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REGRESSION M-ESTIMATORS WITH 

DOUBLY CENSORED DATA 


BY JIAN-JIANREN' AND MINGGAOGu2 

Tulane University and McGill University 

The M-estimators are proposed for the linear regression model with 
random design when the response observations are doubly censored. The 
proposed estimators are constructed as some functional of a Campbell-type 
estimator F, for a bivariate distribution function based on data which are 
doubly censored in one coordinate: We establish strong uniform consis- 
tency and asymptotic normality of F, and derive the asymptotic normality 
of the proposed regression M-estimators through verifying their Hadamard 
differentiability property. As corollaries, we show that our results on the 
proposed M-estimators also apply to other types of data such as uncen- 
sored observations, bivariate observations under univariate right censor- 
ing, bivariate right-censored observations, and so on. Computation of the 
proposed regression M-estimators is discussed and the method is applied 
to a doubly censored data set, which was encountered in a recent study on 
the age-dependent growth rate of primary breast cancer. 

1. Introduction. When statisticians are interested in modeling the life- 
time distribution under consideration as a function of some covariate, the 
following linear regression model is one of the most widely used tools in 
statistical analysis: 

where Xi are the lifetime random variables (r.v.), T,  are the covariate 
variables which are independent and identically distributed (i.i.d.) with d.f. 
Fin, e, are the i.i.d. error variables with zero mean, Ti and ei are independent 
and ( a ,p )  E R2 is the regression parameter to be estimated. One may note 
that in model (l.l), Xi's are i.i.d. random variables with a common d.f. F,. 
There are many well-developed theories for this model and computer soft- 
ware is available when complete data are observed. However, in medical 
follow-up and reliability studies, incomplete data are frequently encountered, 
which demand new methods so that regression models can be properly used 
to analyze lifetime data. The right-censored linear regression model has been 
studied by Buckley and James (1979), Koul, Susarla and Van Ryzin (1981), 
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Leurgans (1987), Ritov (1990), Lai and Ying (1991), Zhou (1992) and others. 
In Lai and Ying (1994), the linear regression model with left-truncated and 
right-censored response variables is considered. Recently, Zhang and Li 
(1996) extended Buckley-James-Ritov-type regression estimators from the 
right-censored case to the doubly censored case. In this paper, we consider 
the doubly censored linear regression model; that is, the response variables 
Xi's in model (1.1) are doubly censored, and we construct our regression 
estimators in a different way from that in Zhang and Li (1996). 

To be precise, in this study one does not observe {Xi} in model (1.0, but a 
doubly censored sample: 

where independent from Xi, (Zi, Y,) are i.i.d. realizations of (2,  Y) with 
P{Z < Y} = 1, and Yi and Zi are called right and left censoring variables, 
respectively. Examples of the doubly censored sample (1.2) encountered in 
practice have been given by Gehan (1965), Turnbull (1974) and others. In 
particular, doubly censored data (1.2) occured in a recent study on the 
age-dependent growth rate of primary breast cancer [Peer, Van Dijck, Hen- 
driks, Holland and Verbeek (1993)l. In our study of the linear regression 
model (l.l), we consider the case that the covariate r.v.'s Ti are observable 
and they are independent from the censoring variables (Y,,2,). The problem 
considered here is to estimate ( a ,  p )  in (1.1) based on (Vi, 6,, Ti), 1I i I n. 

To construct an M-estimator of ( a ,  p), we note that when there is no 
censoring, the robust M-estimator (a,, p,) for model (1.1) is given as the 
solution of the following equations: 

(1.3) $(Xi - 0, - T,0,) = 0 and Ti$(Xi - 8, - T,0,) = 0, 

where $ is the score function [Huber (1981)l. In particular, if $(XI = x, the 
solution of (1.3) is the least squares estimator (LSE). If we denote the 
empirical d.f. of (Xi, Ti), 1I i I n, as 

1 
(1.4) F,(x,t)  = - x I{Xi < x , T i  I t}, 

n i = ,  

then (1.3) is equivalent to 

j j $ ( x  - 0, - 0,t) dF,(x, t)  = 0 and 

(1.5) 
j j t $ ( x  - 0, - 0,t) dFn(x, t)  = 0. 

