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REGRESSION M-ESTIMATORS WITH NON-I.I.D. DOUBLY
CENSORED DATA1

BY JIAN-JIAN REN

University of Central Florida

Considering the linear regression model with fixed design, the usual
M-estimator with a complete sample of the response variables is expressed
as a functional of a generalized weighted bivariate empirical process,
and its asymptotic normality is directly derived through the Hadamard
differentiability property of this functional and the weak convergence of
this generalized weighted empirical process. The result reveals the direct
relationship between the M-estimator and the distribution function of
the error variables in the linear model, which leads to the construction of the
M-estimator when the response variables are subject to double censoring. For
this proposed regression M-estimator with non-i.i.d. doubly censored data,
strong consistency and asymptotic normality are established.

1. Introduction. In statistical analysis, one of the most widely used tools is
the linear regression model

Xi = tiβ + ei, i = 1,2, . . . , n,(1.1)

where Xi are the response variables, ti are the fixed design points, β is the
unknown regression parameter, and ei are the independently and identically
distributed (i.i.d.) error random variables (r.v.’s) with an unknown continuous
distribution function (d.f.) F. To properly use this model with incomplete response
observations, which are frequently encountered in medical research and reliability
studies, the right-censored linear regression model has been studied over the past
two decades by Buckley and James (1979), Koul, Susarla and Van Ryzin (1981),
Leurgans (1987), Ritov (1990), Lai and Ying (1991) and Zhou (1992), among
others. In Lai and Ying (1994), the linear regression model with left-truncated and
right-censored response variables was considered. More recently, Zhang and Li
(1996) extended Buckley–James–Ritov-type regression estimators from the right-
censored case to the linear regression model with random design and doubly
censored response observations, and Ren and Gu (1997) constructed and studied
M-estimators for the same model using a functional of a Campbell-type estimator
for a bivariate d.f. based on data which are doubly censored in one coordinate. In
this article, we consider the doubly censored linear regression model with fixed
design (1.1), and construct and study an M-estimator for this model.

Received July 2000; revised August 2002.
1Supported in part by NSF Grants DMS-96-26532, DMS-97-96229 and DMS-02-04182.
AMS 2000 subject classifications. 62J05, 62N02, 62E20.
Key words and phrases. Asymptotic normality, generalized weighted empirical process,

Hadamard differentiability, linear regression model, strong consistency, weak convergence.

1186



DOUBLY CENSORED REGRESSION M-ESTIMATORS 1187

To be precise, in this study we do not observe the Xi ’s in model (1.1), but a
doubly censored sample,

Vi =


Xi, if Bi < Xi ≤ Ci with δi = 1,

Ci, if Xi > Ci with δi = 2,

Bi, if Xi ≤ Bi with δi = 3,

(1.2)

where Bi are Ci are left- and right-censoring random variables, respectively, that
satisfy P {Bi < Ci} = 1, and (Bi,Ci) are i.i.d. and independent of Xi. This means
that (Bi,Ci) is independent of ei and the problem considered here is to estimate the
regression parameter β in (1.1) consistently using data (Vi, δi, ti), i = 1,2, . . . , n.

Note that in (1.1), Xi are independent random variables, but not i.i.d. (unless
ti ≡ 1) because ti are constants. Thus, (Vi, δi, ti), i = 1,2, . . . , n, in (1.2) is a non-
i.i.d. doubly censored regression sample. For the i.i.d. doubly censored sample
(Vi, δi), 1≤ i ≤ n, in (1.2) with ti ≡ 1, examples encountered in practice have
been given by Gehan (1965), Turnbull (1974) and others. In particular, Ren and
Gu (1997) discussed an example of doubly censored regression data (Vi, δi, ti)

with random design, that is, ti are i.i.d. r.v.’s, that occurred in recent research on
primary breast cancer [Peer, Van Dijck, Hendriks, Holland and Verbeek (1993)
and Ren and Peer (2000)]. Since the sample (Vi, δi, ti) considered in their paper,
as well as in Zhang and Li (1996), is an i.i.d. doubly censored regression sample,
the methods developed in Zhang and Li (1996) and Ren and Gu (1997) do not
have direct extensions to the problem we are considering here. It is precisely the
non-i.i.d. property of our doubly censored regression sample (Vi, δi, ti) in (1.2)
that causes considerable difficulties in the construction and study of a consistent
estimator of β in (1.1).

In Section 2, to allow construction of an M-estimator with data (1.2), we
first express the usual M-estimator β̂n as a functional of a generalized weighted
bivariate empirical process, where a complete non-i.i.d. sample (Xi, ti), 1≤ i ≤ n,
in (1.1) is used. Then in Theorem 1 (with proofs given in the Appendix) we
derive its asymptotic normality via the Hadamard differentiability property of this
functional and the weak convergence of this empirical process. The implication
of Theorem 1 is twofold: (1) It reveals the direct relationship between the
M-estimator and the d.f. F of the error variables ei in the linear model (1.1),
which in Section 2 leads to the construction of the M-estimator βn for β using the
non-i.i.d. doubly censored regression sample (Vi, δi, ti), 1 ≤ i ≤ n, given by (1.2).
(2) Whereas in the literature, the Hadamard differentiability approach has been
successfully used to study the asymptotic properties of various important statistics
based on i.i.d. random samples by such researchers as Bickel and Freedman
(1981), Fernholz (1983), Sen (1988), Gill (1989), Groeneboom and Wellner
(1992), Ren and Sen (1995, 2001), van der Vaart and Wellner (1996) and Ren
and Gu (1997), among others, Theorem 1 shows that this attractive formulation
can also be used to deal with problems based on non-i.i.d. samples.
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In Section 3, the strong consistency and the asymptotic normality of the
proposed regression M-estimator βn with non-i.i.d. doubly censored regression
data are established; the proofs are deferred to Sections 4 and 5.

Due to the complexity of the problem studied in this article, the extension of the
proposed M-estimators to multiple regression models is considered in a separate
article.

2. M-estimator with non-i.i.d. doubly censored regression sample. When
there is no censoring on the response variables in (1.1), the robust M-estimator β̂n

for β is given by the solution of the equation
n∑

i=1

tiψ(Xi − tiθ) = 0,(2.1)

where ψ is the score function [Huber (1981)]. Considering the case ti ∈ [0,1],
1≤ i ≤ n, throughout, we let

η = θ − β, η̂n = β̂n − β, Yi = Xi − tiβ.(2.2)

Then Yi are i.i.d. with d.f. F, and for

Wn(y, t) = n−1
n∑

i=1

I {Yi ≤ y, ti ≤ t}, EWn(y, t) = F(y)µn(t),(2.3)

�(G,η) =
∫∫

0≤t≤1,y∈R

tψ(y − tη) dG(y, t),(2.4)

where

µn(t) = n−1
n∑

i=1

I {ti ≤ t} for constants t1, . . . , tn in [0,1](2.5)

and G ∈ D2 ≡ {G|G is a function: R × [0,1] → R with defined integral in (2.4)},
straightforward algebra shows that (2.1) is equivalent to

�(Wn,η) =
∫∫

0≤t≤1, y∈R

tψ(y − tη) dWn(y, t) = 0.(2.6)

Define the statistical functional T :D2 → R as the solution of �(G,η) = 0, that
is,

T (G) satisfies �(G,T (G)) = 0 for G ∈ D2.(2.7)

Then

T (Wn) = η̂n = β̂n − β(2.8)

and Theorem 1 gives the asymptotic normality of β̂n under the following
assumptions:
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(A1) The function ψ is nondecreasing, bounded, continuous and piecewise
differentiable with bounded derivative ψ ′ satisfying ψ ′(x) = 0 for x outside
of some finite interval [A,B], while for x in some neighborhood of 0,
ψ(x) has positive and negative values with ψ ′(x) ≥ c > 0 for a constant
0 < c < ∞.

(A2) The function ψ ′ is of bounded variation.
(A3) The integral

∫
ψ(x)dF (x) = 0.

(A4) For i = 1,2, . . . , n, 0 ≤ ti ≤ 1.
(A5) As n → ∞, sup0≤t≤1 |µn(t) − µ(t)| → 0, where µ(t) is nondegenerate.

THEOREM 1. Under (A1)–(A5), we have that as n → ∞:

(i)
√

n(Wn − EWn) weakly converges to a centered Gaussian process G on a
Banach space (D̄2,D2,‖ · ‖), where D̄2 is the closure of D2, ‖ · ‖ stands for the
uniform norm and D2 is the σ -field generated by open balls;

(ii)
√

n(β̂n − β) = √
n[T (Wn) − T (EWn)] = T ′

EWn
(
√

n[Wn − EWn]) +
op(1)→D T ′

W(G)=D N(0, σ 2
0 ), where W(y, t) = F(y)µ(t), 0 < σ 2

0 < ∞, and T ′
G

is a linear functional.

While the proof of Theorem 1(i) is given in the Appendix, it is easy to see
the proof of (ii) from the following. From (A1), (A3) and (2.3), we know that
for any fixed n, �(EWn,η) is strictly decreasing in η and T (EWn) = 0 is the
unique solution of �(EWn,η) = 0. Noting that (A5) implies ‖EWn − W‖ → 0,
as n → ∞, a slightly modified proof of Theorem 3.1 in Ren and Gu (1997) gives
that T (·) is Hadamard differentiable at EWn for any fixed n and it satisfies

√
n[T (Wn) − T (EWn)]

= T ′
EWn

(√
n[Wn − EWn])+ op(1) as n → ∞,

(2.9)

where op(1) converges to 0 in probability as n → ∞. The proof of Theorem 1(ii)
follows from Theorem 1(i) and the continuity of T ′

G (in G) in the neighborhood
of W based on Theorem 3.1 of Ren and Gu (1997).

Theorem 1(ii) shows that the M-estimator β̂n and its asymptotic properties are
totally determined by the generalized weighted empirical process Wn via � given
by (2.6). From Theorem 1(i), we know that

�(Wn,η) ≈ �(EWn,η) =
∫ 1

0

∫ ∞
−∞

tψ(x − tθ) dF (x − tβ) dµn(t)(2.10)

implies that if the error d.f. F can be estimated, say by F̂n, based on available data,
then from (2.6), an M-estimator should be given by the solution (in θ ) of∫ 1

0

∫ ∞
−∞

tψ(x − tθ) dF̂n(x − tβ) dµn(t) = 0.(2.11)
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In this context, we study the estimation of F using the non-i.i.d. doubly censored
regression sample (Vi, δi, ti), 1 ≤ i ≤ n, given (1.2) as follows.

