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Abstract. We analyze the time-frequency concentration of the Gabor or-
thonormal basis G(f, 1, 1) constructed by Høholdt, Jensen, and Justesen. We
prove that their window function f has near optimal time and frequency local-
ization with respect to a non-symmetric version of the Balian-Low Theorem.
In particular, we show that if (p, q) = (3/2, 3), then

R
|t|p−ε|f(t)|2dt < ∞ andR

|γ|q−ε| bf(γ)|2dγ < ∞, for 0 < ε ≤ 3/2, but that both integrals are infinite if
ε = 0.

1. Introduction

Given a square integrable function g ∈ L2(R) and constants a, b > 0, the associ-
ated Gabor system, G(g, a, b) = {gm,n}m,n∈Z, is defined by

gm,n(t) = e2πiamtg(t − bn).

Gabor systems are of considerable interest for their ability to give frame decom-
positions for many function spaces, [18], [13], [14], [4]. A collection {en}n∈Z ⊆ L2(R)
is a frame for L2(R) if there exist constants 0 < A ≤ B < ∞ such that

∀f ∈ L2(R), A||f ||2L2(R) ≤
∑

n∈Z

|〈f, en〉|2 ≤ B||f ||2L2(R).

If G(g, a, b) is a frame for L2(R), we shall refer to it as a Gabor frame for L2(R); if
it is an orthonormal basis for L2(R) we refer to it as a Gabor orthonormal basis for
L2(R).

A key property of Gabor systems is the fact that one can construct Gabor frames,
G(g, a, b), for L2(R) such that the window function g has excellent time and fre-

quency localization. For example, if 0 < ab < 1 and g(t) = e−t2 , then G(g, a, b) is
an oversampled Gabor frame for L2(R), e.g., [18], Chapter 7. Overcompleteness is
a very important part of such well localized constructions and can provide robust-
ness and numerical stability in applied settings. On the other hand, if g ∈ L2(R),
and G(g, a, b) is an orthonormal basis for L2(R), then one must have ab = 1, e.g.,
[18], Corollary 7.5.2. If one wishes to construct Gabor orthonormal bases, i.e., non-
redundant frames, then there are severe restrictions on the window function’s time
and frequency localization. The Balian-Low Theorem makes this precise. We use
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the Fourier transform defined by ĝ(γ) =
∫

g(t)e−2πiγtdt, where our convention is
that the integral without specific limits denotes the integral over R.

Theorem 1.1 (Balian-Low). Let g ∈ L2(R). If
∫

|t|2|g(t)|2dt < ∞ and

∫
|γ|2|ĝ(γ)|2dγ < ∞,

then G(g, 1, 1) is not an orthonormal basis for L2(R).

The Balian-Low Theorem has undergone numerous extensions and generaliza-
tions since the early references [2], [23], [3], [8]. For example, it holds in higher
dimensions for rather general time-frequency lattices, and also holds if one replaces
“orthonormal basis” by “Riesz basis”. For recent work related to the Balian-Low
Theorem see [1], [5], [6], [7], [9], [10], [16], [19], [11]. The issue of sharpness or
optimality in the Balian-Low Theorem was investigated in [6]. There, it was shown
that the following result holds true.

Theorem 1.2. If 1
p + 1

q = 1, where 1 < p, q < ∞, and d > 2, then there exists a

function g ∈ L2(R) such that G(g, 1, 1) is an orthonormal basis for L2(R) and
∫

1 + |t|p
logd(2 + |t|)

|f(t)|2dt < ∞ and

∫
1 + |γ|q

logd(2 + |γ|)
|f̂(γ)|2dγ < ∞.

Letting (p, q) = (2, 2) in Theorem 1.2 shows how to construct Gabor orthonor-
mal bases which are essentially optimally localized with respect to the Balian-Low
Theorem. In particular, the bases constructed come within a logarithmic factor of
satisfying the forbidden localization hypotheses of the Balian-Low Theorem.

