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ALGORITHMS FOR COMPUTING SELF-CONSISTENT AND 

MAXIMUM LIKELIHOOD ESTIMATORS WITH DOUBLY 


CENSORED DATA 


University of  Chicago and University of Nebraska 

The paper investigates the structure of the self-consistent estimators 
(SCE) and the nonparametric maximum likelihood estimator (NPMLE) for 
doubly censored data. An explicit sufficient and necessary condition for an 
SCE to be the NPMLE is given. Based on this, algorithms for computing 
the SCE and the NPMLE are provided. The relation between our algo- 
rithms and the EM algorithm is studied. 

1. Introduction. In medical follow-up studies and in biometry and relia- 
bility studies, incomplete data are frequently encountered. Examples of the 
lifetime samples' being censored either from above or below, called doubly 
censored samples, have been given by Gehan (19651, Mantel (19671, Peto 
(1973), Turnbull (1974) and others. For doubly censored samples, Turnbull 
(1974) and Tsai and Crowley (1985) have given the self-consistent estimators 
(SCE) for the survival function S ,  with grouped data and ungrouped data, 
respectively. The asymptotic properties of the self-consistent estimators, such 
as strong consistency and weak convergence, have been studied by Chang 
and Yang (1987), Chang (1990) and Gu and Zhang (1993). 

However, a satisfying procedure to find these self-consistent estimators 
and the nonparametric max imum likelihood estimator (NPMLE) of S ,  for 
doubly censored data is not available. For grouped data, Turnbull (1974) gave 
an algorithm to compute the SCE and showed that in his case, the SCE is the 
NPMLE. However, Turnbull's method has its limitations, because a natural 
discrete time scale, which is used in Turnbull's method, may not exist for 
some data. For instance, an example occurred in a recent study of age-depen- 
dent growth rate of primary breast cancer by Peer, Van Dijck, Hendricks, 
Holland and Verbeek (1993), where the doubly censored data are clearly not 
"grouped." For ungrouped data, the problem is more complicated. In such a 
case, it is shown that an SCE is not unique and is not necessarily the NPMLE 
[see examples given by Gu and Zhang C1993)], and it is not clear how the SCE 
are related to the NPMLE. All these situations can also happen in the 
grouped data case if there are groups that contain censored observations only. 
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In this paper, we give a simple algorithm, which is shown in Theorem 6 to be 
the EM algorithm with restrictions on the initial point, to compute a particu- 
lar SCE for ungrouped doubly censored data. Our Theorem 6 and the princi- 
ple of the EM algorithm imply that SCE yield the local maxima of the 
"likelihood function" (2.1). Our Theorem 1shows that the global maximum of 
the likelihood function (2.1)-the NPMLE-exists uniquely for ungrouped 
doubly censored data. In Theorem 2, we give a set of sufficient and necessary 
conditions to characterize the relation between the SCE and the NPMLE, 
which shows that the NPMLE is an SCE for ungrouped doubly censored data. 
Based on these conditions, a simple algorithm for searching for the NPMLE 
is given. 

Theorem 3 by Gu and Zhang (1993) along with our Theorem 2 implies that 
the SCE and NPMLE are asymptotically equivalent. This means that search- 
ing for the NPMLE for a large sample may not be necessary. However, since 
SCE are the local maxima of the likelihood function, the difference between 
SCE and the NPMLE may not be negligible for a sample with moderate size. 
We present some simulation results a t  the end of Section 2 to illustrate this 
point. The simulation results suggest that the NPMLE is a better estimator 
than an arbitrary SCE for a moderate sample size. 

Another aspect of the SCE and the NPMLE for doubly censored data that 
is worth investigating is the structure of the estimators. Since the SCE are 
given implicitly through some estimating equations, the structure of the 
estimators is not clear. Based on the SCE for doubly censored data, some 
statistical inference problems, such as estimation, hypothesis testing and 
density estimation, have been studied by Ren and Zhou (1993) and Ren 
(1994, 1995). In these studies, the structure of the SCE plays a very impor- 
tant role. For right censored data, Efron (1967) gave the clear structure of the 
SCE (NPMLE). In this paper, we give the version (of a particular SCE) for 
doubly censored data. We also give the structure of the NPMLE for doubly 
censored data in some special situations. 

We present our main results in Section 2, and give the proofs in Sections 3 
and 4. 