First, we observe that for each 1 ≤ i ≤ n and any x ∈ R,

P
(1)
i (x) = P {Vi ≤ x, δi = 1} = P {Xi ≤ x,Bi < Xi ≤ Ci}

=
∫ x

−∞
(
FB(u) − FC(u)

)
dF (u − tiβ),

P
(2)
i (x) = P {Vi ≤ x, δi = 2} = P {Ci ≤ x,Xi > Ci}

=
∫ x

−∞
[1 − F(u − tiβ)]dFC(u),

P
(3)
i (x) = P {Vi ≤ x, δi = 3} = P {Bi ≤ x,Xi ≤ Bi}

=
∫ x

−∞
F(u − tiβ) dFB(u),

P
(0)
i (x) = P

(1)
i (x) + P

(2)
i (x) + P

(3)
i (x)

= FC(x) + [FB(x) − FC(x)]F(x − tiβ),

where FB and FC are the d.f.’s of Bi and Ci in (1.2), respectively, and from (2.7)
of Gu and Zhang (1993), we know that FXi

satisfies the integral equation

FXi
(x) = P

(0)
i (x) −

∫
u≤x

1 − FXi
(x)

1 − FXi
(u)

dP
(2)
i (u)

+
∫
x<u

FXi
(x)

FXi
(u)

dP
(3)
i (u).

(2.12)

Noting that FXi
(x) = F(x − tiβ) for any x ∈ R, (2.12) can be written as

FXi
(x + t iβ) = P

(0)
i (x + tiβ) −

∫
u≤x+ti β

1 − FXi
(x + tiβ)

1 − FXi
(u)

dP
(2)
i (u)

+
∫
x+tiβ<u

FXi
(x + tiβ)

FXi
(u)

dP
(3)
i (u)

= P
(0)
i (x + tiβ) −

∫
y≤x

1 − FXi
(x + tiβ)

1 − FXi
(y + tiβ)

dP
(2)
i (y + tiβ)

+
∫
x<y

FXi
(x + tiβ)

FXi
(y + tiβ)

dP
(3)
i (y + tiβ),

(2.13)

which gives that for each i, F(x) is the solution of the integral equation

F(x) = P
(0)
i (x + tiβ) −

∫
u≤x

1 − F(x)

1 − F(u)
dP

(2)
i (u + tiβ)

+
∫
x<u

F (x)

F (u)
dP

(3)
i (u + tiβ).
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Hence, the sum of these integral equations divided by n is given by

F(x) = n−1
n∑

i=1

P
(0)
i (x + tiβ)

−
∫
u≤x

1 − F(x)

1 − F(u)
d

(
n−1

n∑
i=1

P
(2)
i (u + tiβ)

)

+
∫
x<u

F (x)

F (u)
d

(
n−1

n∑
i=1

P
(3)
i (u + tiβ)

)
.

(2.14)

Let, for any θ ∈ R,

Q
(j)
n,θ (x) = n−1

n∑
i=1

I {Vi ≤ x + ti θ, δi = j}, j = 1,2,3,

Q
(0)
n,θ (x) = Q

(1)
n,θ (x) + Q

(2)
n,θ (x) + Q

(3)
n,θ (x) = n−1

n∑
i=1

I {Vi ≤ x + tiθ}.
(2.15)

Then (2.14) becomes

F(x) = EQ
(0)
n,β(x) −

∫
u≤x

1 − F(x)

1 − F(u)
d
(
EQ

(2)
n,β(u)

)
+
∫
x<u

F (x)

F (u)
d
(
EQ

(3)
n,β(u)

)(2.16)

and the self-consistent estimator F̂n,β for F [Mykland and Ren (1996)] should be
given by the solution of the integral equation

F̂n,β(x) = Q
(0)
n,β(x) −

∫
u≤x

1 − F̂n,β(x)

1 − F̂n,β(u)
dQ

(2)
n,β(u)

+
∫
x<u

F̂n,β(x)

F̂n,β(u)
dQ

(3)
n,β(u).

(2.17)

Equations (2.11) and (2.17) imply that the M-estimator with non-i.i.d. doubly
censored regression sample in (1.2) should be given by the solution (in θ ) of∫ 1

0

∫ ∞
−∞

tψ(x − tθ) dF̂n,β(x − tβ) dµn(t) = 0.(2.18)

However, in practice the parameter β in (2.18) is unknown. Thus, the equation is
naturally replaced by∫ 1

0

∫ ∞
−∞

tψ(x − tθ) dF̂n,θ (x − tθ) dµn(t) = 0,
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where for any θ , F̂n,θ is a solution of the integral equation

F̂n,θ (x) = Q
(0)
n,θ (x) −

∫
u≤x

1 − F̂n,θ (x)

1 − F̂n,θ (u)
dQ

(2)
n,θ (u)

+
∫
x<u

F̂n,θ (x)

F̂n,θ (u)
dQ

(3)
n,θ (u).

(2.19)

The existence of F̂n,θ is shown in the Appendix. Note that if F̂n,θ (−∞) = 0 and
F̂n,θ (∞) = 1, then from (A1), change of variables and integration by parts, we
have∫ 1

0

∫ ∞
−∞

tψ(x − tθ) dF̂n,θ (x − tθ) dµn(t) = t̄n

[
ψ(B) −

∫ B

A
F̂n,θ (y) dψ(y)

]
,

where t̄n = n−1 ∑n
i=1 ti . Hence, we define the M-estimator βn for the doubly

censored regression sample (Vi, δi, ti), i = 1, . . . , n, given in (1.2) by the solution
of

Mn(θ) ≡ ψ(B) −
∫ B

A
F̂n,θ (y) dψ(y)

.= 0,(2.20)

where .= means “as near 0 as possible.”
Note that the use of .= in (2.20) is because Mn(θ) = 0 may not have any

solutions due to the fact, discussed in the Appendix, that Mn(θ) is piecewise
continuous and piecewise nonincreasing in θ . In practice, for each θ one may treat
the sample (Vi − tiθ, δi), 1≤ i ≤ n, as a usual i.i.d. doubly censored sample and
compute F̂n,θ as in Mykland and Ren (1996), while the M-estimator βn defined
by (2.20) can be found using the piecewise nonincreasing property of Mn(θ). See
the Appendix.

REMARK 1. Assumptions (A1) and (A2) are required in Ren and Gu (1997) to
show that the statistical functional T (·) in Theorem 1 is Hadamard differentiable,
but (A2) is not needed for our asymptotic results on proposed the M-estimator βn

in Section 3.

REMARK 2. In the linear model (1.1), if all design points ti are restricted to
a compact set, the problem can be reduced to the case of (A4). Assumption (A5)
is used in the proof of the weak convergence of process Wn. In practice, there
are many examples which satisfy (A5). For instance, (A5) holds if the design
points are evenly distributed on [0,1], that is, ti = i/n, i = 1, . . . , n, or if the
design points are proportionally distributed on finite points b1, . . . , bm according
to weights p1, . . . , pm, that is, ti are selected such that (npj − 1) ≤ nj ≤ npj and∑m

j=1 nj = n, where nj =∑n
i=1 I {ti = bj }. On the other hand, noting that µ(t) is

a d.f., it is easy to see that the design points ti may be easily selected to satisfy (A5)
for a known µ(·).
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REMARK 3. Note that our proposed M-estimator βn is based on the direct
relationship between the usual M-estimator and the error distribution F shown
by (2.10), which is revealed by Theorem 1. This idea is different from Lai and
Ying’s (1994) missing information principle for an M-estimator with incomplete
regression data. In fact, (2.10) may be applied in other linear regression problems
with a fixed design as long as the error d.f. F can be estimated consistently using
available data.

3. Consistency and asymptotic normality. To study the asymptotic proper-
ties of the proposed M-estimator βn, defined by (2.20), for the doubly censored
regression sample (Vi, δi, ti) given in (1.2), we introduce the notion of Q

(j)
θ (x) as

follows.
Note that for any θ and x, the expectation of Q

(j)
n,θ (x) in (2.15) is given by

E
{
Q

(1)
n,θ (x)

}=
∫ 1

0

∫ x+tθ

−∞
[FB(u) − FC(u)]dF (u − tβ) dµn(t),

E
{
Q

(2)
n,θ (x)

}=
∫ 1

0

∫ x+tθ

−∞
[1 − F(u − tβ)]dFC(u) dµn(t),

E
{
Q

(3)
n,θ (x)

}=
∫ 1

0

∫ x+tθ

−∞
F(u − tβ) dFB(u) dµn(t),

E
{
Q

(0)
n,θ (x)

}= E
{
Q

(1)
n,θ (x)

}+ E
{
Q

(2)
n,θ (x)

}+ E
{
Q

(3)
n,θ (x)

}
=
∫ 1

0

{
FC(x + tθ) + [FB(x + tθ) − FC(x + tθ)]

× F
(
x + t (θ − β)

)}
dµn(t).

(3.1)

Based on assumption (A5), we define for the d.f. µ(t) on [0,1],

Q
(1)
θ (x) =

∫ 1

0

∫ x+tθ

−∞
[FB(u) − FC(u)]dF (u − tβ) dµ(t),

Q
(2)
θ (x) =

∫ 1

0

∫ x+tθ

−∞
[1 − F(u − tβ)]dFC(u) dµ(t),

Q
(3)
θ (x) =

∫ 1

0

∫ x+tθ

−∞
F(u − tβ) dFB(u) dµ(t),

Q
(0)
θ (x) = Q

(1)
θ (x) + Q

(2)
θ (x) + Q

(3)
θ (x)

=
∫ 1

0

{
FC(x + tθ) + [FB(x + tθ) − FC(x + tθ)]

× F
(
x + t (θ − β)

)}
dµ(t).