Since Theorem 1.2 also constructs Gabor orthonormal bases for values of (p, q)
other than (2, 2), it is natural to ask whether there are versions of the Balian-Low
Theorem for the weights (tp, γq). The best that is known is the following.

Theorem 1.3. Suppose 1
p + 1

q = 1 with 1 < p < ∞ and let ε > 0. If
∫

|t|(p+ε)|g(t)|2dt < ∞ and

∫
|γ|(q+ε)|ĝ(γ)|2dγ < ∞,

then G(g, 1, 1) is not an orthonormal basis for L2(R).

The above theorem follows by combining Theorem 4.4 of [12] and Theorem 1 in
[17]. By the Balian-Low Theorem, one may set ε = 0 if (p, q) = (2, 2). A version of
the Balian-Low Theorem for the case (p, q) = (1,∞) is given in [7].

2. Overview

Theorem 1.2 constructively produces Gabor orthonormal bases which are almost
optimally localized with respect to the Balian-Low Theorem and Theorem 1.3.
However, these bases do not have simple expressions. The main aim of this paper
is to study the elegant Gabor orthonormal basis constructed by Høholdt, Jensen,
and Justesen in [22], and to show that it is almost optimally localized with respect
to Theorem 1.3 for a certain choice of (p, q). Their basis has a simpler, more
explicit, form than those in [6], and gives insight into other ingredients needed for
constructing well localized Gabor bases. The key ingredients in the constructions
in [22] and [6] are functions which possess unimodular Zak transforms with small
singular supports. For perspective, we remark that [21] provides several examples
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of functions with Zak transforms with few zeros which are used to construct tight
Gabor frames. These examples could provide further insight into the study of
optimality in the Balian-Low Theorem, and merit future investigation.

The remainder of the paper is organized as follows. In Section 3, we recall the
basis of Høholdt, Jensen, and Justesen, and state our main result Theorem 3.3. In
Section 4 we prove the time localization estimates for the basis, and in Section 5
we prove the frequency localization estimates. We end with some relevant remarks
in Section 6.

3. The Gabor basis of Høholdt, Jensen, and Justesen

The Zak transform is an important tool in the analysis and construction of Gabor
systems, e.g., [18], Chapter 8. Given g ∈ L2(R), the Zak transform is formally
defined by

∀(t, γ) ∈ R × R, Zg(t, γ) =
∑

n∈Z

g(t − n)e2πinγ .

With the above definition, the Zak transform satisfies the quasiperiodicity relations:

∀k ∈ Z, Zf(x, γ + k) = Zf(x, γ),

and

∀k ∈ Z, Zf(x + k, γ) = Zf(x, γ) e2πikγ ,

e.g., see [18], Section 8.2. Thus, the Zak transform Zf of a function f ∈ L2(R) is a
locally square integrable function defined on all of R2 and is uniquely determined
by its values on Q ≡ [0, 1)2. Therefore, Z defines a unitary operator from L2(R) to
L2(Q), and its inverse Z−1 : L2(Q) → L2(R) is formally given by

∀t ∈ R, (Z−1F )(t) =

∫ 1

0

F (t, γ)dγ.

The utility of the Zak transform for constructing Gabor bases stems from the
following result, e.g., [18], Corollary 8.3.2, which forms the foundation for the con-
structions in both [6] and [22], cf., [21].

Theorem 3.1. Let g ∈ L2(R). Then, G(g, 1, 1) is an orthonormal basis for L2(R)
if and only if |Zg(t, γ)| = 1 for a.e. (t, γ) ∈ Q.

This shows that constructing Gabor orthonormal bases is equivalent to con-
structing unimodular functions on L2(Q). Høholdt, Jensen, and Justesen consider
the function F ∈ L2(Q) defined by

(3.1) ∀(t, γ) ∈ Q, F (t, γ) =
1 + α(t)e2πiγ

1 + α(t)e−2πiγ
,

where α : [0, 1] → [0, 1] is a measurable function. In [22], the function α was chosen

as α(t) = sin(π
2 t), since this was shown to minimize

∫
|γ|2|(Ẑ−1F )(γ)|2dγ.