2. Nonparametric MLE. Let X be a random variable (r.v.) with a 
survival function S,  and let Xi, i = 1 , .. . ,n, be n independent observations 
on X. In this research, one observes qot {Xi}, but a doubly censored sample, 

with the index 

I 1, i f Z , < X , < Y , ,  

6,= 2, if V, = Yi < Xi (right censoring), 

3, if V, = Zi 2 Xi (left censoring), 

where (Y,, Zi), i = 1,.. . , n, are independent from Xi and are independent 
observations on (Y, Z) for random variables Y and Z with P{Y 2 Z} = 1. The 
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r.v.'s Yi and Zi are called right and left censoring variables, respectively. We 
study the nonparametric maximum likelihood estimator (NPMLE) of S, 
based on (V, ,a,), 1I i I n. 

Let W,, W,, . . . ,Wm be all the distinct points of the set {V,, . . . ,V,} with 
W, < < Wm and let 

n 

ffk= E I { S L =  l , V i = W k ) ,  
i =  1 

n 

Pk = I{S~= 2 , V i  = W )k ,  
i = l  

n 

Yk = E I { s ~ = ~ , V ~ = W ~ ) ,  
i =  1 

where k = 1,.. . ,m. Suppose that each (V,, 4 )  is identically distributed as 
(V, 6 1. We note that 

P { V =  v, S =  1) = P { X =  v , Z  < X I  Y) = P I X =  v)P{Z < u I Y) ,  

P { V = u ,  S =  2) = P { Y = u , X >  Y) = P I X >  v ) P { Y = u ) ,  

P { V =  u ,  S =  3) = P { Z =  U , X I Z )  = P I X <  v ) P { Z =  u),  

x ( P { X  2 Vi))
118,= 3) , 

where C is the term that depends only on (Y, 2). Hence, if a possible 
candidate S for the NPMLE of S, assigns all its mass to the points 
W,, . . . ,W, and the interval (Wm, =I, we know that the likelihood function of 
(V;, a,), 1s i I n,  for S is proportional to the function 

m 

(2.1) L(S) = I-I (P,-, - ~ ~ ) " ~ p p , P k ( i-
k =  1 

where Po= 1and Pk= P,{X > Wk}. The NPMLE S^p)of S, is the estimator 
$k = S^pl(wk),1s k I m, which maximizes L(S). With the proof deferred to 
the Appendix, the following theorem shows that the NPMLE is unique. 

THEOREM1. The likelihood, or log L(S), is strictly concave on the set of 
Pk's satisfying: 

(i) 1 2P12 ... 2 Pm2 0. 
(ii) Pk-,> Pk if a, > 0. 

(iii) Pk> 0 if Pk > 0. 
(iv) Pk< 1if yk > 0. 

One may note that Theorem 1considers a more general case than the one 
studied by Turnbull (19741, who required a, > 0 for all 1I k I m. However, 
it is not easy to directly study the structure of the NPMLE through the 
likelihood L(.). In this paper, we give an algorithm to compute the NPMLE, 
from which the structure of the estimator follows in some situations. 
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By Tsai and Crowley (1985), a self-consistent estimator Sf;")of S, is given 
by a solution of the equation 

where 

3 

Q'"'(t) = C Qj"'(t), t 2 0, 
J =  1 

with /,., = 0 if Sf;")(t) = 0 and /,< = 0 if Sf;")(t) = 1.(Even though we do 
not consider the asymptotic properties of the SCE in this paper, we keep n in 
Sy' and Q(") for consistency with earlier authors.) As pointed out by Gu and 
Zhang (1993), a self-consistent estimate is not necessarily an NPMLE. In 
Turnbull's grouped data case (19741, the NPMLE of S, is self-consistent. 
Later on, we show that  the NPMLE for ungrouped data is also self-consistent. 

Observing the nature of the integral equation (2.2), it suffices to find the 
value of Sf;")at  each W,, 1I h I m, since a solution of (2.2) must be a step 
function with possible jumps a t  Wk. Denote X: = Sf;")(Wk).From (2.2), we 
must have 

where k = 1 , .. . ,m, and x? = xS if Vi = Wj. Let 

and 
= ( q l , . . . , q m ) ,  

where x E Em= [0, l l m  and xi = xj if Vi = Wj. Then a self-consistent esti- 
mate x* = (x?,.. . , xk) is a fixed point of the function W, that is, 

(2.4) x* = W(x*).  

We observe that  a naive and simple algorithm for computing SF) can be 

given based on (2.4) as follows: 


(2.5) x ~ + ~ = W ( X ~ ) ,N = 1 , 2  , . . . ,  
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where x,  E Em. Any limit point of {xN> should give a self-consistent estima- 
tor. This algorithm (2.5) is evidently quite appealing because it is simple and 
easy to understand. Naturally, a few questions need to be answered. 

1. Does algorithm (2.5) converge? 
2. Does algorithm (2.5) converge to the NPMLE? 
3. How is algorithm (2.5) related to the EM algorithm? 

