematical physics from Riemann’s

(1826-1866) and later Riemann-Weber’s classical treatise [Rie76, pages 158-167]. Dini

(1845–1918) returned to this topic in 1917, just before his death, with a significant gener-

alization including Fourier frames that are not ONBs [Din54].

The inequalities defining a Fourier frame were explicitly written by Paley and Wiener

[PW34, page 115, inequalities (30.56)]. The book by Paley and Wiener (1934) (and to

a lesser extent a stability theorem by G. D. Birkhoff [Bir17]) had tremendous influence

on mid-20th century harmonic analysis. Although nonharmonic Fourier series expansions

were developed, the major effort in the study of Fourier systems emanating from [PW34]

addressed completeness problems of sequences {eλ} ⊆ L2[−R,R], i.e., determining when

the closed linear span of {eλ} is all of L2[−R,R]. This culminated in the profound work of

Beurling and Malliavin in 1962 and 1966 [BM62], [BM67], [Koo96]; see [BF01, Chapter 1]

for a technical overview.

A landmark in this intellectual journey to the heights of Beurling-Malliavin is the article

by Duffin and Schaeffer. In retrospect, their paper was underappreciated when it appeared

in 1952. The authors defined Fourier frames as well as the general notion of a frame for a

Hilbert space H. They emphasized that frames {xn} ⊆ H provide discrete representations

x =
∑
anxn in norm, as opposed to the previous emphasis on completeness. They under-

stood that the Paley–Wiener theory for Fourier systems is equivalent to the theory of exact

Fourier frames. (We noted above that Paley and Wiener used precisely the inequalities

defining Fourier frames.) Duffin and Schaeffer also knew that generally they were dealing

with overcomplete systems, a useful feature in noise reduction problems.

The next step on this path created by Duffin and Schaeffer is the article by Daubechies,

Grossmann, and Meyer reprinted in this volume. From the point of view of the affine

and Heisenberg groups (see Figure 1), and inspired by Duffin and Schaeffer, the article

by Daubechies, Grossmann, and Meyer establishes the basic theory of wavelet and Gabor
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frames. Given the nature of this volume, I shall say nothing about Gabor systems except

to the extent that they have an impact on wavelet theory — which they do. On the other

hand, the wavelet frame results of Daubechies, Grossmann, and Meyer allow us to segue

into a broader discussion of wavelets in Section 4.

Before closing Section 3, I’d like to make a brief personal reminiscence about Richard

Duffin. In 1990 I spoke about frames and some of their applications at the University of

Pittsburgh. Pesi Masani (1919–1999) and Duffin (1909–1996) sat in the front row, both

magisterial in their own ways. Masani, an expert on Hilbert spaces, understood the rele-

vance of Naimark’s theorem.

Duffin was amused and surprised that frames had reemerged as a tool and theory in

time-scale and time-frequency analysis. We talked mathematics through dinner and much

later, spirited on by a salubrious beverage or two. I was proud that we “hit it off.” There

were napkins on which to write (I wish I had kept his calculations), and he told me about

networks and his student Raoul Bott, from whom I had taken topology in 1961. Mostly,

he was very interested in discussing mathematics and at a genuinely technical level. He

was 81 years old! Amazing. Duffin published his last paper with Hans Weinberger in the

Journal of Fourier Analysis and Applications [DW97] in a lengthy issue on frames that was

dedicated to his memory.

4. Wavelet theory

4.1. A broad and selective outline. What is a wavelet? We have already answered this

question by defining wavelet systems, frames, and ONBs, and we have commented on the

continuous wavelet transform. For example, in the case of wavelet ONBs, ψ ∈ L2(R) is a

wavelet if the sequence {ψm,n : m,n ∈ Z}, where ψm,n was defined in (2.2), is orthonormal

and if

∀ f ∈ L2(R), f =
∑

m,n∈Z

〈f, ψm,n〉ψm,n in L2-norm,

where the inner products 〈f, ψm,n〉 are the wavelet coefficients.

What is wavelet theory? This is a much bigger question, one that was first addressed

in [Mey90] and [Dau92]. It continues to be answered in diverse ways, as existing methods

interact with other branches of mathematics, as the first rush of wavelet results has had a
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chance to regroup and evolve and mature, and as new applications have tested and created

wavelet-based algorithms. Wavelet theory has developed into an imposing mathematical

edifice with vitality and depth, as well as with emerging limitations and baroque tendencies.