Definition 3.2. Let f ∈ L2(R) be the function defined by (3.1), where

(3.2) f = Z−1F and α(t) = sin(
π

2
t).
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It was proven in [22] that f ∈ L1(R) ∩ L2(R), and that f is explicitly defined by
(3.3)

f(t) =





0, if t ∈ (−∞,−1],

sin(π
2 (t + 1)), if t ∈ (−1, 0],

(−1)n cos2(π
2 (t − n)) sinn(π

2 (t − n)), if t ∈ (n, n + 1], n = 0, 1, 2, . . ..

−2 0 2 4 6 8 10
−0.5

0

0.5

1

Figure 1. Graph of the function f .

It is easy to verify that |Zf(t, γ)| = |F (t, γ)| = 1 for a.e. (t, γ) ∈ Q, and hence
G(f, 1, 1) is an orthonormal basis for L2(R). We may now state our main result as
follows.

Theorem 3.3. Let f ∈ L2(R) be the window function defined by Definition 3.2.
For every 0 < ε ≤ 3/2, f satisfies

(3.4)

∫
|t|3/2−ε|f(t)|2dt < ∞ and

∫
|γ|3−ε|f̂(γ)|2dγ < ∞.

Moreover,

(3.5)

∫
|t|3/2|f(t)|2dt = ∞ and

∫
|γ|3|f̂(γ)|2dγ = ∞.

In particular, the Gabor orthonormal basis G(f, 1, 1) is almost optimally localized
with respect to Theorem 1.3 with (p, q) = (3/2, 3).

4. Time localization estimates

In this section we derive the time localization estimates in Theorem 3.3.

Theorem 4.1. Let f ∈ L2(R) be the function defined in Definition 3.2 and let
a > 0. Then ∫

|t|a|f(t)|2dt < ∞ if and only if a < 3/2.

Proof. A direct calculation shows that for n = 0, 1, 2, · · ·
∫ n+1

n

|f(t)|2dt =

∫ 1

0

cos4(
π

2
t) sin2n(

π

2
t)dt(4.1)

=
2

π

(
3

4n2 + 12n + 8

) ∫ π/2

0

sin2n u du.
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One can also calculate that

2

π

∫ π/2

0

sin2n u du =
(1)(3)(5)(7) · · · (2n − 1)

(2)(4)(6)(8) · · · (2n)
≡ Pn.(4.2)

By taking the natural log of Pn and using Taylor approximations for ln(1−x) near
x = 0 to estimate the resulting sum, it is straightforward to show that

Pn ∼ 1√
n

.(4.3)

Equivalently, we could use Stirling’s formula for Gamma function to show (4.3).
Here and subsequently A ∼ B means that A . B . A, where A . B, in turn,
means that there exists an absolute constant C such that A ≤ CB. When necessary,
we shall point out any dependence of the implicit constants on other parameters.
Therefore,

∫ ∞

1

|t|a|f(t)|2dt ≥
∞∑

n=1

na

∫ n+1

n

|f(t)|2dt

=

∞∑

n=1

na

(
3

4n2 + 12n + 8

)
Pn &

∞∑

n=1

na−5/2.

In particular,

a ≥ 3/2 =⇒
∫

|t|a|f(t)|2dt = ∞.

Also, using (4.1), (4.2), and (4.3), we obtain the estimate,

∫ ∞

1

|t|a|f(t)|2dt .

∞∑

n=1

(n + 1)a

n5/2
.

Since f is bounded on [−1, 1], and f = 0 on (−∞,−1), it follows that

0 < a < 3/2 =⇒
∫

|t|a|f(t)|2dt < ∞.

�

5. Frequency localization estimates

In this section we derive the frequency localization estimates in Theorem 3.3.