In Theorem 6, we show that algorithm (2.5) is in fact the EM algorithm. 
From our simulation study, we find that the algorithm may converge to 
different points depending on the initial point x,. Hence, algorithm (2.5) does 
not always give the NPMLE, even when it converges. 

To search for the NPMLE using algorithm (2.51, from the likelihood L(S) 
we observe that the following facts should be satisfied by the NPMLE: 

1. S^p)(t)= 1for t < A,. 
2. S^g)(t)= 0 for t 2 B, when ,BE = 0. 
3. S^p)(t)= 0 for t 2 C, when B, < Wm and p, > 0. 
4. S^y)(t)= c > 0 for t 2 B, when B, = Wm and @, > 0, where 0 < c < 1is 

a constant, 

A, = min{W,; a, + y, > 0}, 


B, = max{Wk; a, + Pk > 01, 

C, = min{ Wk ;W, > B,} 

and 


n 

a L =  C I { 8 i = 1 , y = L , } ,  
i =  1 

n 

(2.6) p L =  C I { 6 i = 2 , V , = L , } ,  
i =  1 

n 

yL = C I{ai = 3,Vi =L,},  
i =  1 

for L = A, B, C. We also observe that A, is the first jump point of the 
NPMLE Sf;")and that B, or C, is the last jump point of S^y)when BE = 0 
or B, < Wm. In Section 3, we will show that all these jumps sizes are no 
less than l /n .  Based on these observations, we restrict the selection of the 
initial point x ,  for algorithm (2.5) on the space 

a,= {X = ( x l ,  . . . , x,) E ~ , l j C ~2 x k + ,  andsatisfy ( ~ 1 ) - ( ~ 4 ) } ,  
where: 

(All x, = 1for those W, < A,. 

(A2) When P, = 0, l / n  I x, I(n  - l)/n for those A, IWk < B, and 
xk = 0 for those W, 2 B,. 

(A3) When B, < Wm and P, > 0, l / n  I xk 2 (n  - l) /n for those A, I 
W, < C, and x, = 0 for those Wk 2 C,. 
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(A4) When B, = Wm and pB > 0, l / n  I x, I(n - l)/n for those A, I 
Wk. 

THEOREM (i) q has a t  least one fixed p i n t  x* in space 0,.2. 
(ii) ,!$PI is the NPMLE if and only if (1) SF) is a fixed point of W i n  R, 

and (2) ,!$PI satisfies the condition A, 2 0 for I I k Im, where for P, = 

,!$f;L)(wk1, 

The proof of Theorem 2 is given in Section 3. Clearly, Theorem 2 implies 
that the NPMLE is self-consistent and that from the structure of the space 
R,, the NPMLE ,!$PIis a nonincreasing step function. 

From the proof of Theorem 2, we find that if we impose the following 
additional condition on the initial point x ,  E R,, then the detailed structure 
of a particular self-consistent estimator sp can be obtained. 

(A51 Choose xk- ,  = x, if a,  = 0 and A, < W, < J,, where 

B, if p, = 0, 


C,, i f B , < W m , p B > O ,  

W,, i f B , =  Wm,pB >O. 


We denote = {x E R,jx satisfies (A511 and state the results in the next 
corollary with the proof deferred to Section 3. 

Let S,(t) = P{Y > t} and S,(t) = P{Z > t}. Chang and Yang (1987) gave 
the self-consistent estimators of S, and S, as 

where Sp)is a self-consistent estimator of S, and D, = max{W,; Sp)(W,) > 
0). They showed that Sp) and Sp)have strong consistency under regularity 
conditions. 
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COROLLARY There exists a unique self-consistent estimator Sff.)of Sx i n3. 
O,t, and for the corresponding SP) and SF) given by (2.7) and (2.81, respec-
tively, Sff.1 can be expressed as 

aBI{am+ P, = 0, PB = 0, J, I t }
-

n [ S p ) (JA) - S&?)(JA)] 

where JA = max{Wk; Wk < J,}, J,"= maxIW,; Wk < JA) and aJ ,  PJ, YJ are 
given by (2.6) for L = J. 

Equation (2.9) shows that except a t  A, and J,, the particular SCE Sff.) 
only has jumps a t  those points with positive a,'s. This is quite useful in the 
study of statistical inference problems with doubly censored data. The strong 
consistency and weak convergence of any self-consistent estimator of S ,  have 
been established by Chang and Yang (19871, Chang (1990) and Gu and Zhang 
(1993). Equation (2.9) provides a convenient tool to further derive other 
asymptotic results for doubly censored data, such as the asymptotic proper-
ties of L- and M-estimators [Ren and Zhou (1993)l for doubly censored data 
and the asymptotic properties of density estimation for doubly censored data 
[Ren (1994)l. For right censored data, Efron (1967) gave the clear structure of 
the self-consistent estimator (NPMLE). Our (2.9) is the version for doubly 
censored data. The computation method for obtaining (2.9) is given in our 
Theorem 6. 