(3.2)
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Thus, letting f , fB and fC be the density functions of F , FB and FC , respectively,
we have

q
(1)
n,θ (x) = d{EQ

(1)
n,θ (x)}

dx

=
∫ 1

0
[FB(x + tθ) − FC(x + tθ)]f (x + t (θ − β)

)
dµn(t),

q
(2)
n,θ (x) = d{EQ

(2)
n,θ (x)}

dx
=
∫ 1

0

[
1 − F

(
x + t (θ − β)

)]
fC(x + tθ) dµn(t),

q
(3)
n,θ (x) = d{EQ

(3)
n,θ (x)}

dx
=
∫ 1

0
F
(
x + t (θ − β)

)
fB(x + tθ) dµn(t),

(3.3)

q
(1)
θ (x) = dQ

(1)
θ (x)

dx

=
∫ 1

0
[FB(x + tθ) − FC(x + tθ)]f (x + t (θ − β)

)
dµ(t),

q
(2)
θ (x) = dQ

(2)
θ (x)

dx
=
∫ 1

0

[
1 − F

(
x + t (θ − β)

)]
fC(x + tθ) dµ(t),

q
(3)
θ (x) = dQ

(3)
θ (x)

dx
=
∫ 1

0
F
(
x + t (θ − β)

)
fB(x + tθ) dµ(t),

and for any θ , we define [0,1]-valued nondecreasing Fn,θ and Fθ as solutions of

Fn,θ (x) = EQ
(0)
n,θ (x) −

∫
u≤x

1 − Fn,θ (x)

1 − Fn,θ (u)
dE Q

(2)
n,θ (u)

+
∫
x<u

Fn,θ (x)

Fn,θ (u)
dE Q

(3)
n,θ (u),

Fθ(x) = Q
(0)
θ (x) −

∫
u≤x

1 − Fθ(x)

1 − Fθ(u)
dQ

(2)
θ (u)

+
∫
x<u

Fθ(x)

Fθ(u)
dQ

(3)
θ (u),

(3.4)

respectively. While the existence of Fn,θ and Fθ is shown in the Appendix, the
next proposition, with proofs deferred to Section 4, gives some basic results on

Q
(j)
n,θ , Q

(j)
θ , Fn,θ and Fθ under some of the following conditions:

(B1) The function F has support (−∞,∞) and has a continuous and bounded
density function f .

(B2) For any x ∈ R, FB(x) − FC(x) > 0.
(B3) The functions FB and FC have bounded density functions fB and fC,

respectively.
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(B4) The density functions fB and fC both satisfy the Lipschitz condition of
order 1 on R.

(B5) There exist constants MB and MC such that fC(x) ≡ 0 for x ≤ MC and
fB(x) ≡ 0 for x ≥ MB .

(B6) If θ �= β , Fθ �= Fβ .

PROPOSITION 1. Under (A5) and (B1)–(B5), for j = 0,1,2,3 and 0 <

ρ,M < ∞ given by (3.5) and (3.6), we have:

(i) supθ,x |E{Q(j)
n,θ (x)} − Q

(j)
θ (x)| → 0 as n → ∞;

(ii) Fn,β = F = Fβ ;
(iii) ‖Fθ − Fβ‖ → 0 as θ → β;
(iv) ‖Fn,θ −Fn,β‖M ≤ M0|θ −β|, where n ≥ 1, |θ | ≤ ρ, M0 is a constant and

‖ · ‖M denotes the uniform norm on [−M,M];
(v) sup|θ |≤ρ ‖Q(j)

n,θ − EQ
(j)
n,θ‖ a.s.→ 0 as n → ∞;

(vi) sup|θ |≤ρ nλ‖Q(j)
n,θ − EQ

(j)
n,θ‖M

a.s.→ 0 as n → ∞, where 0 < λ < 1
2 .

To state Theorem 2, which is proved in Section 5, we let ρ be a large constant
such that |β| < ρ, and we note that under (B5) and (A1), we have for any |θ | ≤ ρ,

q
(2)
n,θ (x) = 0 for x ≤ −M and q

(3)
n,θ (x) = 0 for x ≥ M,

q
(2)
θ (x) = 0 for x ≤ −M and q

(3)
θ (x) = 0 for x ≥ M,

(3.5)

where

M = ρ + max{|MB |, |MC |, |A|, |B|}.(3.6)

Since (3.5) implies that for x ∈ [−M,M] and |θ | ≤ ρ, (3.4) is equivalent to

Fn,θ (x) = EQ
(0)
n,θ (x) −

∫ x

−M

1 − Fn,θ (x)

1 − Fn,θ (u)
dE Q

(2)
n,θ (u)

+
∫ M

x

Fn,θ (x)

Fn,θ (u)
dE Q

(3)
n,θ (u),

Fθ(x) = Q
(0)
θ (x) −

∫ x

−M

1 − Fθ(x)

1 − Fθ(u)
dQ

(2)
θ (u)

+
∫ M

x

Fθ (x)

Fθ (u)
dQ

(3)
θ (u).

(3.7)

Thus, Proposition 1(v) leads us to treat F̂n,θ in Theorem 2 as a solution of

F̂n,θ (x) = Q
(0)
n,θ (x) −

∫ x

−M

1 − F̂n,θ (x)

1 − F̂n,θ (u)
dQ

(2)
n,θ (u)

+
∫ M

x

F̂n,θ (x)

F̂n,θ (u)
dQ

(3)
n,θ (u).

(3.8)
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Moreover, we define

Aβ =
∫ B

A

((
I − K̃M

β

)−1 Ãβ

1 − Cβ

)
(x) dψ(x),(3.9)

where for

Cβ(x) =
∫
u≤x

1

1 − F(u)
dQ

(2)
β (u) +

∫
x<u

1

F(u)
dQ

(3)
β (u),

Kβ(x,u) = −
{

1 − F(x)

[1 − F(u)]2 I {u ≤ x}q(2)
β (u) + F(x)

[F(u)]2 I {x < u}q(3)
β (u)

}
,

Ãβ(x) = f (x)

∫ 1

0
[FB(x + tβ) − FC(x + tβ)]t dµ(t)(3.10)

+
∫
u≤x

∫ 1

0
[1 − F(u)]fC(u + tβ)t dµ(t) d

{
1 − F(x)

1 − F(u)

}

−
∫
x<u

∫ 1

0
F(u)fB(u + tβ)t dµ(t) d

{
F(x)

F (u)

}
and (

K̃M
β h

)
(x) =

∫ M

−M

Kβ(x,u)

1 − Cβ(x)
h(u) du, x ∈ [−M,M],(3.11)

(I − K̃M
β )−1 denotes the inverse of the operator I − K̃M

β , the existence of which
is established in Lemma 1 of Section 4.

THEOREM 2. Assume (A1), (A3)–(A5), (B1)–(B6) and Aβ �= 0. Then for the
doubly censored regression M-estimator βn given by the solution of (2.20) in the
interval [−ρ,ρ], where F̂n,θ is a solution of (3.8), we have:

(i) nλ|βn − β| a.s.→ 0 as n → ∞, where 0 < λ < 1
2 ;

(ii)
√

n(βn − β + ηn) →D N(0, σ 2) as n → ∞, where 0 < σ 2 < ∞ and ηn is
some quantity satisfying nλ|ηn| a.s.→ 0 as n → ∞, for any 0 < λ < 1

2 .

REMARK 4. In Theorem 2, condition (B2) is usually required in the studies of
asymptotic properties with i.i.d. doubly censored data; see Gu and Zhang (1993),
Ren (1995) and Ren and Gu (1997), among others. Assumption (B5) is needed
to avoid some technical difficulties in the proofs. In practice, it means that there
is no right (left) censoring when Xi is sufficiently small (large), which is not an
unreasonable assumption in many situations. Also, it is worth noting that the strong
consistency of βn in Theorem 2(i) was not studied in Zhang and Li (1996) and Ren
and Gu (1997).

REMARK 5. From the proofs of Theorem 2, we know that we have
√

n(βn −
β) →D N(0, σ 2) as n → ∞ if we can show

√
n|Mn(βn)| →P 0 as n → ∞. Since

the current article is already considerably technical, this detail is not studied.
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4. Proof of Proposition 1.

PROOF OF PROPOSITION 1(i). Noting that µn(0) = µ(0) = 0 and µn(1) =
µ(1) = 1, from (B1), (B3) and integration by parts, we have for j = 1,

E{Q(1)
n,θ (x)} =

∫ x+θ

−∞
[FB(u) − FC(u)]dF (u − β)

−
∫ 1

0
µn(t)[FB(x + tθ) − FC(x + tθ)]dF

(
x + t (θ − β)

)
− β

∫ 1

0
µn(t)

(∫ x+tθ

−∞
f (u − tβ) d[FB(u) − FC(u)]

)
dt

and

Q
(1)
θ (x) =

∫ x+θ

−∞
[FB(u) − FC(u)]dF (u − β)

−
∫ 1

0
µ(t)[FB(x + tθ) − FC(x + tθ)]dF

(
x + t (θ − β)

)
− β

∫ 1

0
µ(t)

(∫ x+tθ

−∞
f (u − tβ) d[FB(u) − FC(u)]

)
dt.

Thus, the proof for j = 1 follows from (A5) and

sup
θ,x

∣∣E{Q(1)
n,θ (x)

}− Q
(1)
θ (x)

∣∣≤ ‖µn − µ‖(1 + 2|β|‖f ‖).

Similarly, we can complete the proof for j = 2 or 3. �

PROOF OF PROPOSITION 1(ii). From Theorem 1 of Gu and Zhang (1993),
we know that under (B2), FXi

is the unique solution of (2.12). Thus, as derived in
Section 2, F satisfies (2.16) for any n. In turn, (2.16) and (3.4) imply Fn,β = F .

To show Fβ = F , we let n → ∞ in (2.16), which from Proposition 1(i) gives

F(x) = Q
(0)
β (x) −

∫
u≤x

1 − F(x)

1 − F(u)
dQ

(2)
β (u) +

∫
x<u

F (x)

F (u)
dQ

(3)
β (u).(4.1)

Hence, it suffices to show that (4.1) has a unique solution. Denote

h = Fβ − F,

HB(x) =
∫ 1

0
fB(x + tβ) dµ(t),

HC(x) =
∫ 1

0
fC(x + tβ) dµ(t).

(4.2)

Then from (3.3) we have

q
(2)
β (x) = [1 − F(x)]HC(x) and q

(3)
β (x) = F(x)HB(x).(4.3)
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To show h = 0, we subtract the integral equation (4.1) from (3.4) with θ = β to
obtain

h(x)K(x) = −
∫
u≤x

1 − Fβ(x)

1 − Fβ(u)
h(u)HC(u) du

−
∫
x<u

Fβ(x)

Fβ(u)
h(u)HB(u) du,

(4.4)

where

K(x) = 1 −
∫
u≤x

HC(u) du −
∫
x<u

HB(u) du.(4.5)

Noting that ∫ ∞
−∞

HB(u)du =
∫ 1

0

∫ ∞
−∞

dFB(u + tβ) dµ(t) = 1,

by (B2) and (A5), we have that for any x,

K(x) =
∫ x

−∞
HB(u)du −

∫ x

−∞
HC(u)du

=
∫ 1

0
[FB(x + tβ) − FC(x + tβ)]dµ(t) > 0.