Theorem 5.1. Let f ∈ L2(R) be the function defined in Definition 3.2 and let
0 < a. Then ∫

|γ|a|f̂(γ)|2dγ < ∞ if and only if a < 3.

It will be convenient to view Theorem 5.1 in terms of Sobolev spaces. Given
s > 0, the homogeneous Sobolev space of order s, denoted by Ḣs(R), consists of all
g ∈ L2(R) such that ||g||2

Ḣs(R)
≡

∫
|γ|2s|ĝ(γ)|2dγ < ∞. For later convenience, we

also define 〈f, g〉Ḣs(R) =
∫
|γ|2sf̂(γ)ĝ(γ)dγ. Theorem 5.1 now says that 0 < s < 3/2

implies f ∈ Ḣs(R), and that s ≥ 3/2 implies f /∈ Ḣs(R). The following result, e.g.,

[24], Chapter 8, gives a useful alternate characterization of Ḣs(R). It is used in the
proof of Lemma 5.6.
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Lemma 5.2. If 0 < s < 2 and f ∈ Ḣs(R), then there exists Cs > 0 such that

||f ||2
Ḣs(R)

= Cs

∫ ∫ |f(x + t) + f(x − t) − 2f(x)|2
|t|1+2s

dxdt.

Lemma 5.2 can be proven by applying Parseval’s Theorem to the inner integral.
A similar calculation gives the following result used in the proof of Lemma 5.8.

Lemma 5.3. If 0 < s < 2 and f, g ∈ Ḣs(R) then there exists Cs > 0 such that

〈f, g〉Ḣs(R)= Cs

∫ ∫
(f(x + t) + f(x − t) − 2f(x))(g(x + t) + g(x − t) − 2g(x))

|t|2s+1
dxdt.

We shall use the following lemma directly in Theorem 5.1.

Lemma 5.4. If 3 ≤ a then f /∈ Ḣa/2(R).

Proof. If 3 ≤ a < 4 then for 0 < η small

||f ||2
Ḣa/2(R)

∼
∫ ∫ |f(x + t) + f(x − t) − 2f(x)|2

|t|1+a
dxdt ≥

∫ η

0

∫ 0

−t

sin2(π
2 (x + t))

|t|1+a
dxdt

&

∫ η

0

∫ 0

−t

(x + t)2

|t|1+a
dxdt &

∫ η

0

t3

|t|1+a
dt = ∞.

Since f ∈ L1(R), it now also follows that f /∈ Ḣa/2(R) for all 3 ≤ a. �

We now prove that 0 < a < 3 implies f ∈ Ḣa/2. Since this is more involved
than our prior estimates, we split it up into several lemmas (Lemmas 5.9 and 5.10).
Lemma 5.5 is used in Lemma 5.6, which, in turn, is used in the proof of Lemma
5.7. Lemmas 5.7 and 5.8 allow us to prove Lemma 5.9.

Lemma 5.5. For n ≥ 3, let fn(t) = 1(n,n+1](t)f(t), where 1S(t) denotes the char-
acteristic function of a set S ⊆ R. The functions fn have the following properties:

(1) fn is continuous and differentiable on R.
(2) f ′′

n (t) exists for all t ∈ R\{n + 1}.
(3) ||fn||2L2(R) . 1/n5/2 and ||fn||1/2

L1/2(R)
. 1/n.

(4) If 0 < δ < 3/2, then ||fn||1/2+δ

L1/2+δ(R)
. 1/n1+δ.

(5) ∀t ∈ R\{n + 1}, |f ′′
n (t)| . 1.

The implicit constants in (3) and (4) are independent of n, and the implicit constant
in (5) is independent of t and n.

Proof. The first two items can be verified by direct calculations. The estimate for
||fn||2L2(R) in (3) has already been done in the proof of Theorem 4.1. In fact,

||fn||2L2(R) =

(
3

4n2 + 12n + 8

)
Pn .

1

n2.5
.