Hence, if we define a functional r(.) at  Fnas the solution of (1.51, then we 
have (a,, p,) = r(F,). Naturally, if an estimator 3, for the joint d.f. F of 
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(Xi, Ti) based on (Vi, Si, Ti), 15 i 5 n, is available, then the generalized 
M-estimator for (1.1) may be constructed by (Li,, p,) = 7(#,). 

In this context and for its importance in its own right, a Campbell-type 
estimator #, [Campbell (1981)l for the bivariate distribution function of 
(Xi, Ti) based on data (V,, Si,Ti), 1s i s n, is constructed and studied in 
Section 2, whe~e  we also establish strong uniform consistency and asymptotic 
normality of F,, with the proofs deferred to Section 5. In Section 3, we show 
that the functional T ( . )  defined by (1.5) is Hadamard differentiable (the proofs 
are deferred to Section 6) and that the asymptotic normality of the proposed 
M-estimator T(F,)  follows from the asymptotic normality of #n. As corollaries, 
we also show in Section 3 that our results on the proposed M-estimators 
apply to other types of data, such as uncensored data, bivariate observations 
under univariate right censoring [Lin and Ying (1993)], bivariate right-
censored observations [Dabrowska (1988)], and so on. Section 4 discusses the 
computation of the proposed M-estimator and applies the proposed regres- 
sion M-estimators to a doubly censored data set encountered in the study of 
primary breast cancer (Peer, Van Dijck, Hendriks, Holland and Verbeek, 
1993). 

One may note that with some modifications in the proofs, the results 
established in this paper can be extended to p-dimensional ( p  > 1) linear 
regression models when the covariate variables are observable and the 
response variables are doubly censored. 

One may also note that the independence condition between the covariate 
variable Ti and the censoring variable (Y,,Zi)is not required in Zhang and Li 
(1996). This condition is needed here because we construct our regression 
estimators through some functional of a bivariate distribution estimator #, 
for the distribution of (Xi, Ti).Usually, when one wants to estimate the 
bivariate distribution with censored data, for identifiability reasons it has to 
be assumed that the censored vector is independent of (Xi, Ti). For reference, 
see Stute (1993) who considered such an estimation problem when Xi is right 
censored. The advantage of our functional plug-in method for constructing 
the regression estimators is that it is easily applicable to different types of 
censored data; this will be discussed in Section 3. 

2. Bivariate distribution function estimator. The distribution of the 
underlying lifetime is often of special interest when incomplete data are 
observed. In the right-censored case, the product limit estimator of Kaplan 
and Meier (1958) has been generally accepted as a substitute for the empiri- 
cal distribution function, since it is the nonparametric maximum likelihood 
estimator (NPMLE) [Cox and Oakes (19841, page 481 and possesses the 
properties of self-consistency [Efron (1967)], asymptotic normality [Breslow 
and Crowley (1974); Gill (1983)], and asymptotic efficiency [Wellner (1982)l. 
In the doubly censored case, it has been shown that all these properties are 
also possessed by the NPMLE or the self-consistent estimators. See Mykland 
and Ren (1996) on the NPMLE and the self-consistent estimators, see Chang 
(1990) or Gu and Zhang (1993) on the asymptotic normality and see Gu and 
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Zhang (1993) on the asymptotic efficiency. Other related work can be found in 
Groeneboom (1987), Samuelsen (1989) and Ren (1995), among others. 

However, for the problems using bivariate observations which may be 
incomplete either in one coordinate or in both, the direct use of the self-con- 
sistent estimator often leads to computationally and analytically intractable 
problems. One way to handle such a problem is to use the conditional 
distribution approach, which was applied by Campbell (1981) to estimate the 
bivariate distribution when the bivariate observations are possibly right, 
censored in both coordinates. In our study here, we consider the problem of 
estimating the bivariate distribution when one coordinate is subject to double 
censoring as expressed in (1.2). An immediate application of this study is the 
linear regression model (1.11, which is discussed in Section 1and Section 3. In 
the following, we will construct our estimator using the conditional distribu- 
tion approach and will establish the strong uniform consistency and the 
asymptotic normality of the proposed estimator. 