However, (2.9) is not necessarily the NPMLE. For example, with five 
observations (1,1), (2,2), (3,3), (4,3) and (5 , l )  from (V, a), Sff.) is given by 
Pl= 6 = 6 = 5 = 2/5, P5= 0, but the NPMLE is given by Fl= F2= 1/2, 
-F,-- = 0. Nevertheless, when data fit a certain pattern, (2.9) is- 1/3, P5 

the NPMLE. 
We call a point Wk an a-type point if ak> 0 or Wk = A,; a P-type point if 

a, = 0 with Pk-, = 0 and W, < Wk I W,; a y-type point if a, = 0 with 
y, = Oand W, < W, < W,. 
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COROLLARY Suppose for any two adjacent a-type points W, and Wj with 4. 
Wi < W,, any point Wk between W,and Wj is either a P-type point with only 
P-type points between W, and Wk or a y-type point with only y-type points 
between Wk and Wj. Then (2.9) is the NPMLE. 

Clearly, if the data only contain a-type points (which is close to Turnbull's 
case), (2.9) is the NPMLE. For a simpler case in which there are no ties 
among V,, . . . ,V,, we can characterize those non-a-type jump points of the 
NPMLE clearly. 

COROLLARY Suppose there are no ties among V,, . . .,V, and let Vk = Wk.5. 
We call Wk a 2-3-type point if = 3 and 6, -,= 2 with A, < Wk. Then: 

(i) The only possible non-a-type jump points of the NPMLE are 2-3-type 
points. 

(ii) If there are no 2-3-type points among non-a-type points, then (2.9) is 
the NPMLE. 

The proofs of Corollaries 4 and 5 are given in Section 3. 
Our next theorem ensures that the algorithm (2.5) converges to a self-

consistent estimator of S, in 0, when the initial point x ,  is selected in the 
space 0,. The proof is given in Section 4. 

THEOREM6. Let R, = {x E En,; 12 x, 2 x, 2 ... 2 x,, 2 0). Then: 

(i) For x ,  E R,, algorithm (2.5) is the EM algorithm. 
(ii) For x, E R,, all the limit points of {x,} from algorithm (2.5) are 

self-consistent estimators (in 0,) of S,. 
(iii) For x ,  E R;, {x,} from algorithm (2.5) converges to the self-consistent 

estimator gg) of SXgiven by (2.9). 

In general, the EM algorithm does not do the job to find the NPMLE. As 
shown in Section 4, the algorithm can converge to any fixed point of W and 
the fixed point of 1V is not unique in R,. Our Theorems 2 and 6 provide a 
method to search for the NPMLE. The search consists of the following steps: 

STEP (a) For a point x ,  E R, (see Remark 1below on the choice of x,), 
use algorithm (2.5) to find a self-consistent estimator SF) .  

STEP (b) For SF) ,  check out condition (2) of Theorem 2. 

STEP (c) If condition (2) of Theorem 2 is satisfied, Sy) is the NPMLE; 
otherwise go to Step (a) with a different initial point in 0,. 

REMARK1. In Step (a), one should avoid the condition (A51 for x ,  E R, if 
the data do not have the pattern described in Corollary 4. Also, when there 
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T ~ L E1 
Distance between Sx and NPMLE and distance between Sx and SCE* 

n = 25 Average ISx - NPMLEI 0.327588 (0.009189) 0.328770 (0.008158) 

Average ISx - SCEII 0.367372 (0.010949) 0.373685 (0.011880) 


n = 50 Average ISx - NPMLEI 0.242737 (0.004200) 0.248826 (0.003884) 

Average ISx - SCEII 0.269494 (0.006052) 0.279619 (0.006259) 


* Exp( p)  is the exponential d.f. with mean p; N (  p,  a') is the normal d.f. with mean p and 
variance a '. 

are no ties among V,, . . . ,V,, one should avoid condition (A5) a t  those 
2-3-type points; not doing so can slow down the algorithm to find the 
NPMLE. The reason is that x, E R,+implies x,, ,E R,+(see discussions on 
this in the proof of Corollary 3 in Section 3). 

REMARK2. One may note that if the data have the pattern described in 
Corollary 4 or satisfy condition (ii) of Corollary 5, our Theorem 6(iii) directly 
finds the NPMLE. 