The scope of its applicability exhibits a similar effectiveness and limitation. Furthermore,

it is a relief to assert that all that glitters is not a wavelet! Not that anyone ever said

that wavelets were a panacea, but, as indicated earlier, there was definitely a period of

overprescription of them.

The first wavelet ONB was constructed by Haar in his 1909 dissertation (translated in

this volume). The Haar wavelet h for the setting of L2(R) is defined as

h(t) =





1 if t ∈ [0, 1/2),

−1 if t ∈ [1/2, 1),

0 otherwise.

(4.1)

Haar’s work was followed by Walsh’s 1923 construction [Wal23] of ONBs in terms of so-

called Walsh functions. Actually, about 1900 and without any interest in ONBs, engineers

(especially, J. A. Barrett) designed transposition schemes in open-wired lines based on Walsh

functions, and they used these schemes to minimize channel “crosstalk.” The sequence of

Walsh functions on R is the prototype of wavelet packets, just as the Haar wavelet system

{hm,n} is the prototype of wavelet ONBs on R. The theory of wavelet packets is due to

Coifman, Meyer, and Wickerhauser, for example, [Wic94].

It would be nice to give a sequential litany of waveleteers, beginning with Haar and Walsh

and taking us to Meyer and Daubechies. Unfortunately, it didn’t happen linearly. It is true

that the construction of wavelet ONBs is part of a program to construct unconditional bases

for many of the important function spaces in analysis. Hence there is a certain lineage after

Walsh from the article of Franklin (reprinted in this volume) in 1928, to Ciesielski [Cie81], to

Carleson [Car80], and to the article by Strömberg (reprinted in this volume). However, there

were many other paths to the establishment of wavelet theory, not all of which were fully

appreciated by the late 1980s. Briefly, and before the appearance of [Mey90] and [Dau92],

there were wavelet-oriented traditions and/or developments in spline and approximation

theory, in speech and image processing, and in atomic decompositions and the Calderón

reproducing formula.
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In any case, Carleson’s construction of an unconditional basis for the Hardy space H 1 in

1980 led to the spline wavelet ONBs in 1981 in the article by Strömberg. Besides Carleson’s

construction, there was also the construction of Billard [Bil72]. Using cardinal B-splines,

Battle (reprinted in this volume) and Lemarié independently constructed wavelet ONBs in

the late 1980s in the context of wavelet theory. Research on spline wavelets continues to the

present day. Further, there are natural relationships between other aspects of approximation

theory and wavelet theory; see, for example, the article by DeVore, Jawerth, and Popov

reprinted in this volume.

In harmonic analysis, Coifman’s striking decomposition theorem [Coi74] provided a basic

theme in the definitive essay by Coifman and Weiss (reprinted in this volume) for the Hardy

spaces Hp, 0 < p ≤ 1. This theory had an influence on the development of wavelet theory

at the level of expansions in terms of “atoms” (harmonics) having vanishing moments. It is

natural, but not necessary, that the harmonics ψm,n of a wavelet expansion have vanishing

moments.

We shall now give a little more detail about of the topics in wavelet theory that we have

just sketched.

4.2. The Calderón reproducing formula. As mentioned earlier, the Calderón reproduc-

ing formula [Cal64, Section 34] is now synonymous with the so-called continuous wavelet

transform. Calderón’s formula is

f(t) =

∫
∞

0

(ψ1/u ∗ ψ1/u ∗ f)(t)
du

u
, (4.2)

where the dilation ψx is defined as ψx(t) = xψ(tx) for x > 0. Equation (4.2) has been a

major influence from harmonic analysis on wavelet theory, and it can be considered as a

continuous (“overcomplete”) wavelet decomposition of f ∈ L2(R). We have used the term

“wavelet” in the sense of describing f as an integral (“sum”) whose harmonics are dilates

and translates of a fixed function ψ. In fact, equation (4.2) is

f(t) =

∫
∞

0

∫

R

(∫

R

ψ1/u(v − w)f(w)dw

)
ψ1/u(v − t)

dv du

u
,

and so the “sum” we have alluded to is the double integral
∫

∞

0

∫

R

· · ·
dv du

u
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taken over the temporal or spatial variable v and the dilation u. In this case the “wavelet

coefficients” of f are
∫

R

ψ1/u(v − w) f(w) dw, v ∈ R, u > 0.

The formal verification of Calderón’s formula is elementary, as long as ψ satisfies certain

properties. In fact, the Fourier transform of the right side of (4.2) is

f̂(γ)

∫
∞

0

ψ̂(uγ)2
du

u
;

and there are even, real-valued, compactly supported, infinitely differentiable functions ψ

for which

∀ γ ∈ R\{0},

∫
∞

0

ψ̂(uγ)2
du

u
= 1.