Using observations (V,, 1I i I n, which are described in Section 1, 
we construct the estimator Fnfor the bivariate d.f. F of (Xi, Ti) through the 
conditional self-consistent estimating equation for doubly censored data. 
First, we observe that for any fixed t and j = 1,2,3, if we denote QIJ)(x) as 
the conditional distribution P{V I x, 6 = j I T I t} and Ft(x) as the condi- 
tional distribution PIX I x I T I t}, then from (2.7) of Gu and Zhang (1993) 
we have 

where QIO)(x) = P{V I x I T I t} By multiplying P{T s t} on = Cj=l Q $ ~ ) ( ~ ) .  
both sides of (2.0, we obtain 

where S(x, t) = F(m, t) - F(x, t)  and Q(jl(x, t) = P{V I x, 6 = j ,  T 5 t}, j = 

1,2,3, with &(O)(x, t) = P{V I x, T I t} = Cj=l Q ( j ) ( ~ ,t). Thus, if we denote 

(2.3) Q:),(X) t)/Gn(t),  j = 1 , 2 , 3  with 6,(t) > 0,= Q ~ ) ( x ,  
3 3 

QiO)(x, t )  = C Q;J)(x, t)  and QiO:,(x) = C Q;J,),(x), 
j= 1 j=1 

where &,(t) = n 1C:= I{T, I t} is the empirical d.f. of TI, .. . ,T,, (2.1) implies 
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that for each fixed t, an  estimator #n,, for the conditional distribution F, is 
given by a solution of the following equation: 

Naturally, an estimator for F is given by 

(2.5) 'n(x, t )  = 'n,,(x)&n(t)> 

which, based on (2.2), is equivalent to a solution of the following equation: 


where 

(2.7) S n ( x ,  t )  = G ( t )  - R ( x ,  t ) ,  
and the convention = 0 (I,<. = #n(x, t)  [F~ (x ,  t)  = 0) if en( t )  = 01 is 
adopted. 

The proposed estimator may be obtained numerically using the method 
in Mykland and Ren (1996). Detailed discussion on this is given in Section 4, 
where we show that a solution of (2.6) satisfies 

where T, I ... s Tn and ah i  2 0 are constants determined by the sample 
(V,, Si, Ti), i = 1 , .. . , n. InAthis work, we will always impose the following 
condition on the solution Fnof (2.6): for any t, 

where an(t)  = min{V,; 6, = 1 or 3, Ti < t} and bn(t) = max{y; Si = 1 or 2, 
Ti s t}. This condition is motivated by the conditional NPMLE for F,, and one 
may see (2.5) of Gu and Zhang (1993) for a similar condition for the NPMLE 
of F,. 

To state our asymptotic results on the proposed estimator we introduce 
some notation. Denote F,, F,, Fz and FTas the d.f.'s of X, Y, Z and T, 
respectively, and denote 

K ( x )  = Fz(x)  - F,(x) ,
(2.10) 

a = sup{xIFX(x) = 0} and b =inf{xIF,(x) = I}, 
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then from (1.2) we have 

Throughout this paper, I I  . I I  stands for the supremum norm and 1 1  . 1 1 ,  stands 
for the Euclidean norm in R 2 ,  where R = (-YJ,YJ).The following theorem 
establishes the strong uniform consistency of #,, under the assumption 

K ( x - ) = P { 6 = l l X = x }  > O  

for x E {xI FX(x)  > 0, FX(x - )  < I}, 

with the proof deferred to Section 5, where the results in the one-dimensional 
case by Gu and Zhang (1993) are used. 

THEOREM2.1. Suppose that (2.12) holds. Then for a solution #,, of (2.6) 
satisfying (2.91, lip,, - FII + 0 a.s., as n + YJ. 