Simulation results. Based on the algorithms for computing SCE and the 
NPMLE studied above, we conducted a small simulation study to compare 
SCE and the NPMLE with moderate sample sizes. In Table 1, for 1000 
generated doubly censored samples, we find the NPMLE and an SCE which 
is not the NPMLE, and we compute the distance, in uniform norm, between 
S ,  and NPMLE, and the distance between Sx and SCE, respectively. The 
simulation variances are displayed in the parentheses next to the simulation 
means in Table 1.The results indicate that for a sample with moderate size, 
there is a difference between the NPMLE and SCE and the NPMLE is better. 

3. Proofs of Theorem 2 and ~drollaries. Before proving Theorem 2, 
we first observe the following facts. Let y = W(x) for x E 0,. Then, for each 
k ,  

1-x ,  g, I {S ,  = 3 , v i  > W,} 
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and moreover: 

1. y, = 1for those W, < A, .  
2. 	When PB = 0,  y, = 0 for those W, 2 B,. 
3. When B, < W, and P, > 0,  y, = 0 for those W, 2 C,.  
4. 	For those A ,  5 Wk-, < W, < B,  when pB = 0 or for those A ,  2 Wk- < 

W, < C ,  when B, < W, and pB > 0 or for those A ,  2 Wk-, < W, when 
B, = W, and p, > 0,  we have 

which implies y, ,2 y, .-
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5. Denoting xA and yA as the components corresponding to A, for x and y, 
respectively, by the definition of A,, we have 

YA = &(")(A,) + -
xA 
C

I { 8 i = 2 , y ~ A , }  

n i = 1  2, 

1- X, I{ = 3, V, > A,} 
-- C 

n i = 1  1- x i  

XA I{Si = 2, Vi = A,} 

= $?)(A,) + &?)(An) + -
1 C (xA- xi)I{ai = 3, y > A,} 

n i = 1  1 - 2 ,  

1 
= - { [#  of y ' s  > A n ]  + [ #  of Vi's I A, with Si = 21) 

n 

1 ( n  - 1) 
= -{[#ofV,'s #A,] + [#of  Vi's =A ,  with 6, = 21) 5 

n n 

6. When pB = 0, denoting BL = max{Wk; Wk < B,} and denoting xBt and yB8 
as the components corresponding to BL for x and y, respectively, by the 
definition of B,, we have 
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7. When 	 B, < W, and pB> 0, denoting x B  and yB as the components 
corresponding to B, for x and y, respectively, by the definition of B,, we 
have 

YB = &(n)(Bn)+ -
XB C I{Si = 2, Vi IB,} 

n 	 i - 1  Xi 

1 1  
2 &(,I( B,) - &PI(B,) + - 2 -. 

n n 

8. When B, = W, and pB> 0, we also have yB 2 l / n  by the same argu- 
ment as above for fact 7. 

PROOFOF THEOREM (i) From the above discussion, we have that for any 2. 
X E a , :  

(a) In the case of pB= 0 or B, < W,, 

where W, = A,, Wb = BL or B,, and x = (1,...,1, x,, . . . ,xb,  0, .  . . ,0)  with 
xk E [ l / n , ( n  - l)/n], k = a ,  a + 1 , .. . ,b. 

(b) In the case of B, = W, and pB> 0, 

where W, =A,  and x = (1,..., 1, x ,,..., xm)  with xk E [ l / n , ( n  - l)/n], 
k = a , .  . .,m. Hence, we know that W is a continuous function from R, to 
0,. Note that R, is a compact convex set. From the Brouwer fixed-point 
theorem [Ortega and Rheinboldt (19701, page 1611, there exists a fixed point 
of W,say x*,  in 0,. 

(ii) Sufficiency. To show that a fixed point of W in R, is the NPMLE, from 
the uniqueness of the NPMLE, we just need to show that a fixed point of W 
in R, is an optimal point of the system 

max c {aklog(pk-, - p k )  + logpk + Y, log(l -Pk)ll -PI 
(3.5) k =  1 

Since all constraints of (3.5) are linear functions and since the log L(S) is 
concave, by Theorem 2.15 of Zangwill [(1967), page 431, it suffices to show 
that a fixed point of W in in,, ($,, $,,..., $,), satisfies the following 
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Kuhn-Tucker condition for problem (3.5) [Zangwill (1967), page 421: for 
A k 2 0 , 1 ~ k ~ m +1, 

where k = 1 , 2 , . . .,m - 1 and Po = 1; 
(3 .6)  a 9  

a ,  P ,  7,- - - - + -- ------ - A, + A , + ,  = O ;  
ap, P m - 1 - P ,  P, 1 - P ,  

where = log L + hl( l  - P,) + h,(P, - P,) + +A,(Pm-, - P,) + 
Am+ I'm. 