(4.6)

From (4.6), we know that (4.4) above is the same as (3.1) of Gu and Zhang
(1993), where their density functions FY and FZ correspond to HB and HC ,
respectively. Moreover, since F is continuous and Fβ is nondecreasing, then
h(t+) �= h(t) ⇒ Fβ(t+) �= Fβ(t) ⇒ Fβ(t+) > Fβ(t), which gives (3.2) of Gu and
Zhang (1993). Hence, from (4.6) and Lemma 1(i) of Gu and Zhang (1993), we have
h = 0 if we can establish Gu and Zhang’s (3.3), that is, Fβ(x) = 1 ⇒ F(x) = 1 and
Fβ(x) = 0 ⇒ F(x) = 0.

If Fβ(x) = 1, then (3.4) with θ = β becomes 1 = Q
(0)
β (x) + Q

(3)
β (∞) −

Q
(3)
β (x) = Q

(1)
β (x) + Q

(2)
β (x) + Q

(3)
β (∞), which along with Q

(0)
β (∞) = 1 implies

Q
(1)
β (∞) + Q

(2)
β (∞) = Q

(1)
β (x) + Q

(2)
β (x). Since Q

(j)
β (x), j = 1,2,3, are

nonnegative and nondecreasing, we have Q
(2)
β (∞) = Q

(2)
β (x) and

0 = Q
(1)
β (∞) − Q

(1)
β (x) =

∫ 1

0

∫ ∞
x

[FB(u + tβ) − FC(u + tβ)]dF (u) dµ(t),

which by (B1) and (B2) gives dF (u) = 0 for u ≥ x and, in turn,

0 = Q
(2)
β (∞) − Q

(2)
β (x) = [1 − F(x)]

∫ 1

0
[1 − FC(x + tβ)]dµ(t).

Note that (B2) implies [1−FC(u)] ≥ [FB(u) − FC(u)] > 0 for any u ∈ R. Hence
F(x) = 1.
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If Fβ(x) = 0, then (3.4) with θ = β becomes 0 = Q
(0)
β (x) − Q

(2)
β (x) =

Q
(1)
β (x)+ Q

(3)
β (x), which implies Q

(1)
β (x) = 0 and Q

(3)
β (x) = 0. Since

0 = Q
(1)
β (x) =

∫ 1

0

∫ x

−∞
[FB(u + tβ) − FC(u + tβ)]dF (u) dµ(t),

we know that dF (u) = 0 for u ≤ x, which gives

0 = Q
(3)
β (x) =

∫ 1

0

∫ x

−∞
F(u)dFB(u + tβ) dµ(t) = F(x)

∫ 1

0
FB(x + tβ) dµ(t).

Note that (B2) implies FB(u) ≥ [FB(u)−FC(u)] > 0 for any u. Hence, F(x) = 0.
�

PROOF OF PROPOSITION 1(iii). First, it is easy to see that from (B1), (B3),
(B4) and (3.1)–(3.3), there exists a constant MBC such that∥∥EQ

(j)
n,θ − EQ

(j)
n,β

∥∥≤ MBC |θ − β|, ∥∥Q(j)
θ − Q

(j)
β

∥∥≤ MBC |θ − β|,(4.7)

where j = 0,1,2,3 and∥∥q(j)
n,θ − q

(j)
n,β

∥∥≤ MBC |θ − β|, ∥∥q(j)
θ − q

(j)
β

∥∥≤ MBC |θ − β|,(4.8)

where j = 2,3. Let θn → β as n → ∞. Then from Helly’s theorem Fθn has a
convergent subsequence Fθnk

such that for any x, limk→∞ Fθnk
(x) = H0(x). Since

Fθnk
satisfies

Fθnk
(x) = Q

(0)
θnk

(x) −
∫
u≤x

1 − Fθnk
(x)

1 − Fθnk
(u)

dQ
(2)
θnk

(u) +
∫
x<u

Fθnk
(x)

Fθnk
(u)

dQ
(3)
θnk

(u),

from (4.7) the limit of this equation for each fixed x as k → ∞ is given by

H0(x) = Q
(0)
β (x) −

∫
u≤x

1 − H0(x)

1 − H0(u)
dQ

(2)
β (u) +

∫
x<u

H0(x)

H0(u)
dQ

(3)
β (u).(4.9)

From the uniqueness of the solution of (4.9) or (4.1), shown in the proof of
Proposition 1(ii), we know H0 = Fβ = F . Thus, limk→∞ Fθnk

(x) = Fβ(x) for any
fixed x. Since Fβ = F is continuous, we have ‖Fθnk

−Fβ‖ → 0, as k → ∞. Hence,
‖Fθn − Fβ‖ → 0, as n → ∞, which gives the proof. �

Before proving Proposition 1(iv), we first establish the following lemma. Let

Kn,β(x,u) = −
{

1 − F(x)

[1 − F(u)]2 I {u ≤ x}q(2)
n,β(u)

+ F(x)

[F(u)]2
I {x < u}q(3)

n,β(u)

}
,

Cn,β(x) =
∫
u≤x

1

1 − F(u)
d
{
EQ

(2)
n,β(u)

}
+
∫
x<u

1

F(u)
d
{
EQ

(3)
n,β(u)

}
(4.10)
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and (
K̃M

n,βh
)
(x) =

∫ M

−M

Kn,β(x,u)

1 − Cn,β(x)
h(u) du, x ∈ [−M,M].(4.11)

LEMMA 1. Assume (A5), (B1)–(B5), and let D[−M,M] denote the space of
all functions on [−M,M] which are right continuous and have left-hand limits,
where M is given by (3.6). Then,

(i) K̃M
β given by (3.11), there exists a bounded measurable function 
̃M

β on
[−M,M], such that for any g ∈ D[−M,M], the integral equation(

I − K̃M
β

)
h = g(4.12)

has the unique solution

h(x) = (
I − K̃M

β

)−1
g(x) = g(x) +

∫ M

−M

̃M

β (x,u)g(u) du;(4.13)

(ii) for any n, part (i) holds for K̃M
n,β given by (4.11);

(iii) for any sequence gn ∈ D[−M,M] satisfying supn≥1 ‖gn‖M < ∞, we
have ∥∥(I − K̃M

n,β

)−1
gn − (

I − K̃M
β

)−1
gn

∥∥
M → 0 as n → ∞.(4.14)

PROOF OF (i). From the proof of Theorem 2.1 in Chang (1990), it suffices
to show that for any h ∈ D[−M,M], (I − K̃M

β )h = 0 if and only if h ≡ 0 on
[−M,M].

First, we notice that from (3.10), (4.2), (4.3), (4.5) and (4.6) we have

1 − Cβ(x) =
∫ 1

0
[FB(x + tβ) − FC(x + tβ)]dµ(t)

= K(x) > 0, x ∈ R,

(4.15)

and that (I − K̃M
β )h = 0 implies K̃M

β h = h. Hence, from (3.2), (3.3), (3.10), (3.11)

and (4.15) we know that h is continuous. Note that (I − K̃M
β )h = 0, (4.15), (3.5),

(3.10), (4.2) and (4.3) imply

h(x)K(x) =
∫ M

−M
Kβ(x,u)h(u) du =

∫ ∞
−∞

Kβ(x,u)h(u) du

= −
∫
u≤x

1 − F(x)

1 − F(u)
h(u)HC(u) du −

∫
x<u

F (x)

F (u)
h(u)HB(u) du,

which is the same as (3.1) of Gu and Zhang (1993). Since h is continuous and the
support of F is (−∞,∞), Gu and Zhang’s (3.2) and (3.3) also hold. Hence, from
(4.15) and Lemma 1(i) of Gu and Zhang (1993), we have h = 0. �
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PROOF OF (ii). From (4.10), (3.3), (B2) and (A5), we have

1 − Cn,β(x) =
∫ 1

0
[FB(x + tβ) − FC(x + tβ)]dµn(t)

= Kn(x) > 0, x ∈ R,

(4.16)

where, for the derivation, we use

q
(2)
n,β(x) =

∫ 1

0
[1 − F(x)]fC(x + tβ) dµn(t) = [1 − F(x)]Hn,C(x),

q
(3)
n,β(x) =

∫ 1

0
F(x)fB(x + tβ) dµn(t) = F(x)Hn,B(x),

(4.17)
Hn,B(x) =

∫ 1

0
fB(x + tβ) dµn(t),

Hn,C(x) =
∫ 1

0
fC(x + tβ) dµn(t).

Since (I − K̃M
n,β)h = 0, (4.10), (4.11), (4.16), (4.17) and (3.5) imply

h(x)Kn(x) =
∫ M

−M
Kn,β(x,u)h(u) du =

∫ ∞
−∞

Kn,β(x,u)h(u) du

= −
∫
u≤x

1 − F(x)

1 − F(u)
h(u)Hn,C(u) du −

∫
x<u

F (x)

F (u)
h(u)Hn,B(u) du;

thus the rest is the same as the proof of part (i). �

PROOF OF (iii). Let (I − K̃M
n,β)−1gn = hn and (I − K̃M

β )−1gn = h̄n. Then we
need to show

‖hn − h̄n‖M → 0 as n → ∞.(4.18)

Note that in (3.10) and (4.10), from (4.15), (4.16), integration by parts, (A5) and
(B2), and from (4.2), (4.3), (4.17), integration by parts, (A5) and (B1), we have

‖Cn,β − Cβ‖ → 0 as n → ∞,

sup
x,u∈[−M,M]

∣∣∣∣ Kn,β(x,u)

1 − Cn,β(x)
− Kβ(x,u)

1 − Cβ(x)

∣∣∣∣→ 0 as n → ∞,
(4.19)

where inf|x|≤M |1−Cβ(x)| > 0. Also note that (4.13) implies supn≥1 ‖h̄n‖M < ∞.
Thus, from

0 = (
I − K̃M

n,β

)
hn − (

I − K̃M
β

)
h̄n

= (
I − K̃M

n,β

)
(hn − h̄n) + [(

I − K̃M
n,β

)− (
I − K̃M

β

)]
h̄n

= (
I − K̃M

n,β

)
(hn − h̄n) − (

K̃M
n,β − K̃M

β

)
h̄n,

(3.11), (4.11) and (4.19) we know∥∥(I − K̃M
n,β

)
(hn − h̄n)

∥∥
M → 0 as n → ∞.(4.20)
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If supn≥1{‖hn − h̄n‖M } < ∞, then let (hnk
− h̄nk

) be any convergent subse-
quence with limit v0. From (4.19), we know that (I − K̃M

nk,β
)(hnk

− h̄nk
) converges

to (I − K̃M
β )v0. Thus, (4.20) gives (I − K̃M

β )v0 = 0 , which implies v0 = 0. Hence,
we have (4.18).