The estimate for ||fn||1/2

L1/2(R)
in (3) holds since

||fn||1/2

L1/2(R)
=

∫ n+1

n

cos(
π

2
(t − n)) sin

n
2 (

π

2
(t − n))dt =

4

π(n + 2)
.

The fourth item follows from (3) and the following standard interpolation for-
mula, e.g, [15], Proposition 6.10,

||f ||Lq(R) ≤ ||f ||λLp(R)||f ||1−λ
Lr(R),
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where

0 < p < q < r ≤ ∞ and λ =
1/q − 1/r

1/p− 1/r
.

To prove (5) first note that, for n < t < n + 1,

f ′′
n (t − n) =(−1)n

(
−(5n + 2)

π2

4
sinn(

π

2
t) cos2(

π

2
t)

+ 2
π2

4
sinn+2(

π

2
t) +

π2

4
n(n − 1) cos4(

π

2
t) sinn−2(

π

2
t)

)
.

Therefore, f ′′
n (t − n) = (−1)nhn(u), where u = sin2(π

2 (t − n)), and

hn(u) =
π2

4
un/2−1

[
2u2 − (5n + 2)u(1 − u) + n(n − 1)(1 − u)2

]
.

Straightforward, but tedious, calculations show that |hn(t)| ≤ C on (n, n + 1),
for some constant C independent of t and n. Since f ′′

n (t) = 0 on R\(n, n + 1], we
conclude that |f ′′

n (t)| . 1 on R\{n + 1}. �

Lemma 5.6. Assume 0 < a < 3, and let ε = 3 − a. Then

∀n ≥ 3, ||fn||2Ḣa/2(R)
.

1

n1+ε/4
.

The implicit constant is independent of n.

Proof. We shall estimate ||fn||2Ḣa/2(R)
by using the double integral in Lemma 5.2.

Let B = {t ∈ R : |t| < 1}, and note that

∫

R\B

∫

R

|fn(x + t) + fn(x − t) − 2fn(x)|2
|t|a+1

dxdt . ||fn||2L2(R)

∫

R\B

1

|t|a+1
dt .

1

n5/2
.

It remains for us to estimate

∫

B

∫

R

|fn(x + t) + fn(x − t) − 2fn(x)|2
|t|a+1

dxdt.

We write this as the sum of two integrals, over [0, 1]×R and [−1, 0]×R, respectively.
Since the estimates for both integrals are similar, it suffices to consider the first,
which, in turn, is estimated by breaking it up into the following four integrals.

I1 =

∫ 1

0

∫ n−t

−∞

, I2 =

∫ 1

0

∫ n+1−t

n−t

, I3 =

∫ 1

0

∫ n+1+t

n+1−t

, I4 =

∫ 1

0

∫ ∞

n+1+t

.

First, note that the support properties of fn imply that I1 = 0 and I4 = 0.
Next note that if x + t, x − t, x are all less than n + 1, then Lemma 5.5 and the

mean value theorem imply

(5.1) |fn(x + t) + fn(x − t) − 2fn(x)| . |t|2,
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where the implicit constant is independent of x, t and n. To estimate I2 note that,
by (5.1) and Lemma 5.5,

W2(t) ≡
∫ n+1−t

n−t

|fn(x + t) + fn(x − t) − 2fn(x)|2dx

. |t|3−ε/2

∫ n+1−t

n−t

|fn(x + t) + fn(x − t) − 2fn(x)|1/2+ε/4dx

. |t|3−ε/2 ||fn||1/2+ε/4

L1/2+ε/4(R)
.

|t|3−ε/2

n1+ε/4
.

It now follows that

I2 =

∫ 1

0

W2(t)

|t|a+1
dt =

∫ 1

0

W2(t)

|t|4−ε
dt . 1/n1+ε/4

∫ 1

0

1

|t|1−ε/2
dt . 1/n1+ε/4.