Denote for 1 s k s m ,  

where Wo= since ( P I ,3,,..., 3,) E R,, we must have 3, > 0 if P, > 0-03.  

and $, < 1 if y, > 0. Hence, (3.7)is well defined for each k and (3.2)holds for 
all Wl s W,-, < W, s W,. From (3.2),we have that for k 2 2, 

where A, 2 0 for 1 I k 5 m by condition (2).For k = 1, we have that  by (2.31, 

= I - a1 + Pl + Y l  + -P1 + -Y l  - ( 1  - F l ) ( l  - A,) 
n n n 


a1 

= 1 - -- ( 1  - F 1 ) ( 1  - A,) ,  

n 

which implies 

(3.10) a ,  = ( 1  - F , ) ~ A ,  and A ,  > 0 .  

Another obvious fact implied by (3.7)is 
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Next, we show that the following give a solution of the system (3.6): 

for k = 1,  /il = 0 if a, + yl > 0; /il = nAl if a, + y, = 0, 

f o r l < k < m ,  / i ,=O i f a , # O ;  / i k = n A k  i f a k = O ;  
A a m  Ym 

A Afor k = m; A m = O ,  A m + , =  +-

Pm-1-Pm l - $ m  


if am# Oand Pm= 0, 
A 

A m = O ,  A m + , = O  i f a , # O a n d ~ ,  # 0 ,  

Consider 1< k < m. For each k, we need to show 

d q 

- - - 0 and 

dpk 


Case 1.If a, # 0, for /ik = 0, we have /i,($,-, - $,) = 0. If a,+, = 0, for 
/ik+,= nAk+,, we have that  by (3.8) and (3.111, 

If a,+, # 0, for /i,+, = 0, we have that by (3.8) and (3.111, 

A A 

Case 2. If a, = 0, for /i, = nAk, by (3.9) we have Ak(P,- ,- = 0. If 
ah+ ,# 0, for / ik+, = 0, we have that by (3.8) and (3.11), 

If a,+, = 0, for /ik+, = nA,+,, we have that by (3.111, 

Consider k = 1.We need to show 

allr 
- - - 0 and h,(l - 15,) = 0. 
dP1 
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Case 1. If a ,  + y1 > 0,  for /il = 0 and P1 < 1, we have il(l- Pl)  = 0.  If 
a ,  f 0,  for i,= 0,  we have that by (3.10)and (3.11), 

d'l' a1 P 1  2-= -- +7--- Y 1  + 
aPl 1 - P Pl 1 - Pl Pl - P, 

If a ,  = 0,  for i,= nA,,  we have that  by (3.10) and (3.11), 

Case 2. If a ,  + y1 = 0,  for /C1 = nAl  and Pl = 1, we have il(l- P I ) = 0. If 
a ,  # 0,  for i,= 0,  we have that  by (3.8)and (3.1 I),  

If a ,  = 0,  for i,= n A,, we have that by (3.111, 

Consider h = m. We need to show 

Case 1. If am # 0 and pm = 0,  for im= 0,  P 
A 

= 0 and im+,a m / ( f i m - ,= 
A A mA

-Pm) + ym/( l  - Pm),we have that hm(Pm - Pm)= 0, im+= 0 and 

Case 2. If a ,  # 0 and pm # 0, for /im = 0 and Pm > 0,  we have = 0,  im+, 
A A A 

that  Am( Pm-I  - 3,) 0,  in+,= Pm = 0 and 

d T  am - = -

pm 

because Pm > 0 and 

implies 
1 " I { s , = 2 , V i 5 W m }

1 = - C  
n i = l  Pi 
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Thus 

Case3.I f  a, = 0 ,  p, = O,for$, = 0 ,  /i, =nA, and /i,+, = / i n  + y,/(l 
A A 

-$,), wehave A,(P,-I -$,) = 0, /i,+,p, = Oand 

Case 4. If a, = O  and p,#O, for /i, =nA,, /i,+, = O  and p, >O, we 
have that /i,($,-, -$,I = 0, /i,+,$, = 0 and, by (3.13), 

This completes the proof of sufficiency. 
Necessity. To show that the NPMLE S f̂;") must be a fixed point of W in R, 

satisfying condition (2), we see that by Theorem 2.14 of Zangwill[(1967), page 
401, it suffices to prove that a solution {Fh; 1< k < m} of (3.6) is a fixed point 
of W in R, with all A h  2 0. 