If supn≥1{‖hn − h̄n‖M } = ∞, then there exists a subsequence such that ‖hnk
−

h̄nk
‖M → ∞ as k → ∞. Let vnk

= (hnk
− h̄nk

)/‖hnk
− h̄nk

‖M . Then ‖vnk
‖M ≡ 1

and from (4.20) we have ‖(I − K̃M
nk,β

)vnk
‖M → 0 as k → ∞. From above, we

know that vnk
has limit 0, which contradicts ‖vnk

‖M ≡ 1. �

PROOF OF PROPOSITION 1(iv). From Proposition 1(ii), we subtract (2.16)
from (3.4) to obtain

Fn,θ (x) − Fn,β(x)

= EQ
(0)
n,θ (x) − EQ

(0)
n,β(x)

−
∫
u≤x

1 − Fn,β(x)

1 − Fn,β(u)
d
[
EQ

(2)
n,θ (u) − EQ

(2)
n,β(u)

]
(4.21) −

∫
u≤x

{
1 − Fn,θ (x)

1 − Fn,θ (u)
− 1 − Fn,β(x)

1 − Fn,β(u)

}
dEQ

(2)
n,θ (u)

+
∫
x<u

{
Fn,θ (x)

Fn,θ (u)
− Fn,β(x)

Fn,β(u)

}
dEQ

(3)
n,θ (u)

+
∫
x<u

Fn,β(x)

Fn,β(u)
d
[
EQ

(3)
n,θ (u) − EQ

(3)
n,β(u)

]
.

Letting

B
(2)
n,θ,β(x) = [Fn,θ (x) − Fn,β(x)]

×
∫
u≤x

{
1

1 − Fn,θ (u)
− 1

1 − Fn,β(u)

}
dEQ

(2)
n,θ (u)

+ [Fn,θ (x) − Fn,β(x)]
×
∫
u≤x

1

1 − Fn,β(u)
d
[
EQ

(2)
n,θ (u) − EQ

(2)
n,β(u)

]
− [1 − Fn,β(x)]

×
∫
u≤x

{
1

1 − Fn,θ (u)
− 1

1 − Fn,β(u)

}
d
[
EQ

(2)
n,θ (u) − EQ

(2)
n,β(u)

]
− [1 − Fn,β(x)]

×
∫
u≤x

[Fn,θ (u) − Fn,β(u)]2

[1 − Fn,θ (u)][1 − Fn,β(u)]2 dEQ
(2)
n,β(u)

(4.22)
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and

B
(3)
n,θ,β(x) = [Fn,θ (x) − Fn,β(x)]

×
∫
x<u

{
1

Fn,θ (u)
− 1

Fn,β(u)

}
dEQ

(3)
n,θ (u)

+ [Fn,θ (x) − Fn,β(x)]

×
∫
x<u

1

Fn,β(u)
d
[
EQ

(3)
n,θ (u) − EQ

(3)
n,β(u)

]
(4.23) + Fn,β(x)

×
∫
x<u

{
1

Fn,θ (u)
− 1

Fn,β(u)

}
d
[
EQ

(3)
n,θ (u) − EQ

(3)
n,β(u)

]
+ Fn,β(x)

×
∫
x<u

[Fn,θ (u) − Fn,β(u)]2

Fn,θ (u)F 2
n,β(u)

dEQ
(3)
n,β(u),

we can easily derive

−
∫
u≤x

{
1 − Fn,θ (x)

1 − Fn,θ (u)
− 1 − Fn,β(x)

1 − Fn,β(u)

}
dEQ

(2)
n,θ (u)

= [Fn,θ (x) − Fn,β(x)]
∫
u≤x

1

1 − Fn,β(u)
dEQ

(2)
n,β(u)

− [1 − Fn,β(x)]
∫
u≤x

[Fn,θ (u) − Fn,β(u)]
[1 − Fn,β(u)]2 dEQ

(2)
n,β(u) + B

(2)
n,θ,β(x)

(4.24)

and ∫
x<u

{
Fn,θ (x)

Fn,θ (u)
− Fn,β(x)

Fn,β(u)

}
dEQ

(3)
n,θ (u)

= [Fn,θ (x) − Fn,β(x)]
∫
x<u

1

Fn,β(u)
dEQ

(3)
n,β(u)(4.25)

− Fn,β(x)

∫
x<u

Fn,θ (u) − Fn,β(u)

F 2
n,β(u)

dEQ
(3)
n,β(u) + B

(3)
n,θ,β(x).

Hence, from (3.5) and Proposition 1(ii) we can write (4.21) as

Fn,θ (x) − Fn,β(x)

= An,θ,β(x) + B
(2)
n,θ,β(x) + B

(3)
n,θ,β(x) + [Fn,θ (x) − Fn,β(x)]Cn,β(x)(4.26)

+
∫ M

−M
Kn,β(x,u)[Fn,θ (u) − Fn,β(u)]du,
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where x ∈ [−M,M], Cn,β and Kn,β are given by (4.10) and

An,θ,β(x) = EQ
(0)
n,θ (x) − EQ

(0)
n,β(x)

−
∫
u≤x

1 − F(x)

1 − F(u)
d
[
EQ

(2)
n,θ (u) − EQ

(2)
n,β(u)

]
(4.27)

+
∫
x<u

F (x)

F (u)
d
[
EQ

(3)
n,θ (u) − EQ

(3)
n,β(u)

]
.

Moreover, from (4.7) and integration by parts in (4.27), we have

‖An,θ,β‖M ≤ 3MBC|θ − β|,(4.28)

and from (3.5), (4.22), (4.23) and (4.8) we have∥∥B(2)
n,θ,β

∥∥
M ≤ 2‖Fn,θ − Fn,β‖2

M + 4MMBC‖Fn,θ − Fn,β‖M |θ − β|
[1 − Fn,θ (M)][1 − Fn,β(M)] ,(4.29)

∥∥B(3)
n,θ,β

∥∥
M ≤ 2‖Fn,θ − Fn,β‖2

M + 4MMBC‖Fn,θ − Fn,β‖M |θ − β|
Fn,θ (−M)Fn,β(−M)

.(4.30)

Suppose that Proposition 1(iv) is false. Then there exists a sequence |θk| ≤ ρ

such that
‖Fnk,θk

− Fnk,β‖M

|θk − β| → ∞ as k → ∞,(4.31)

which implies

|θk − β| → 0 as k → ∞.(4.32)

From Proposition 1(i), (4.7) and (4.32), we have∥∥EQ
(j)
nk,θk

− Q
(j)
β

∥∥≤ ∥∥EQ
(j)
nk,θk

− Q
(j)
θk

∥∥+ ∥∥Q(j)
θk

− Q
(j)
β

∥∥→ 0

as k → ∞. Thus, Proposition 1(ii) and the proof of Proposition 1(iii) give∥∥Fnk,θk
− Fβ

∥∥
M = ∥∥Fnk,θk

− Fnk,β

∥∥
M → 0 as k → ∞.(4.33)

Let

vk(x) = Fnk,θk
(x) − Fnk,β(x)

‖Fnk,θk
− Fnk,β‖M

⇒ ‖vk‖M ≡ 1.(4.34)

Then noting that (4.26) can be written as(
I − K̃M

n,β

)
(Fn,θ − Fn,β) = (1 − Cn,β)−1(An,θ,β + B

(2)
n,θ,β + B

(3)
n,θ,β

)
,(4.35)

where K̃M
n,β is given by (4.11), we have

(
I − K̃M

nk,β

)
vk = (

1 − Cnk,β

)−1
(

Ank,θk,β + B
(2)
nk,θk,β

+ B
(3)
nk,θk,β

‖Fnk,θk
− Fnk,β‖M

)
.(4.36)
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Since from (4.28)–(4.33) we have

‖Ank,θk,β‖M + ‖B(2)
nk,θk,β

‖M + ‖B(3)
nk,θk,β

‖M

‖Fnk,θk
− Fnk,β‖M

→ 0 as k → ∞,

then letting v0 be the limit of any convergent subsequence of vk , from (4.19),
(3.11), (4.11) and (4.36) we have (I − K̃M

β )v0 = 0. However, Lemma 1 implies
v0 = 0, which contradicts (4.34). �

PROOF OF PROPOSITION 1(v). Following the notation in Pollard (1990),
we have ξi = (Vi, δi, ti), i = 1,2, . . . , n, as the independent random vectors.

Since f
(j)
i (ω, t, θ) = I {F(Vi(ω) − tiθ) ≤ t, δi = j} for t ∈ [0,1] and |θ | ≤ ρ

is an indicator function with envelope |f (j)
i (ω, ·)| ≤ F

(j)
i (ω) = 1, the process

{f (j)
i (ω, t, θ)} is manageable [see examples on VC index in Chapter 2.6 of van

der Vaart and Wellner (1996)]. The proof follows from n−1∑n
i=1 f

(j)
i (ω, t, θ) =∑n

i=1 Q
(j)
n,θ (F

−1(t)) and Theorem 8.3 of Pollard (1990). �

PROOF OF PROPOSITION 1(vi). Without loss of generality, we only need to
consider the case 0 ≤ θ ≤ 1 and 0 ≤ x ≤ 1. Let k be a positive integer such that
λ < k−1

2k+2 < 1
2 and let γ be a constant satisfying k −2(k +1)λ−1 > 2γ > 0. Then,

for any θ, x ∈ [0,1] and positive integer m = nλ+γ , there exist 0 ≤ p,q ≤ (m − 1)

such that p
m

< x ≤ p+1
m

and q
m

< θ ≤ q+1
m

. Thus, from (B1), (B3), (3.1) and (4.7),
we can show for j = 1,2,3,

Z(j)
n (x, θ) ≡ [

Q
(j)
n,θ (x) − EQ

(j)
n,θ (x)

]
≤ Z(j)

n

(
p + 1

m
,
q + 1

m

)
+ E

{
Q

(j)
n,(q+1)/m

(
p + 1

m

)}
− E

{
Q

(j)
n,θ (x)

}
≤ Z(j)

n

(
p + 1

m
,
q + 1

m

)
+ 2MBCm−1,

and from a similar lower bound for Z
(j)
n (x, θ), we have

sup
0≤θ≤1

∥∥Q(j)
n,θ − EQ

(j)
n,θ

∥∥[0,1]

≤ max
{∣∣∣∣Z(j)

n

(
p

m
,

q

m

)∣∣∣∣; 0 ≤ p,q ≤ m

}
+ 2MBCm−1,

(4.37)

where ‖ · ‖[0,1] stands for the uniform norm on [0,1]. Note that for any p and q , it
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can be shown that E|Z(j)
n (

p
m

,
q
m

)|2k ≤ n−kCk for Ck = k(8k)k . For instance,

E
∣∣Z(j)

n (x, θ)
∣∣4 ≤ n−4

{
n∑

i=1

E
[
I {Vi ≤ x + tiθ, δi = j}

− P {Vi ≤ x + tiθ, δi = j}]4
+∑∑

p �=q

E
[
I {Vp ≤ x + tpθ, δp = j}

− P {Vp ≤ x + tpθ, δp = j}]2
× E

[
I {Vq ≤ x + tqθ, δq = j}

− P {Vq ≤ x + tqθ, δq = j}]2}

≤ n−4(n24 + n22222) = 16n−3 + 16n−2 ≤ 32n−2.