To estimate I3, define

W3(t) =

∫ n+1+t

n+1−t

|fn(x + t) + fn(x − t) − 2fn(x)|2dx.

Note that by the definition of fn and its support properties,

W3(t) =

∫ n+1+t

n+1−t

|fn(x − t) − 2fn(x)|2dx .

∫ n+1

n+1−2t

|fn(x)|2dx

.

∫ n+1

n+1−2t

cos4(
π

2
(x − n))dx . |t|5.

Moreover, we also have

W3(t) . ||fn||2L2(R) .
1

n5/2
.

Thus, in order to estimate W3 we may use the fact that for x, y > 0 and α ∈ [0, 1],
min{x, y} ≤ xαy1−α. When α = (6 − ε)/10, we obtain:

W3(t) .
|t|3−ε/2

n1+ε/4
.

Thus

I3 =

∫ 1

0

W3(t)

|t|a+1
dt =

∫ 1

0

W3(t)

|t|4−ε
dt . 1/n1+ε/4.

�

Lemma 5.7. Assume 0 < a < 3 and let ε = 3 − a. If 3 ≤ m, n, and |m − n| = 1,
then

|〈fn, fm〉Ḣa/2(R)| .
1

n1+ε/4
.

The implicit constant is independent of n and m.

Proof. Without loss of generality assume m = n + 1. It follows from Lemma 5.6
that

|〈fn, fm〉Ḣa/2(R)| ≤ ||fn||Ḣa/2(R)||fm||Ḣa/2(R)

.

(
1

n1+ε/4

) 1
2

(
1

m1+ε/4

) 1
2

≤ 1

n1+ε/4
.

�
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Lemma 5.8. Let 0 < a. If 3 ≤ m, n and 1 < |m − n|, then

|〈fn, fm〉Ḣa/2(R)| .
1

|m − n|a|n|5/4|m|5/4
.

The implicit constant is independent of m and n.

Proof. Without loss of generality assume 0 < n < m− 1. Let Sm,n = {t ∈ R : |t| >
(m − n − 1)/2} and let

Fm(x, t) = fm(x + t) + fm(x − t) − 2fm(x).

Note that

t /∈ Sm,n =⇒ Fm(x, t)Fn(x, t) = 0.

Also, ∫
|Fm(x, t)Fn(x, t)|dx . ||fn||L2(R)||fm||L2(R).

Therefore, by Lemma 5.3,

|〈fn, fm〉Ḣa/2(R)| ≤
∫

Sm,n

∫

R

|Fm(x, t)Fn(x, t)|
|t|a+1

dxdt

. ||fn||L2(R)||fm||L2(R)

∫

Sm,n

1

|t|a+1
dt

.
||fn||L2(R)||fm||L2(R)

|m − n|a .
1

n5/4m5/4|m − n|a .

�

To estimate the norm ||f ||Ḣa/2(R) we first break f up into the two parts F1(t) =

f(t)1(−1,3](t) and F2(t) = f(t)1(3,∞)(t). Since f = 0 on (−∞,−1] we have f =
F1 + F2. We have the following estimate for F2.

Lemma 5.9. If 0 < a < 3 then ||F2||2Ḣa/2(R)
< ∞.

Proof. Let ε = 3 − a, and note that F2 =
∑∞

n=3 fn. Define

S1 = {(m, n) ∈ Z2 : m, n ≥ 3 and |m − n| = 1}
and

S2 = {(m, n) ∈ Z2 : m, n ≥ 3 and |m − n| > 1}.
By Lemmas 5.6, 5.7, and 5.8 we have

||F2||2Ḣa/2(R)
=

∣∣∣∣∣

∣∣∣∣∣

∞∑

n=3

fn

∣∣∣∣∣

∣∣∣∣∣

2

Ḣa/2(R)

≤
∞∑

m=3

∞∑

n=3

|〈fm, fn〉Ḣa/2(R)|

=

∞∑

n=3

||fn||2Ḣa/2(R)
+

∑

(m,n)∈S1

|〈fn, fm〉Ḣa/2(R)| +
∑

(m,n)∈S2

|〈fn, fm〉Ḣa/2(R)|

.