Let $h = S^f;)(wh), k = 1, . . . , m, be a solution of (3.6). By adding the 
equations in (3.61, we obtain 

A A 

where d h  = Ph-l- Ph,  1I k I m, with Po= 1. Hence, when ah> 0, we 
have Ah = 0 and 

and when ah= 0, 
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Thus, (3.61, (3.16) and (3.17) imply 

A 

where D = Cj"=, pj/Pj + A m +  ,.Hence for k = 1, we have 

Since 

we have 

where IT, = a, + Pk + 7,. Note that  (3.19) is the equation (2.3) for k = 1. 
Using the derivation of (3.2), from (3.19) and (3.18), we know that for any 
l s k s m ,  

Note that  A,, 15 k 5 m + 1, satisfying (3.6) implies A, 2 0, 15 k 5 m + 
1.Clearly, if D = n, we have that  (3.17) implies A, = nA, when a, = 0 and 
that (3.18) and (3.7) imply A, > 0 when a, > 0. Hence, if D = n,  statement 
(2) of Theorem 2(ii) holds for sf;).Moreover, if D = n,  we know that from 
(3.2), SF)is a fixed point and that  the facts listed before the proof of Theorem 
2 imply sf;) E a , .  We complete the proof by showing D = n. In (3.201, for 
k = m, 

1f 9m= 0, we have D = n. 1f fim > 0, we have A m + ,  = 0 and D = C(;"=,4 / 9 , ;  
hence we also have D = n, 

PROOFOF COROLLARY3. First we notice that in (3.21, if we choose x,-I = x, 
when a, = 0 and A, < W, < J,, then we must have y, - ,= y,. Hence, from 
the- proof of Theorem 2, there is a fixed point Z of f in a, satisfying 
Pk-,= 5 for a, = 0 and A, < W, < J,. This implies that  for A, < W, < J,, 
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the self-consistent estimator sp) only has jumps when ah > 0 and, by (3.21, 
the jump size is given by 

Next, we consider the jump sizes a t  A ,  and J,. 
Case 1.The jump size a t  A ,  = Wk (with a, + yk > 0) is given by 

because 

Case 2. If p, 1 0 ,  then J ,  = W, with ?@)(w,)> 0. In this case, by (3.81, 
the jump size of SF) a t  J ,  is given by 

Case 3. If p, = 0 and a ,  > 0, then J ,  = W, and the jump size is given by 
> C 

Case 4. If p, = 0 and a ,  = 0, then J ,  = B,, if p, = 0; J ,  = C,, if pB > 0. 
Let J ,  = Wj.When pB = P,  = 0, the jump size is given by 
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because 

When P, > 0, we have Wj- ,  = B,, Wj = C,, and the jump size is given by 

because 5-,> 0 and 

imply 

and, thus, 

Therefore, (2.9) follows from (3.21)-(3.26). 
The uniqueness of S,")simply follows from observing that in fact we group 

the observations with zero a with the closest a-type observation on the left 
and that the problem becomes equivalent to the NPMLE problem with only 
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a-type points. One should note that in (2.11, we only need to consider the case 
of y, = 0. From (3.8), (3.11) and Theorem 2, this sf;")is unique. 

PROOFOF COROLLARY4. Let S^f;") be the NPMLE in R,. By Corollary 3, we 
only need to show S f̂;") E a,+, that is we need to show that S f̂;)has no jumps 
a t  each Wh, W, < Wh < Wj. From Theorem 2 and (3.91, it suffices to show that 
for each Wh,we have A h  > 0. The proof follows from (3.11). 

PROOFOF COROLLARY5 .  (i) Let sf;'be the NPMLE in R,. If sf;")has a 
jump a t  a non-a-type point Wh,by Theorem 2, (3.9) and (3.11) we have A h  = 0 
and 

P h - 1 Y h - 1
nAh-,= -- ,. 2 0. 

Ph-, l - P h - l  

Since a, = 0, by no ties assumption, we must have Ph + yh = 1.Hence, (3.27) 
implies Ph = 0, yh = 1.Clearly, (3.28) implies yh-,  = 0. If ah-, = 1, then by 
(3.8), we must have A h - ,> 0. This requires Ph-, = 1 in (3.28)-contradic-
tion. Hence, we must have ah-,  = 0, Ph-, = 1. Hence, Wh is a 2-3-type 
point. 

(ii) The proof is similar to that of Corollary 4. 

4. Proof of Theorem 6. 

PROOFOF THEOREM6(i). Using the notation of Wu (1983) for the EM 
algorithm, the corresponding &(FIFO)for doubly censored data is given by 

where So(satisfying the conditions of Theorem 1) and S are the survival 
functions with fo(x) = PsJX = x} and f(x) = P,{X = XI, respectively, and 
(u,, a,), i = 1 , .. .,n, are observed points. Assume that So and S only put 
mass a t  the observed points v, 5 u, I ... 5 u, and the interval (u,, m). Then: 

(i) E,Jlog Ps{X=X,}IVi = u,, 8, = I}= log f (u i ) ;  

cu,>u , f ~ ( ~ j > l o gf(uj)
(ii) ESo(logP, { X = Xi}IV, = v, ,Si = 21 = 

S o ( ~ i )  
, 

cu,. u,fo(vj>logf(uj)
(iii) E,o(log P,{X = X,}IVi = vi, 8, = 3) = 

SO(vi) 
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Hence, for all the distinct points wl,.. . ,w, of the set {v,, . . . ,u,} with 
w 1< ... < w,, 