See the masterpiece on this topic by Frazier, Jawerth, and Weiss [FJW91].

4.3. Haar ONB. In Haar’s 1909 dissertation (translated in this volume), where he con-

structs the Haar ONB, his historical perspective includes contributors such as Poisson,

Riemann, Cantor, du Bois-Reymond, Fejér (another Weisz in the field!), and Hilbert. We

shall trace his result through the twentieth century, where a host of new names and ideas

emerges.

Hoping against hope, many nineteenth-century harmonic analysts desired that Fourier

series of continuous functions f converge everywhere or even uniformly to f . Of course, du

Bois-Reymond’s 1872 example [dBR76] dashed these dreams. Haar’s dissertation provides

a positive solution to Hilbert’s question of finding an ONB {hm,n}, viz., the Haar ONB, for

L2[0, 1] for which f =
∑

〈f, hm,n〉hm,n uniformly for every continuous 1-periodic function

on R. It is not unexpected that the Haar system is unbounded in supremum norm.

From the point of view of Fourier series, Lusin’s conjecture [Lus13] directed the reaction

of the du Bois-Reymond example to the problem of determining if S(f) = f a.e. for f ∈

L2[0, 1]. This problem was solved affirmatively by Carleson [Car66] and then by Charles

Fefferman [Fef73]. We mention this because of the influence of these results on a recent

and seemingly preordained phase of wavelet theory, viz., the study of wave packets, not to

be confused with wavelet packets. On the road to the solution of Lusin’s conjecture, there

were two significant results by Kolmogorov in the 1920s. Kolmogorov (1922) proved that

there exist f ∈ L1[0, 1] for which S(f) diverges everywhere [Kol26]. Also, with the Lusin
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conjecture in mind, Kolmogorov proved that if f ∈ L2[0, 1] then S(f) = f a.e. when the

sums are taken over dyadic blocks [Kol24]. The proof is elementary but ingenious. The

extension to Lp[0, 1], p > 1 is deep and is an integral part of the original Littlewood–Paley

theory [LP31], [LP37]. Furthermore, such convergence over dyadic blocks has a natural

dyadic wavelet interpretation, see [Mey90].

Besides the aforementioned (Sections 3.1 and 4.1) Walsh functions, to which we shall

return in Section 4.4, there were two other Haar-related sequels published in 1928, both of

which are inspired exclusively by Haar’s article. The first is the article by Philip Franklin

reprinted in this volume and the second is the article by Juljusz Schauder [Sch28].

Philip Franklin (1898-1965) addressed and solved the problem of constructing an or-

thonormal basis {fn} of continuous 1-periodic functions on R such that f =
∑
cn(f) fn

uniformly for every continuous 1-periodic function on R. He did this by orthogonalizing

the integrals of the Haar functions. At a personal level, Franklin met and became friendly

with Norbert Wiener in 1918 at the U.S. Army Proving Ground in Aberdeen, Maryland.

Both were computers, working on noisy hand-computing machines known as “crashers” —

a time invariant scientific bottom line! Wiener became Franklin’s colleague at MIT in 1919,

and the two later became brothers-in-law.

Franklin’s story for this volume serves as background for Strömberg’s article, where

“Franklin wavelets” ψ are constructed with the property that {ψm,n} is an ONB for L2(Rd).

Besides the article by Franklin, Strömberg’s work had other influences (some mentioned in

Section 4.1), including a body of work by Bočkarev, Carleson, Ciesielski, Domsta, Maurey,

Pelcynski, Simon, Sjölin, and Wojtaszczyk from the 1960s to 1980s. One of their themes was

to prove the equivalence or not of various bases. For example, Ciesielski, Simon, and Sjölin

[CSS77] proved that the Haar and Franklin systems are equivalent in Lp[0, 1], 1 < p < ∞.

This brings us back to the 1928 article by Schauder, where he proved that the Haar ONB

for L2[0, 1] is a basis for Lp[0, 1], p ≥ 1. Schauder’s view helped to set the stage long ago for

the wonderful wavelet characterization of Besov spaces and, along with Calderón’s profound

influence, for the wavelet relationship with Littlewood–Paley–Stein theory; for example, see

Section 4.6, Peetre’s classic [Pee76], the 1987 article by Meyer translated in this volume,

and Meyer’s treatise [Mey90]. For perspective, it is well to recall that the Besov spaces
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Bs,q
p are generalizations of the Sobolev spaces (e.g., W s,2 = Bs,2

1
) and the Hölder spaces

Cs = Bs,∞
∞ .