To establish the weak convergence of the bivariate distribution estimator 
#n, wedenoteforaj -mand bJ -iYJ,j =  1,2, 

(2.13) = { H I H : [ a , ,  b,] x [ a , ,  b,] - R corresponds to 

a finite signed measure on R2), 

and consider the Banace space (a([  a,, b,I x [a, ,  b, I, I I  . Ill, where a([a,, b,] 
x [a,, b, I) is the closure of M([a,, b,] x [a,, b, I). One may note that since 
#,,,, is not necessarily a proper d.f. for a fixed t [Mykland and Ren (1996)1, #,, 
given by (2.5) is not necessarily a pr?per bivariate d.f., and that based on 
(2.8), M([a,, b,] x [a, ,  b,]) contains F,, as an element. For our study, we 
further define the following Banach spaces: 
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where for any H satisfying 

H E S = {HE M ( [ a ,b ]  x R) I there exists a d.f. H2 ( t )  
(2.15) such that for any fixed t and 

H t (x )  = H ( x ,  t ) /H2( t ) ,  H t ( x ) / H t ( ~ )  is a d.f.1 
and 
(2.16) S H ( X ,  t )  = H2(t) - H ( x ,  t )  
and linear operators AH, BH, RH and K are defined by 

One may note that integration by parts should be used above whenever 
necessary, and that the domains of these operators include all bounded 
measurable functions, while those of AH and RH will be extended under the 
condition of our Theorem 2.2. In this work, all Banach spaces are equipped 
with the a-field generated by all open balls, and random elements and weak 
convergence are defined as in Pollard [(1984), page 651. 

Based on (2.15) and (2.16), it is easy to see that we have F E S with 
SF(x, t)  = S(X,  t) = FT(t) - F(x,  t)  and #n = S with S/{X, t)  = Sn(x, t)  = 

~ ~ ( t )- Fn(x, t). Thus, (2.2) and (2.6) can be expressed as F = BFQ and 
Fn= BpnQn, respectively, where 

Q = (Q'l), Q(2), Q(3)) and Q n  = (&(,'I, Qi2), Qi3)). 

From some tedious calculation, we obtain 

where 

Hence, we have 
(2.18) RP,,t n  = Bp,,Wn + Vn , 
where 

(2.19) L = C ( # ~ - F )  and W n =  ~ ( Q , - Q ) .  
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Because W, is the empirical process, by (2.91, we have BF(Qn - Q) E 
Do([a, b] x R) and as n + m, 

(2.20) W, +, W where W is a centered Gaussian process in 0:. 

It is also easy to see that 

where ~ ( x ,  t)  = GT(t)lus.[(S(X,t)/S(u, t)) - 11dFy(u) and GT is the limit- 
ing Gaussian process of 6 [ e n  - F,]. 

THEOREM Let F, be a solution of (2.6) such that either (2.9) holds or 2.2. 
(8, - F )  E DO([a, b] x R). Suppose that (2.12) holds and 

Then R i l ,  the inverse of RF, exists and is a bounded linear operator from 
Do([a, b] x R) to DK([a, bl X R), and as n + m, 

where W and 77 are given in (2.20) and (2.21), respectively, and 

P{BFW+ 77 = R F t  E DO([a ,  b] x R)} = 1. 

The proof of Theorem 2.2 is given in Section 5. 

COROLLARY2.1. 
then as n + m, 

Let E', be a solution of (2.6). If infe [,, K(x - ) > 0, 

3. Regression M-estimators. In Section L,we used the functional plug- 
in method to construct an M-estimator*(&,, &) = T(F,) for the regression 
parameter ( a ,p ) in model (1.0, where Fngiven by (2.6) is the bivariate d.f. 
estimator for the d.f. F of (X,,Ti) based on doubly censored observations 
(V,, S,, Ti),1Ii I n, and T(-) is a statistical functional defined by (1.5). To be 
precise, we consider the case that the covariate variable Ti in model (1.1) has 
a compact support [0, c], 0 < c < m, and for Mo = M([a, b] x [0, c]), the func- 
tional 7:  Mo - R2 is defined as the root of the following equations: 
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which can be denoted equivalently as 

where the integration is defined on (x, t)  E [ a ,b ] x [0,c ]  for a ,  b given by 
(2.101, and this applies in this section and in Section 6 unless the region of 
the integration is specified. As follows, we derive the asymptotic normality of 
the regression M-estimator r($n) through the Hadamard differentiability 
property of the functional r(.). 