Hence, for k − 2(k + 1)λ − 2γ > 1 and any ε > 0, the Markov inequality gives

∞∑
n=1

P

{
max

{
nλ

∣∣∣∣Z(j)
n

(
p

m
,

q

m

)∣∣∣∣; 0 ≤ p,q ≤ m

}
> ε

}

≤
∞∑

n=1

m∑
p=0

m∑
q=0

P

{
nλ

∣∣∣∣Z(j)
n

(
p

m
,

q

m

)∣∣∣∣> ε

}

≤
∞∑

n=1

m∑
p=0

m∑
q=0

ε−2kn2kλE

∣∣∣∣Z(j)
n

(
p

m
,

q

m

)∣∣∣∣2k

≤ Ckε
−2k

∞∑
n=1

(m + 1)2n2kλn−k ≤ 4Ckε
−2k

∞∑
n=1

n2(λ+γ )n2kλ−k < ∞

and, in turn, from the theorem in Section 1.3.4 of Serfling [(1980), page 10], we
know that

max
{
nλ

∣∣∣∣Z(j)
n

(
p

m
,

q

m

)∣∣∣∣; 0 ≤ p,q ≤ m

}
a.s.→0 as n → ∞.(4.38)

Therefore, the proof follows from (4.37), (4.38) and nλm−1 = n−γ → 0 as
n → ∞. �

5. Proof of Theorem 2. In this section, EQ
(j)
n,βn

always denotes the expecta-

tion that treats βn as a constant in (3.1) and (3.3). We begin by establishing the
following lemma, which is needed to prove Theorem 2(i).
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LEMMA 2. Assume (A5) and (B1)–(B5). For M given by (3.6) and 0 < λ < 1
2 ,

if

θn → β, nλ
∥∥Q(j)

n,θn
− EQ

(j)
n,θn

∥∥
M → 0,∥∥Q(j)

n,θn
− EQ

(j)
n,θn

∥∥→ 0 as n → ∞,

(5.1)

where j = 0,1,2,3, then

nλ
∥∥F̂n,θn − Fn,θn

∥∥
M → 0 as n → ∞.(5.2)

PROOF. First, we note that (5.1), Proposition 1(i) and (4.7) give∥∥Q(j)
n,θn

− Q
(j)
β

∥∥→ 0 as n → ∞,(5.3)

where j = 0,1,2,3. Thus, from the proof of Proposition 1(iii) and from
Proposition 1(ii) and (iv), we have that as n → ∞,∥∥F̂n,θn − Fβ

∥∥→ 0,∥∥Fn,θn − Fn,β

∥∥
M → 0,∥∥F̂n,θn − Fn,θn

∥∥
M → 0.

(5.4)

From (3.5), (3.7), (3.8) and the derivation of (4.26), we have for any x ∈
[−M,M],

F̂n,θ (x) − Fn,θ (x)

= An,θ (x) + B
(2)
n,θ (x) + B

(3)
n,θ (x) + [

F̂n,θ (x) − Fn,θ (x)
]
Cn,θ (x)(5.5)

+
∫ M

−M
Kn,θ (x,u)

[
F̂n,θ (u) − Fn,θ (u)

]
du,

where

An,θ (x) = Q
(0)
n,θ (x) − EQ

(0)
n,θ (x) −

∫ x

−M

1 − Fn,θ (x)

1 − Fn,θ (u)
d
[
Q

(2)
n,θ (u) − EQ

(2)
n,θ (u)

]
+
∫ M

x

Fn,θ (x)

Fn,θ (u)
d
[
Q

(3)
n,θ (u) − EQ

(3)
n,θ (u)

]
,

B
(2)
n,θ (x) = [

F̂n,θ (x) − Fn,θ (x)
] ∫ x

−M

{
1

1 − F̂n,θ (u)
− 1

1 − Fn,θ (u)

}
dQ

(2)
n,θ (u)

+ [
F̂n,θ (x) − Fn,θ (x)

] ∫ x

−M

1

1 − Fn,θ (u)
d
[
Q

(2)
n,θ (u) − EQ

(2)
n,θ (u)

]
− [1 − Fn,θ (x)]

×
∫ x

−M

{
1

1 − F̂n,θ (u)
− 1

1 − Fn,θ (u)

}
d
[
Q

(2)
n,θ (u) − EQ

(2)
n,θ (u)

]
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− [1 − Fn,θ (x)]
∫ x

−M

[F̂n,θ (u) − Fn,θ (u)]2

[1 − F̂n,θ (u)][1 − Fn,θ (u)]2
dEQ

(2)
n,θ (u),

B
(3)
n,θ (x) = [F̂n,θ (x) − Fn,θ (x)]

∫ M

x

{
1

F̂n,θ (u)
− 1

Fn,θ (u)

}
dQ

(3)
n,θ (u)

+ [
F̂n,θ (x) − Fn,θ (x)

] ∫ M

x

1

Fn,θ (u)
d
[
Q

(3)
n,θ (u) − EQ

(3)
n,θ (u)

]
+ Fn,θ (x)

∫ M

x

{
1

F̂n,θ (u)
− 1

Fn,θ (u)

}
d
[
Q

(3)
n,θ (u) − EQ

(3)
n,θ (u)

]
+ Fn,θ (x)

∫ M

x

[F̂n,θ (u) − Fn,θ (u)]2

F̂n,θ (u)F 2
n,θ(u)

dEQ
(3)
n,θ (u),

Cn,θ (x) =
∫ x

−M

1

1 − Fn,θ (u)
dEQ

(2)
n,θ (u) +

∫ M

x

1

Fn,θ (u)
dEQ

(3)
n,θ (u),

Kn,θ (x,u) = −
{

1 − Fn,θ (x)

[1 − Fn,θ (u)]2 I {u ≤ x}q(2)
n,θ (u) + Fn,θ (x)

[Fn,θ (u)]2 I {x < u}q(3)
n,θ (u)

}
.

Equivalently, (5.5) can be written as

F̂n,θ (x) − Fn,θ (x) = An,θ (x) + B
(2)
n,θ (x) + B

(3)
n,θ (x) + Kn,θ,β(x)

+ [
F̂n,θ (x) − Fn,θ (x)

]
Cn,β(x)

+
∫ M

−M
Kn,β(x,u)

[
F̂n,θ (u) − Fn,θ (u)

]
du,

which gives

(I − K̃M
n,β)

(
F̂n,θ − Fn,θ

)= (1 − Cn,β)−1(An,θ + B
(2)
n,θ + B

(3)
n,θ + Kn,θ,β

)
,(5.6)

where

Kn,θ,β(x) =
∫ M

−M
[Kn,θ (x,u) − Kn,β(x,u)][F̂n,θ (u) − Fn,θ (u)

]
du

+ [
F̂n,θ (x) − Fn,θ (x)

][Cn,θ (x) − Cn,β(x)].
Since θn → β as n → ∞, we have from Proposition 1(ii), (5.4) and (4.8),∥∥Cn,θn − Cn,β

∥∥
M → 0 and

∥∥Kn,θn − Kn,β

∥∥
M2 → 0 as n → ∞.(5.7)

Next, we establish (5.2) by discussing the cases with bounded and unbounded
{nλ‖F̂n,θn − Fn,θn‖M } separately.

CASE (a). supn≥1{nλ‖F̂n,θn − Fn,θn‖M } < ∞. Note that (5.7) gives

nλ
∥∥Kn,θn,β

∥∥
M → 0 as n → ∞.(5.8)
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Also, from (5.1), (5.4), Proposition 1(ii) and (B1) we have that

nλ
∥∥An,θn

∥∥
M → 0 as n → ∞,(5.9)

because from integration by parts,

An,θn(x) = [
Q

(1)
n,θn

(x) − EQ
(1)
n,θn

(x)
]

+ [
Q

(2)
n,θn

(−M) − EQ
(2)
n,θn

(−M)
] 1 − Fn,θn(x)

1 − Fn,θn(−M)

+
∫ x

−M

[
Q

(2)
n,θn

(u) − EQ
(2)
n,θn

(u)
]
d

{
1 − Fn,θn(x)

1 − Fn,θn(u)

}
(5.10)

+ [
Q

(3)
n,θn

(M) − EQ
(3)
n,θn

(M)
] Fn,θn(x)

Fn,θn(M)

−
∫ M

x

[
Q

(3)
n,θn

(u) − EQ
(3)
n,θn

(u)
]
d

{
Fn,θn(x)

Fn,θn(u)

}
,

and we have that as n → ∞,

nλ
∥∥B(2)

n,θn

∥∥
M ≤ nλ‖F̂n,θn − Fn,θn‖2

M [Q(2)
n,θn

(M) − Q
(2)
n,θn

(−M)]
[1 − F̂n,θn(M)][1 − Fn,θn(M)]

+ 2nλ‖F̂n,θn − Fn,θn‖M‖Q(2)
n,θn

− EQ
(2)
n,θn

‖M

[1 − Fn,θn(M)]
(5.11)

+ 2nλ‖F̂n,θn − Fn,θn‖M‖Q(2)
n,θn

− EQ
(2)
n,θn

‖M

[1 − F̂n,θn(M)]

+ nλ‖F̂n,θn − Fn,θn‖2
M [EQ

(2)
n,θn

(M) − EQ
(2)
n,θn

(−M)]
[1 − F̂n,θn(M)][1 − Fn,θn(M)] → 0

and

nλ
∥∥B(3)

n,θn

∥∥
M ≤ nλ‖F̂n,θn − Fn,θn‖2

M [Q(3)
n,θn

(M) − Q
(3)
n,θn

(−M)]
F̂n,θn(−M)Fn,θn(−M)

+ 2nλ‖F̂n,θn − Fn,θn‖M‖Q(3)
n,θn

− EQ
(3)
n,θn

‖M

Fθn(−M)
(5.12)

+ 2nλ‖F̂n,θn − Fn,θn‖M‖Q(3)
n,θn

− EQ
(3)
n,θn

‖M

F̂n,θn(−M)

+ nλ‖F̂n,θn − Fn,θn‖2
M [EQ

(3)
n,θn

(M) − EQ
(3)
n,θn

(−M)]
F̂n,θn(−M)Fn,θn(−M)

→ 0.
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Hence, (5.6), (5.8)–(5.12) and (4.19) give∥∥(I − K̃M
n,β

)[
nλ(F̂n,θn − Fn,θn

)]∥∥
M → 0 as n → ∞.(5.13)

Since supn≥1{nλ‖F̂n,θn − Fn,θn‖M } < ∞, then (5.13), (3.11), (4.11) and (4.19)
imply that if a convergent subsequence of nλ(F̂n,θn − Fn,θn) has limit v0, then we
have (I − K̃M

β )v0 = 0, and Lemma 1 implies v0 = 0. Hence, we have (5.2).