It is interesting to note the following inherent property, one might say limitation, of the

Haar or any multiresolution analysis ONB in the setting of L2(R). If we have a discrete

wavelet representation f =
∑

〈f, hm,n〉hm,n in L2(R), where h is the Haar wavelet defined

by (4.1), then there is “leakage” to infinity of the supports of the hm,n with nonvanishing

coefficients 〈f, hm,n〉, even in the case that f is compactly supported (e.g., see [Dau92]).

4.4. Walsh ONB. Concerning the influence and importance of historical perspective, as

we mentioned with Haar, Joseph L. Walsh (1895–1973) could wax rhapsodic. For example,

in discussing the Riesz–Fischer theorem in the context of the Walsh ONB, he wrote that

its “beauty and simplicity . . . was, and still is, almost overwhelming” [Bas70]. Walsh was

of course aware of Haar’s work, and later he advertised Franklin’s theorem. On the other

hand, he was probably sensitive to priority vis-à-vis the space of orthonormal Rademacher

functions, even though the latter was not an ONB. Rademacher [Rad22] published his

results in 1922 and Walsh in 1923, but the discoveries were independent. Rademacher’s

manuscript was received by the editors of Mathematische Annalen on October 8, 1921;

and Walsh announced his results to the American Mathematical Society at a meeting on

February 25, 1922 (his paper [Wal23] is dated May 1922).

Walsh understood some of the essential differences between the Haar and Walsh ONBs,

especially concerning oscillation properties analogous to the trigonometric functions. In his

recursive definition, Walsh ordered the Walsh functions according to the average number of

zero-crossings of these functions on [0, 1]; this ordering was also used by Kaczmarz [Kac29],

and it is referred to as sequency ordering. Another natural ordering of the Walsh functions

is due to Paley (1932), and it is based on the binary ordering of indices. To be specific,

the sequence {rn : n = 1, ...} of Rademacher functions on [0, 1) is defined by the 1-periodic

functions

∀n = 1, . . . , rn(t) = sgn (sin 2nπt) on R.
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Paley’s binary ordering is based on his theorem asserting that Walsh’s original functions

wn can be written as w0 = 1 and

∀n = 1, . . . , wn(t) =
∏

εj=1

rj(t) on R,

where n =
∑

∞

j=1
εj2

j−1 is the binary expansion of n. A third ordering is based on the

orthogonal ±1 matrices of Sylvester (1867) and Hadamard (1893). It is sometimes called

the Kronecker ordering and is essentially a binary bit inversion of the binary ordering.

Walsh knew that the Haar and Walsh systems were Hadamard transforms of each other,

and that {wn} was uniformly bounded, as opposed to the Haar system. He was not aware

that {wn} is the discrete dual group of the compact dyadic group Z2 ×Z2 × · · · . (Z2 is the

discrete cyclic group of order 2, not the 2-adic integers.) This duality theorem was proved

by Vilenkin [Vil47] and Fine [Fin49]. Paley and Wiener, in their foray into the duality

theory of locally compact abelian groups, had announced a similar result at the ICM in

Zurich (1932).

The peroration for this review of properties of Walsh functions, especially as compared

with the Haar system, is the ultimate distinction (alluded to in Subsection 4.1) between

these two systems. This distinction turns out to be a consequence of wavelet theory: the

Haar system on R is a multiresolution analysis wavelet ONB, and the Walsh system on R

is its corresponding family of wavelet packets!

As a personal postscript to this subsection, I was a student of Walsh in potential theory

in 1960, and we met again as colleagues at the University of Maryland when we both

arrived there in 1965. In the early 1970s he suggested that I study Walsh functions since

there were many problems he thought I’d be interested in. Those were the heady days of

spectral synthesis, and I remained blissfully ignorant of Walsh functions, especially their

applications, until the 1990s. To those less recalcitrant than I, the Proceedings from 1970-

1974 of Applications of Walsh Functions, e.g., [SS74], may provide an archetype of things

to come and are certainly a quantitative and fascinating portrait of things past.