The asymptotic normality of a statistical functional via the Hadamard 
derivative for univariate observations has been studied by Reeds (1976) and 
Fernholz (1983) and for multivariate observations by Ren and Sen (1995). In 
these studies, the empirical distribution functions are used. A more general 
limiting distribution theory based on the weak convergence of the random 
elements in Banach space is given in Andersen, Borgan, Gill and Keiding 
(1993). In our current study, since we consider the incomplete data, the 
empirical d.f.'s are not applicable. Thus, we will derive the asymptotic nor- 
mality of r($n) using the general limiting theory given in Andersen, Borgan, 
Gill and Keiding (1993). Specifically, we will verify the Hadamard differen- 
tiability condition of r(.), derive its Hadamard derivative r; and obtain the 
asymptotic normality of T($~) from 7; and the weak convergence of $n',. 

First, we need to investigate the existence of the solution of (3.1) for our 
bivariate d.f. estimator $,,given by (2.6). We note that if the score function $ 
is the derivative of some nonnegative convex function p, that is, p' = $, then 
for any bivariate d.f. F, (3.1) is equivalent to the minimization problem 

min / j p ( x  - oTt) dF(x ,  t ) ,  
~ € 1 1 8 ~  


because 

is a convex function. However, our bivariate d.f. estimator $,,is not a proper 
bivariate d.f. [see (2.8)]; thus (3.1) and (3.2) are not necessarily equivalent 
when F is replaced by $n. In the next two lemmas, we show the existence of 
the solution of (3.1) in a neighborhood of F. Some of the following conditions 
are imposed in each theorem of this section. 

(Al) I) is nondecreasing, bounded, continuous, piecewise differentiable 
with bounded derivative $' such that $'(x) = 0 for x outside of some finite 
interval [d,, d,], and for x in some neighborhood of 0, $(XI has a range 
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including positive and negative values and $'(x) 2 m > 0 for a constant 
O < m < m ;  

(A21 4' is of bounded variation; 
(A3) W p ,  F )  = 0 where P = ( a ,P ) ~ .  

REMARK1. (All is usually required for Hadamard differentiability prop- 
erty of M-estimators [see Fernholz (1983) for location M-estimator], and 
Huber's score given in Section 4 satisfies (Al). Conditions (Al) and (A2) are 
needed in Lemma 3.1 below for the result on integration by parts. Note that 
E{e,}= 0 and (Al) implies E{$'(ei)} > 0. 

REMARK2. (A31 is implied by E{+(e,)} = 0 for our model (1.1), and is 
needed for the consistency of the M-estimator. If e, in model (1.1) has a 
symmetric distribution with zero mean, then we have E{$(e,)} = 0 for Huber's 
score. 

LEMMA3.1. Under assumptions (Al) and we have that, for a fixed 
0 E R2, 

t = (1, t)T, c = (1, c ) ~ ,  Jre(t) = $(b - eTt)t, Jr',,,(t) = $'(x - eTt)t, and 
p(H)  -- pH([a, b] x [0, c]) for pH denoting the (signed) measure correspond- 
ing to H in [ a ,  b] x [0, c]. 

LEMMA3.2. (i) Under assumption (Al), if F is a bivariate d.f. and R(8) 
given by (3.3) is defined for any 8, then F )  = 0 has a unique solution. 
(ii) Under assumptions (All-(A3), for any sufficiently large B > IIPl12, there 
exists 77 > 0 such that for any H E Moand IIH - FII I 7, W(0, H )  = 0 has a 
solution 8, with lleH112 IB, and any solution 8, of such satisfies 110, - pllz 
+ 0, as  IIH -FII - 0. 