∞∑

n=1

1

n1+ε/4
+

∞∑

n=1

1

n1+ε/4
+

∑

(m,n)∈S2

1

n5/4m5/4|m − n|2a
< ∞.

�
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In view of Lemma 5.9, and since

||f ||Ḣa/2(R) ≤ ||F1||Ḣa/2(R) + ||F2||Ḣa/2(R),

it only remains to estimate ||F1||Ḣa/2(R). Note that by the definition of f , F1

is compactly supported, continuous on R, and infinitely differentiable away from
x1 = −1, x2 = 0, x3 = 1, x4 = 2, and x5 = 3. Moreover the first derivative of F1

also exists at x2, x3, x5. However, the second derivative of F1 does not exist at any
of the points x1, x2, x3, x4, x5.

It therefore suffices to estimate ||ϕjF1||Ḣa/2(R) for j = 1, 2, 3, 4, 5, where ϕj is an

infinitely differentiable function satisfying

ϕj(x) = 1 for |x − xj | < 2ν, and ϕj(x) = 0 for |x − xj | > 4ν,

with 0 < ν sufficiently small.
We present a proof that is analogous to our previous estimates and uses Lemma

5.2. Alternately, one can proceed more directly and use an argument involving
integration by parts.

Lemma 5.10. Let 0 < a < 3 and let ϕjF1 be as above for j = 1, 2, 3, 4, 5. Then

||ϕjF1||Ḣa/2(R) < ∞, j = 1, 2, 3, 4, 5.

Consequently, ||F1||Ḣa/2(R) < ∞.

Proof. We shall only show the estimate for ||ϕ3F1||Ḣa/2(R), since the other four

estimates proceed along similar lines.
Let h(t) = (ϕ3F1)(t − 1). We need to estimate the double integral

||ϕ3F1||2Ḣa/2(R)
= ||h||2

Ḣa/2(R)
∼

∫ ∫ |h(x + t) + h(x − t) − 2h(x)|2
|t|1+a

dxdt.

Let ν be as in the definition of ϕ3 above, and note that if Bν = {t ∈ R : |t| < ν}
then∫

R\Bν

∫

R

|h(x + t) + h(x − t) − 2h(x)|2
|t|1+a

dxdt . ||h||2L2(R)

∫

R\Bν

1

|t|1+a
dt < ∞.

Next note that h(t) is infinitely differentiable away from t = 0, and has bounded
first and second derivatives on R\{0}. Therefore, if x+t, x−t and x are all positive,
or all negative, then it follows from the mean value theorem that

(5.2) |h(x + t) + h(x − t) − 2h(x)| . |t|2.
Likewise, if x + t and x are both positive or both negative, then

(5.3) |h(x + t) − h(x)| . |t|.
The implicit constants in (5.2) and (5.3) are independent of x and t.

To estimate the remaining integral
∫ ν

−ν

∫

R

|h(x + t) + h(x − t) − 2h(x)|2
|t|1+a

dxdt,

we break this integral up over the domains [ν, 0] × R and [−ν, 0] × R. Since both
integrals are similar we only show estimates for the first, which, in turn, we estimate
by considering the integrals

J1 =

∫ ν

0

∫ ∞

t

, J2 =

∫ ν

0

∫ t

0

, J3 =

∫ ν

0

∫ 0

−t

, J4 =

∫ ν

0

∫ −t

−∞

.
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It follows from (5.2), and the compact support of h, that

J1 =

∫ ν

0

∫ ∞

t

|h(x + t) + h(x − t) − 2h(x)|2
|t|1+a

dxdt

=

∫ ν

0

∫ 5ν

t

|h(x + t) + h(x − t) − 2h(x)|2
|t|1+a

dxdt .

∫ ν

0

|t|4
|t|1+a

dt < ∞.