4.5. Filters and an early patent. On July 29, 1983, Goupillaud, Grossmann, and Morlet

filed for a patent on signal representation generators. The patent, based on work of Morlet

[Mor81], [MAFG82], was awarded in 1986.
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Morlet’s idea [Mor81] was to analyze seismic traces by means of sequences of harmonics

each having a fixed shape. The trace s can be considered as the real part of a signal f

whose Fourier transform is causal, that is, f ∈ H 2. He designed these harmonics to be

translates and dilates of a single function ψ. In particular, there are the same number of

cycles for high, medium, and low frequencies. The reconstruction of the trace s is then

effected by its sequence of “sampled values” 〈s, ψm,n〉 (wavelet coefficients) in terms of a

wavelet representation. Morlet originally used modulated Gaussians ψ.

As Goupillaud reminded us in 1997, Morlet’s set {ψm,n} of harmonics necessarily cannot

be orthonormal or linearly independent, because it was vital to achieve noise reduction as

well as stable representation in the physical problems being addressed.

Furthermore, Morlet’s beautiful idea was first quantified with the proper mathematical

tools by Alex Grossmann. This was a significant scientific contribution, fortuitously jux-

taposed with the fact that Daubechies was working with Grossmann. Apparently, Roger

Balian, who formulated the ONB version of the Balian–Low uncertainty principle for exact

Gabor frames, had advised for the Morlet–Grossmann connection, which led to a large body

of results including [GGM84] as well as their article reprinted in this volume. Despite my

proclivity to extol the many virtues of Gabor systems, these systems arise in the Goupil-

laud, Grossmann, and Morlet patent as a technological device with shortcomings (inherent

undersampling problems in analyzing high frequencies), which are overcome by the Morlet

approach.

The first smooth wavelet ONBs for L2(Rd) were constructed by Strömberg (reprinted

in this volume), for ψ m-times continuously differentiable with exponential decay, and by

Meyer (1985), for bandlimited ψ in the Schwartz class on R, and by Lemarié on Rd; see

the article by Lemarié and Meyer (translated in this volume). We have already mentioned

Daubechies’ construction of a compactly supported m-times continuously differentiable or-

thonormal wavelet in 1987. In his Zygmund lectures, Meyer used Mallat’s newly packaged

(1986) concept of multiresolution analysis (MRA) to prove the Daubechies theorem, see the

articles by Mallat reprinted in this volume.

We have introduced MRAs in the same breath while discussing patents because of the

signal processing origins of MRAs. These origins are represented by the articles in Part I. At

the risk of oversimplification, the article by Burt and Adelson reprinted in this volume and
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their article [BA83] are a substantial precursor for the structural nature of MRAs, and the

remaining articles in Part I provide the decidedly nontrivial nuts and bolts for constructing

a wavelet ψ by means of conjugate mirror filters (CMFs) arising in the Fourier analysis of an

MRA. Nowadays, the details to clarify and verify the claims in the previous teutonic sentence

can be found in many places, but one can do no better than reading the triune treatises

by Meyer [Mey90], Daubechies [Dau92], and Mallat [Mal98]. A beautiful component in

establishing the relation between MRAs and CMFs is Albert Cohen’s equivalence theorem

(translated in this volume) for these notions in the case that the Fourier transform of the

scaling function is in each of the Sobolev spaces Wm,2(R), m ∈ N. Another gem in this area

is the article by Lawton (reprinted in this volume), which constructs compactly supported

tight frames for a given trigonometric polynomial CMF.

I had the good fortune to consult for The MITRE Corporation in Washington, D.C.

for many years. Consultation for me included an enlightening and respectful exposure to

engineering excellence. MITRE’s Signal Processing Group was actively involved in designing

algorithms for digitizing voice. By 1981, it was not only implementing CMFs from the work

of Esteban and Galand and Crochiere, Webber, and Flanagan (both in this volume), but

also from a host of related work, for example, Croisier, Esteban, and Galand [CEG76]

and Barnwell [BI81]. By 1987, we had discovered (along with many others in industrial

or government laboratories) the groundbreaking article by Smith and Barnwell reprinted

in this volume, along with [SBI86] and [SBI87], as well as the article by Vetterli in this

volume and his earlier work [Vet84]. Furthermore, besides the article by Vaidyanathan in

this volume, his book [Vai93] became a staple in our group.

4.6. Harmonic analysis and wavelets in the 1980s. At this point, and dealing with

wavelet theoretic harmonic analysis in the mid-1980s, we have commented on the work

of Cohen, Daubechies, Lemarié, Mallat, and Meyer. There was contemporary, as well as

comparably creative and fundamental, wavelet theoretic harmonic analysis produced by

Frazier and Jawerth and Feichtinger and Gröchenig (both in this volume).