" I{Si= 2,ui< w,} 

k = l  i = l  


where T,= a, + Ph + y, for k = 1,...,m and a,,, = 0, = 1. 
To find the M-step S,,that is, the S,which maximizes Q(SISo),we need 

to find an optimal point for the system 

where Q(SISo)= C?~;A,log q, with q, = f (  w,) and 

From 

1 and A, 2 0, 

we know that Q is concave. Let @ = C?=+:h, log q, + h(q,+ ... +q,+, - 11, 
where h is the Lagrangian multiplier. For now, we assume that all A, > 0. 
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Then Q is strictly concave. By Theorem 2.15 of Zangwill[(1967), page 431, we 
know that a solution of the system 

will give a unique S,. We easily find that the solution of (4.6) is given by 

because for Nj = C?=,I{Si = j } ,  j = 1,2,3,  we have 

Now, we show that Q(SISo) has a unique maximum. First, we note that q, 
does not contribute anything to Q if A, = 0. If we assign qh =^O when Ah = 0 
and repeat the calculation above, we obtain a solution S of (4.3) with 
4,= A, /n .  Suppose there is a different solution 3 for (4.3) which assigns 
some qj  # 0 when A, is the only hi's with value 0. Then there exists a 
constant 0 < c < 1such that S is the solution for the system 

By a calculation similar to the above one, an optimal point of (4.8) is given by 
q, = c A , / n .  Clearly, we have 

m +  1 m + l  

C A, log 6,  2 z A, log qh= Q(SISO). 
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This contradicts the assumption that 3 is a solution of (4.3). Hence, the 
maximum of Q(SIS,) must have q, = 0 if A, = 0. Therefore, (4.3) is equiva- 
lent to the system 

I 

max C A,, 1% q,& , 
(4.9) 	 i= 1 

q,, + ... +qkl = 1, 

where A,,,. . . ,Akl  are all those positive Ah's and q,, is the q, corresponding 
to A, . Let Q, = Ci= log q,,. Then d 'Q, is negative definite; hence, Q, is 
strictly concave and the maximum of Q, is unique. Therefore, Q(SIS,) has a 
unique maximum given by (4.7). 

Next, we will show that algorithm (2.5) gives the EM algorithm. Specifi- 
cally, we need to show that S1(wk) = PSjX > w,}, that is f,(w,) = P,jX = 

w,} = A,/n is given by the algorithm (2.5) for x, = SO(wk).It suffices to show 
that 

m+ 1 

ny, = C AjI{wj > w,}, k = 1,...,m. 
j= 1 


For any k, we have 
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PROOFOF THEOREM6(ii). From (4) of Wu (1983), we know that L(S,) > 
L(So) unless Sois a fixed point of W, because Q(S,ISo) > Q(SoISo)unless 
S, = So,  that is, Sois a fixed point of W. We should notice that any fixed 
point of W is a self-consistent estimator of S,. 

Now, we consider the algorithm (2.5) with an initial point x,  E a,. This is 
a special case of the EM algorithm. Hence, for any x E a,, we have L(y) > 
L(x) unless x is a fixed point of in a,. From the properties of W in R, 
discussed in the proof of Theorem 2 and from Convergence Theorem A of 
Zangwill [(1967), page 911, all the limit points of {x,} are the fixed points of 
W in 0,. 

PROOFOF THEOREM6(iii). From above and (3.2), we know that all limit 
points of {x,} are self-consistent estimators in a:. From the uniqueness of 

obtained in Corollary 3, there is only one self-estimator in a:. Hence, 
the limit of every convergent subsequent of {x,) is sf;).Therefore, algorithm 
(2.5) converges to SF) for any initial point x,  E a:. 

APPENDIX 

PROOFOF THEOREM1. Consider the proof of Lemma A2 of Turnbull 
(1974). I t  suffices to show that the matrix J is positive definite. In our 
notation, we have 

ah P h  Yh
x h  = and y h =  - +  

Ph-l - Ph pk" ( 1  - ph12' 
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and z ,  = x,,, + x ,  + y, for 1s k Im and x,,, = 0. Let u be an arbitrary 
vector and note that in this notation, 

with u ,  = 0. Now assume that this expression is zero for some u # 0. Let j 
be the biggest number such that u j  # 0. Under our assumption, yj must be 
zero, and so x j  # 0, and so u j - ,  = uj .  GOon with this until you hit u,, which 
is zero. This is a contradiction. Hence, uTJu> 0. 
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