CASE (b). supn≥1{nλ‖F̂n,θn − Fn,θn‖M } = ∞. Let un = nλ(F̂n,θn − Fn,θn).
Then there exists a subsequence unk

such that ‖unk
‖M → ∞ as k → ∞ and for

vnk
= unk

‖unk
‖M

⇒ ‖vnk
‖M ≡ 1,(5.14)

equation (5.6) becomes

(
I − K̃M

nk,β

)
vnk

=
nλ

k(Ank,θnk
+ B

(2)
nk,θnk

+ B
(3)
nk,θnk

+ Knk,θnk
,β)

‖unk
‖M(1 − Cnk,β)

.(5.15)

Clearly, from (5.10), (5.1), (5.4) and (5.7) we have that as k → ∞,

nλ
k‖Ank,θnk

‖M

‖unk
‖M

→ 0 and
nλ

k‖Knk,θnk
,β‖M

‖unk
‖M

→ 0.(5.16)

Moreover, (5.1), (5.4), (5.11) and (5.12) give

nλ
k‖B(2)

nk,θnk
‖M

‖unk
‖M

→ 0 and
nλ

k‖B(3)
nk,θnk

‖M

‖unk
‖M

→ 0 as k → ∞.(5.17)

Hence, (5.15)–(5.17) and (4.19) imply (I − K̃M
nk,β

)vnk
→ 0 as k → ∞. From the

proof of Case (a), we know that vnk
→ 0 as k → ∞ which contradicts (5.14). �

PROOF OF THEOREM 2(i). From (A1), (A3) and (2.20), we know for any
θ ∈ [−ρ,ρ],

Mn(θ) = −
∫ B

A

[
F̂n,θ (x) − F(x)

]
dψ(x)

= −
∫ B

A

[
F̂n,θ (x) − F̂n,β(x)

]
dψ(x)(5.18)

−
∫ B

A

[
F̂n,β(x) − Fn,β(x)

]
dψ(x),

and from Lemma 2 and Proposition 1(v) and (vi), we have

nλ
∥∥F̂n,β − Fn,β

∥∥
M

a.s.→0 as n → ∞.(5.19)
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Since |Mn(βn)| ≤ |Mn(β)|, we know that (5.18), (5.19) and Proposition 1(ii) imply

nλ|Mn(βn)| a.s.→0 as n → ∞(5.20)

and, in turn,

nλ
∫ B

A

[
F̂n,βn(x) − F̂n,β(x)

]
dψ(x)

a.s.→0 as n → ∞.(5.21)

Because of Proposition 1(v) and (vi), it suffices to show that for j = 0,1,2,3,

nλ
∥∥Q(j)

n,βn
− EQ

(j)
n,βn

∥∥
M → 0 and

∥∥Q(j)
n,βn

− EQ
(j)
n,βn

∥∥→ 0
(5.22)

as n → ∞
implies nλ|βn − β| → 0 as n → ∞.

Let {βnk
} be a subsequence of {βn} such that

lim
k→∞nλ

k

∣∣βnk
− β

∣∣= lim sup
n→∞

nλ
∣∣βn − β

∣∣(5.23)

and denote

ξ = inf
nk≥1

‖F̂nk,βnk
− F̂nk,β‖M

|βnk
− β| .(5.24)

Then ∣∣∣∣ ∫ B

A

F̂nk,βnk
(x) − F̂nk,β(x)

βnk
− β

dψ(x)

∣∣∣∣≥ ξ [ψ(B) − ψ(A)],

and from (5.21) we have

lim
k→∞nλ

k

∣∣βnk
− β

∣∣ξ [ψ(B) − ψ(A)]
(5.25)

≤ lim
k→∞nλ

k

∣∣βnk
− β

∣∣∣∣∣∣ ∫ B

A

F̂nk,βnk
(x) − F̂nk,β(x)

βnk
− β

dψ(x)

∣∣∣∣= 0.

Moreover, we know from (5.23) the proof follows by showing

lim
k→∞nλ

k

∣∣βnk
− β

∣∣= 0.

If limk→∞ nλ
k |βnk

− β| �= 0, then we have ξ = 0 in (5.25), which by (5.24)
means that there exists a subsequence, still denoted as {nλ

k |βnk
− β|}, such that

lim
k→∞

‖F̂nk,βnk
− F̂nk,β‖M

|βnk
− β| = 0 and lim

k→∞βnk
= β0.(5.26)

If β0 �= β , then limk→∞ ‖F̂nk,βnk
− F̂nk,β‖M = 0 and, in turn, (5.19) implies

lim
k→∞

∥∥F̂nk,βnk
− Fβ

∥∥
M = 0.(5.27)
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On the other hand, from (5.22), Proposition 1(i), (4.7) and limk→∞ βnk
= β0, we

know for j = 0,1,2,3, limk→∞ ‖Q(j)
nk,βnk

− Q
(j)
β0

‖ = 0, which from the proof of

Proposition 1(iii) gives that for any convergent subsequence of F̂nk,βnk
, still de-

noted as {F̂nk,βnk
}, and for any fixed x ∈ [−M,M], we have limk→∞ F̂nk,βnk

(x) =
Fβ0(x). However, (5.27) implies limk→∞ F̂nk,βnk

(x) = Fβ(x), which contra-
dicts (B6) because β0 �= β .

If β0 = β , from (5.22) and Lemma 2 we have

lim
k→∞nλ

k

∥∥F̂nk,βnk
− Fnk,βnk

∥∥
M = 0,(5.28)

which from the assumption limk→∞ nλ
k |βnk

− β| �= 0, (5.26) and (5.19) implies

lim
k→∞nλ

k

∥∥Fnk,βnk
− Fβ

∥∥
M = 0.(5.29)

Note that (5.18), (5.20), (5.28), (4.35), Lemma 1, (4.29), (4.30), (5.29) and (4.19)
imply

o(n−λ
k ) = −

∫ B

A

[
Fnk,βnk

(x) − Fnk,β(x)
]
dψ(x)

= −
∫ B

A

(
I − K̃M

nk,β

)−1

(5.30)

×
(

Ank,βnk
,β + B

(2)
nk,βnk

,β + B
(3)
nk,βnk

,β

1 − Cnk,β

)
(x) dψ(x)

= −
∫ B

A

(
I − K̃M

nk,β

)−1
( Ank,βnk

,β

1 − Cnk,β

)
(x) dψ(x) + o(n−λ

k ).

From (3.1), (3.10), integration by parts in (4.27), limk→∞ βnk
= β , (B1), (B3),

(B5) and (A5) we have∥∥(βnk
− β

)−1
Ank,βnk

,β − Ãβ

∥∥
M → 0 as k → ∞.(5.31)

Hence, the dominated convergence theorem, (5.31), (4.19), Lemma 1 and (3.9)
give

(
βnk

− β
)−1

∫ B

A

(
I − K̃M

nk,β

)−1
( Ank,βnk

,β

1 − Cnk,β

)
(x) dψ(x) → Aβ �= 0

(5.32)
as k → ∞.

Hence, by (5.30) and (5.32) we have limk→∞ nλ
k |βnk

− β| = 0, which contradicts
the assumption limk→∞ nλ

k |βnk
− β| �= 0. �

The following lemma is needed in the proof of Theorem 2(ii).



DOUBLY CENSORED REGRESSION M-ESTIMATORS 1213

LEMMA 3. Under the assumptions of Theorem 2, we have for M given
by (3.6),

√
n
(
Q

(j)
n,βn

− EQ
(j)
n,βn

)
weakly converges to G

(j )
β as n → ∞(5.33)

on [−M,M], where G
(j )
β is a centered Gaussian process for j = 1,2,3.

PROOF. From the notation in the proofs of Proposition 1(v) and (vi), we know
that fni(ω, x, θ) = n−1/2I {Vi(ω) ≤ x + tiθ, δi = j} for |x| ≤ M and |θ | ≤ ρ is an
indicator function with envelope |fni(ω, ·)| ≤ Fni(ω) = n−1/2. Thus the triangular
array of processes {fni(ω, x, θ)} is manageable. Noting that

√
nZ(j)

n (x, θ) =
n∑

i=1

[fni(ω, x, θ) − Efni(·, x, θ)],

from (A5) and P
(j)
i in (2.12), straightforward verification of the sufficient

conditions of Theorem 10.6 in Pollard (1990) shows that
√

nZ
(j)
n (x, θ) weakly

converges to a centered Gaussian process on [−M,M] × [−ρ,ρ]. This means
that

√
nZ

(j)
n (·, β) = √

n(Q
(j)
n,β −EQ

(j)
n,β) weakly converges to a centered Gaussian

process on [−M,M] as n → ∞ and that from Neuhaus [(1971), page 1291] we
have that for any ε > 0, when δ → 0,

lim sup
n→∞

P
{
sup

{√
n
∣∣Z(j)

n (x, θ) − Z(j)
n (y, η)

∣∣; |x − y| < δ, |θ − η| < δ
}≥ ε

}
→ 0.

Since from
√

nZ
(j)
n (x, θ) = √

n[Q(j)
n,θ (x)−EQ

(j)
n,θ (x)], we have that for n−1/3 ≤ δ,

sup
{√

n
∣∣[Q(j)

n,θ (x) − EQ
(j)
n,θ (x)

]
− [

Q
(j)
n,β(x) − EQ

(j)
n,β(x)

]∣∣; |x| ≤ M,n1/3|θ − β| ≤ 1
}

≤ sup
{√

n
∣∣Z(j)

n (x, θ) − Z(j)
n (y,β)

∣∣; |x − y| < δ, |θ − β| < δ
}
,

thus as n → ∞,

sup
|x|≤M,n1/3|θ−β|≤1

{√
n
∣∣[Q(j)

n,θ (x) − EQ
(j)
n,θ (x)

]− [
Q

(j)
n,β(x) − EQ

(j)
n,β(x)

]∣∣} P→0.