The estimate for J4 < ∞ is similar.
To estimate J2, note that J2 . J2,1 + J2,2 where

J2,1 =

∫ ν

0

∫ t

0

|h(x + t) − h(x)|2
|t|a+1

dxdt and J2,2 =

∫ ν

0

∫ t

0

|h(x − t) − h(x)|2
|t|a+1

dxdt.

It follows from (5.3) that

J2,1(t) .

∫ ν

0

∫ t

0

|t|2
|t|1+a

dxdt =

∫ ν

0

|t|3
|t|a+1

dt < ∞.

Next, define

H(x, t) = cos2(
π

2
(x − t − 1)) + cos2(

π

2
x) sin(

π

2
x)

= sin2(
π

2
(x − t)) + cos2(

π

2
x) sin(

π

2
x),

and note that
∫ t

0

|H(x, t)|2dx .

∫ t

0

|(x − t)2|2dx +

∫ t

0

|x|2dx . |t|3.

It now follows that

J2,2 =

∫ ν

0

∫ t

0

|H(x, t)|2
|t|a+1

dxdt .

∫ ν

0

|t|3
|t|a+1

dt < ∞.

Therefore,

J2 . J2,1 + J2,2 < ∞.

By using calculations, similar to those used to deal with J2, one can also show that
J3 < ∞. We can now conclude that ||ϕ3F1||Ḣa/2(R) = ||h||Ḣa/2(R) < ∞.

The estimates for ||ϕjF2||Ḣa/2(R), j = 1, 2, 4, 5, proceed along similar lines as

above. �

Proof of Theorem 5.1. Combining Lemmas 5.9 and 5.10 shows that if 0 < a < 3
then

(∫
|γ|a|f̂(γ)|2dγ

)1/2

= ||f ||Ḣa/2(R) ≤ ||F1||Ḣa/2(R) + ||F2||Ḣa/2(R) < ∞.

Together with Lemma 5.4 this completes the proof of Theorem 5.1. �

Our main result Theorem 3.3 now follows by combining Theorem 4.1 and The-
orem 5.1.
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6. Concluding remarks

1. Throughout this remark we shall assume that Zak transforms have been
quasiperiodically extended to L2

loc(R
2). A key idea in the construction of [6] was

to choose the Gabor window function g so that |Zg| = 1 a.e. and such that Zg has
minimal singular support. In fact, the function Zg used in [6] was locally C∞ on
R2 except at one point in each square Sj,k = (j, j + 1] × (k, k + 1], j, k ∈ Z.

By comparison, one can show that the quasiperiodic extension of Høholdt, Jen-
sen, and Justesen’s function F = Zf defined in (3.1) is continuous on R2 except
at the set {(j, k + 1/2) : j, k ∈ Z}. However, F is non-differentiable on the set
{(t, j) : t ∈ R, j ∈ Z}. In this regard, the construction in [6] provides a Gabor or-
thonormal basis G(g, 1, 1) such that Zg has more smoothness than F = Zf in (3.1).

2. We have shown that the basis of Høholdt, Jensen, and Justesen is almost op-
timally localized with respect to the (p, q) Balian-Low result in Theorem 1.3 when
(p, q) = (3/2, 3). It would be interesting to see whether Høholdt, Jensen, and Juste-
sen’s method of construction can be extended to provide optimality for other values
of (p, q). With respect to further potentially optimal examples, Janssen in [20] and
[21] provides several other families of functions which have the Zak transforms with
minimal singular support. These include Gaussians, hyperbolic secants, and two-
sided exponentials. The operation Z−1(Zg/|Zg|) applied to these functions yields
examples of Gabor orthonormal bases for L2(R). The examples of Janssen are anal-
ogous in nature to the examples in [22] and [6], but they possess more symmetry in
their decay properties. At the present, [6] provides the only construction which has
been proven to be optimal for general values of the time and frequency localization
parameters (p,q).
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