An impetus for the work of Frazier and Jawerth was Uchiyama’s smooth atomic decom-

position of L2(Rd) [Uch82] which is a consequence of the Calderón reproducing formula.

Bidisc and parabolic versions appeared before the Euclidean version! Another impetus was

Michael Wilson’s use of the Calderón formula to obtain a smooth atomic decomposition of
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B0,1
1

. This led to the Frazier–Jawerth smooth atomic decomposition of B s,q
p , and then to

Triebel-Lizorkin spaces. They also replaced these smooth atomic decomposition methods

with the φ-transform, which allows representation independent of the function being decom-

posed. They had therefore obtained a discrete reformulation of the Littlewood-Paley-Stein

theory! Their work was influenced by variations on Hardy space decompositions due to

Coifman–Rochberg [CR80] and Ricci–Taibleson [RT83]. The Frazier–Jawerth article in this

volume on wavelet frame representations of Besov spaces was submitted on September 17,

1984. The subsequent results on Triebel-Lizorkin spaces were obtained shortly thereafter,

but their papers containing them “grew to maturity” before appearing in 1988 and 1990.

The harmonic analysis background for the article by Frazier and Jawerth was firmly in

the realm of the Zygmund–Calderón “school.” The harmonic analysis background for the

article by Feichtinger and Gröchenig is more abstract and equally important.

When I first tried to understand Feichtinger and Gröchenig’s atomic decomposition the-

ory (actually, it was one of their infamous preliminary versions), I was unprepared to plumb

its depths. It has aged lucidly — a quality personally sought by said plumber. It remains a

creative tour d’horizon, extending its tentacles to Banach frames and flexing its formidable

technology into a well-developed methodology to address new problems in wavelet theory

and its applications. Feichtinger and Gröchenig use representation theory in a fundamental

way. They deal with algebraic and structural aspects of classical topics such as Wiener’s

Tauberian theory. For example, let S0(R
d) be the smallest Segal algebra isometrically in-

variant under translation and modulation. Then, S0(R
d) can be identified with the Wiener

amalgam space whose global norm is determined by `1(Zd) and whose local norm is deter-

mined by the space of absolutely convergent Fourier transforms. Their approach to wavelet

theory and the construction of unconditional bases uses their methodology for analyzing

coorbit spaces. In particular, if one considers the Schrödinger representation of the Heisen-

berg group, then S0(R
d) is obtained as the coorbit of L1(R2d). With this approach, and

independent of the Calderón-Zygmund theory, they proved that sufficiently structured or-

thonormal wavelets for L2(Rd) give rise to unconditional bases for all of the corresponding

coorbit spaces including Besov and Triebel-Lizorkin spaces [FG88].
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5. Conclusion

At the beginning of Section 4, we asked: What is wavelet theory?

For me the answer is both theoretical and concrete. On the one hand, in harmonic

analysis, wavelet theory is a natural continuation in the history of some of the ideas that

define our subject. On the other hand, wavelet theory has become an effective tool to

address some problems in engineering, mathematics, and the sciences. As such, it also

provides a unifying methodology allowing for the possibility of genuine communication

between diverse groups. The articles herein indicate a protean body of knowledge so that

my answer to the above question is assuredly only one of many. Similarly, this introduction

may seem idiosyncratic to others who have also thought about wavelet theory. I hope I have

not crafted a procrustean bed with questionable resemblance to the spirit of the articles

that follow.

Finally, just as I began by saying that the articles in this volume needed no introduction,

so too the introducers. I shall not resist listing two among my favorite publications by

each of them: Jelena Kovačević [VK95] and [GKK01]; Jean-Pierre Antoine [AAG00] and

[AKLT00]; Hans Feichtinger [FS03] and [Fei02]; Yves Meyer [Mey72] and [JM96]; Guido

Weiss [HW96] and [CCMW02]; and Victor Wickerhauser [Wic94] and [Wic03].

The denouement of wavelet theory may lie in the future, or may have already been

integrated in the present, but this volume represents its virtuosic roots.
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[FG88] H. G. Feichtinger and K. Gröchenig, A unified approach to atomic decompositions via integrable

group representations, Function Spaces and Applications, Proc. U.S.-Swed. Semin. Lect. Notes

Math. 1302, Lund, Sweden, 1988, 52–73.

[FS03] H. G. Feichtinger and T. Strohmer, Advances in Gabor Analysis, Birkhäuser, Boston, 2003.
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