From Theorem 2(i), we know that n1/3|βn − β| a.s.→0 as n → ∞. Hence, we

have that
√

n (Q
(j)
n,βn

− EQ
(j)
n,βn

) weakly converges to the same centered Gaussian

process as
√

n(Q
(j)
n,β − EQ

(j)
n,β). �
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PROOF OF THEOREM 2(ii). From (5.6) we have that on [−M,M],(
I − K̃M

n,β

)[√
n
(
F̂n,βn − Fn,βn

)]
= √

n

(
An,βn + B

(2)
n,βn

+ B
(3)
n,βn

+ Kn,βn,β

1 − Cn,β

)
,

(5.34)

and from Theorem 2(i), Proposition 1(iv)–(vi) and Lemma 2, we have

nλ
∥∥F̂n,βn − Fn,βn

∥∥
M

a.s.→0 and nλ
∥∥Fn,βn − Fn,β

∥∥
M

a.s.→ 0
(5.35)

as n → ∞,

where 0 < λ < 1
2 . By (5.11), (5.12) and Proposition 1(vi), we know (5.35) implies

√
n
∥∥B(2)

n,βn

∥∥
M

a.s.→0 and
√

n
∥∥B(3)

n,βn

∥∥
M

a.s.→0 as n → ∞.(5.36)

From (3.3), (4.8) and Proposition 1(iv) there exists 0 < M̃0 < ∞ such that∥∥Cn,βn − Cn,β

∥∥
M

≤ M̃0|βn − β|
[1 − Fn,βn(M)][1 − Fn,β(M)] + M̃0|βn − β|

Fn,βn(−M)Fn,β(−M)

and similarly∥∥Kn,βn − Kn,β

∥∥
M2

≤ M̃0|βn − β|
[1 − Fn,βn(M)]2[1 − Fn,β(M)]2 + M̃0|βn − β|

F 2
n,βn

(−M)F 2
n,β(−M)

.

In turn, from Theorem 2(i) and (5.35) we have, in (5.6),

√
n
∥∥Kn,βn,β

∥∥
M

a.s.→0 as n → ∞.(5.37)

Hence, from (5.36), (5.37), Lemma 1 and (4.19), equation (5.34) gives

√
n
(
F̂n,βn − Fn,βn

)= (
I − K̃M

n,β

)−1
(√

nAn,βn

1 − Cn,β

)
+ oa.s.(1),

where oa.s.(1) converges to 0 almost surely as n → ∞. Thus, (5.10), Lemma 3,
(5.35), (4.19) and Lemma 1 imply that on [−M,M],

√
n
(
F̂n,βn − Fn,βn

)
weakly converges to Gβ as n → ∞,(5.38)

where Gβ is a centered Gaussian process.
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Now, (5.18), (4.35), Lemma 1, (4.29), (4.30), (5.35), Theorem 2(i) and (4.19)
give

√
nMn(βn) = −√

n

∫ B

A

[
F̂n,βn(x) − Fn,βn(x)

]
dψ(x)

− √
n

∫ B

A

[
Fn,βn(x) − Fn,β(x)

]
dψ(x)

= −√
n

∫ B

A

[
F̂n,βn(x) − Fn,βn(x)

]
dψ(x)

−√
n

∫ B

A

(
I − K̃M

n,β

)−1

×
(

An,βn,β + B
(2)
n,βn,β + B

(3)
n,βn,β

1 − Cn,β

)
(x) dψ(x)(5.39)

= −√
n

∫ B

A

[
F̂n,βn(x) − Fn,βn(x)

]
dψ(x)

−√
n

∫ B

A

(
I − K̃M

n,β

)−1
(

An,βn,β

1 − Cn,β

)
(x) dψ(x) + oa.s.(1)

= −√
n

∫ B

A

[
F̂n,βn(x) − Fn,βn(x)

]
dψ(x)

−√
n(βn − β)An + oa.s.(1),

where

An = (βn − β)−1
∫ B

A

(
I − K̃M

n,β

)−1
(

An,βn,β

1 − Cn,β

)
(x) dψ(x).(5.40)

If we let ηn = Mn(βn)/An, then from Theorem 2(i) and (5.32) we have

An
a.s.→Aβ �= 0 as n → ∞.(5.41)

In turn, (5.20) implies nλ|ηn| a.s.→0 as n → ∞, where 0 < λ < 1
2 . Hence, from

(5.38)–(5.41) we have

√
n(βn − β + ηn) = −√

nA−1
n

∫ B

A

[
F̂n,βn(x) − Fn,βn(x)

]
dψ(x) + oa.s.(1)

D→ −A−1
β

∫ B

A
Gβ dψ

D=N(0, σ 2) as n → ∞. �

APPENDIX.

PROOF OF THEOREM 1(i). If we denote Zn(s, t) = √
n[Wn(F

−1(s), t) −
EWn(F

−1(s), t)], where s, t ∈ [0,1], then it suffices to show that Zn(s, t) weakly
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converges to a centered Gaussian process. Following the notation in Pollard
(1990), we have ξi = (F (Yi), ti), i = 1, . . . , n, as the independent random vectors
and fni(ω, s, t) = n−1/2I {F(Yi(ω)) ≤ s, ti ≤ t} is an indicator function with
envelope |fni(ω, ·)| ≤ Fni(ω) = n−1/2. Thus the triangular array of processes
{fni(ω, s, t)} is manageable [see examples on VC index in Chapter 2.6 of van
der Vaart and Wellner (1996)]. Noting that Zn(ω, s, t) = ∑n

i=1[fni(ω, s, t) −
Efni(·, s, t)], the proof follows from straightforward verification of the sufficient
conditions of Theorem 10.6 in Pollard (1990). �

Computation of F̂n,θ and properties of Mn(θ). For any θ , let

Vi(θ) = Vi − tiθ, i = 1, . . . , n.(A.1)

Then one can compute F̂n,θ as in Mykland and Ren (1996), treating (Vi(θ), δi),
1 ≤ i ≤ n, like their doubly censored sample, because the integral equation (2.2)
in Mykland and Ren (1996) is exactly the same as (2.19) in Section 2.

Furthermore, from their paper we know that for any θ, F̂n,θ is given by

F̂n,θ (x) =
n∑

i=1

pni(θ)I {Vi(θ) ≤ x},(A.2)

where 0 ≤ pni(θ) ≤ 1, 1 ≤ i ≤ n and 0 <
∑n

i=1 pni(θ) ≤ 1, and it is easy to see that
pn1(θ), . . . , pnn(θ) are determined by the ranks of Vi(θ) among V1(θ), . . . , Vn(θ).
This means that for any θ∼ < θ̃ , if the ranks of Vi( θ∼ ) and Vi(θ̃ ) are exactly the same
for every i, then we should have pni( θ∼ ) = pni(θ̃ ) for every i.

Now, without loss of generality, assume V1 ≤ V2 ≤ · · · ≤ Vn. Let


n =
{

Vi − Vj

ti − tj

∣∣∣∣ ti �= tj , i �= j, 1 ≤ i, j ≤ n

}
(A.3)

and let θ1, . . . , θN be all distinct points of 
n with −∞ = θ0 < θ1 < · · · <

θN < θN+1 = ∞. It is straightforward to show that for any 0 ≤ k ≤ N and any
θk < θ∼ < θ̃ < θk+1, we have {rank of Vi( θ∼ )} = {rank of Vi(θ̃ )}, i = 1, . . . , n. Thus
for each i,pni(θ) is a constant on every interval (θk, θk+1),0 ≤ k ≤ N . Since by
(2.20), (A1) and (A.2),

Mn(θ) =
[

1 −
n∑

i=1

pni(θ)

]
ψ(B) +

n∑
i=1

pni(θ)ψ(Vi − tiθ),(A.4)

then for each 0 ≤ k ≤ N and any θ ∈ (θk, θk+1), we have

M ′
n(θ) = −

n∑
i=1

pni(θ)tiψ
′(Vi − tiθ) ≤ 0.

Hence, Mn(θ) is continuous and nonincreasing in θ on every interval (θk, θk+1).
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Existence of Fn,θ and Fθ . Because of (3.1), (3.2) and Proposition 1(i), the
arguments for showing the existence of Fn,θ and Fθ are similar. Thus, we consider
only the case of Fθ .

For any θ , clearly all Q
(j)
θ (x) are nonnegative, continuous and nondecreasing

in x with Q
(j)
θ (∞) = αj < 1, j = 1,2,3, and Q

(0)
θ (∞) = α1 +α2 +α3 = 1. Let N

be any large positive integer and let nj = αjN , j = 1,2,3. Then n1 +n2 +n3 = N .

For α−1
1 Q

(1)
θ (x) we can choose points v1, . . . , vn1 such that the uniform distance

between Gn1(x) = n−1
1

∑n1
i=1 I {vi ≤ x} and α−1

1 Q
(1)
θ (x) is no larger than n−1

1 .
Similarly we can choose points vn1+1, . . . , vn1+n2 and vn1+n2+1, . . . , vn1+n2+n3 for
Gn2(x) and Gn3(x), respectively. Let δi = 1, 1 ≤ i ≤ n1; 2, n1 + 1 ≤ i ≤ n1 + n2;
3, n1 + n2 + 1 ≤ i ≤ N . Then

Q
(1)
N (x) = N−1

N∑
i=1

I {vi ≤ x, δi = 1} = α1n
−1
1

n1∑
i=1

I {vi ≤ x} = α1Gn1(x),

Q
(2)
N (x) = N−1

N∑
i=1

I {vi ≤ x, δi = 2} = α2Gn2(x),

Q
(3)
N (x) = N−1

N∑
i=1

I {vi ≤ x, δi = 3} = α3Gn3(x),

Q
(0)
N (x) = Q

(1)
N (x) + Q

(2)
N (x) + Q

(3)
N (x) = N−1

N∑
i=1

I {vi ≤ x}.

Let HN be the solution of

HN(x) = Q
(0)
N (x) −

∫
u≤x

1 − HN(x)

1 − HN(u)
dQ

(2)
N (u)

+
∫
x<u

HN(x)

HN(u)
dQ

(3)
N (u).

(A.5)

Then from Mykland and Ren (1996), we know that HN(x) is a [0,1]-valued
nondecreasing function. From Helly’s theorem, HN has a convergent subsequence
HNk

such that for any x, limk→∞ HNk
(x) = H0(x). Since for j = 1,2,3, we have

Q
(j)
N = αjGnj

converges to Q
(j)
θ (x) uniformly, we have that for each fixed x, the

limit of equation (A.5) is

H0(x) = Q
(0)
θ (x) −

∫
u≤x

1 − H0(x)

1 − H0(u)
dQ

(2)
θ (u) +

∫
x<u

H0(x)

H0(u)
dQ

(3)
θ (u),

which shows the existence of Fθ = H0, a [0,1]-valued nondecreasing function.
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