The proofs of Lemma 3.1 and Lemma 3.2 are given in Section 6. Lemma 3.2 
shows that the functional r(.) is defined in the neighborhood of any bivariate 
d.f. F. One may note that although it may not be a proper bivariate d.f., #,, 
given by (2.6) corresponds to a finite signed measure on R2, thus #n E MO. 
Hence, from Theorem 2.1, r(.) is defined asymptotically for our bivariat: d.f. 
estimator Fnbased on (V,, S,, Ti), 1I i I n. One may also note that for F,, in 
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the neighborhood of F ,  if there are multiple roots for q ( 0 ,#,) = 0 on a large 
compact set, the asymptotic results established in Theorem 3.1 below still 
hold because of Lemma 3.2(ii). 

Before stating our asymptotic normality results on the regression M-
estimators with doubly censored observations, we give the definition of 
Hadamard differentiability (or compact differentiability) as follows [Gill 
(1989)l. Let 8, and 23, be two Banach spaces and 2(23,, 23,) be the set of 
continuous linear transformation from 23, to 8 , .  

DEFINITION Let G be an open set of 8,.A functional 7: 0+ 8, is3.1. 
Hadamard differentiable (or compact differentiable) at  F E G if there exists 
7; E i?(8,, 8 , )  such that for any sequence H, E 23, and t, E R which 
satisfy Hn -H E 23, and tn - 0, as n + m, 

7 ( F  + tnHn)- 7(F)  - 7b(tnHn) 
(3.5) lim = 0. 

n -+x tn 

The linear functional 7; is called the Hadamard derivative of r(.) at  F. 

In Theorem 3.1, we show that the functional T(.) defined by (3.1) is 
Hadamard differentiable at  the bivariate d.f. F of (Xi,Ti) with the proof 
deferred to Section 6. One may note that our functional T(.) is implicitly 
defined by (3.1). The implicit function theorem through Compact Preserving 
by Fernholz (1993) is used in our proofs. Some detailed discussions on 
implicit function theorems can be found in Gill (1989). 

THEOREM Under assumptions (All-(A3), the functional r :  Mo + R2,3.1. 
defined by (3.1), is Hadamard differentiable at  F with Hadamard derivative 

( 3.6) 3 ( H )  = A '  //1/)(x - pTt)tdH(x,  t ) ,  

where H E MO [if H E Mo, the integration in (3.6) is defined by (3.411, and 

Therefore, under the conditions of Corollary 2.1, the M-estimator r(#,) = 

(&,, for linear regression model (1.1) based on doubly censored data 
(V,, a,, Ti), 15 i 5 n, given by (1.2), satisfies 

where #,, is given by (2.6) and N,(O, I )  denotes a zero-mean bivariate normal 
distribution with a covariance matrix I. 

REMARK3. The M-estimators constructed in this paper are motivated by 
their robustness properties, and condition (All on the score function in 
Theorem 3.1 is satisfied by Huber's score function. When there is no censor- 
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ing, M-estimators with Huber's score lose some efficiency, but limit the 
influence of outliers [Serfling (1980), page 2471, which is also expected here 
for our proposed M-estimators with censored data. However, since the co~di -  
tional distribution estimator $n,, is efficient [Gu and Zhang (1993)l and Fnis 
given as the product of $n,, and dn[see (2.5)], with an estimated score $n, 
better efficiency of our M-estimators may be achieved. The investigation of 
this will be discussed in this current paper. 

One may note that the functional r(.) defined by (3.1) and the Hadamard 
differentiability of r(.) at F do not depend on observations in the sample. 
Hence, this functional plug-in method used to establish (3.8) for doubly 
censored data also applies to other types of censored data. Next, we give these 
immediate results as corollaries of Theorem 3.1. 

Complete i.i.d. sample case. Suppose that for the linear regression model 
(1.1), a complete i.i.d. sample (Xi, Ti), i = 1, .. . ,n, is observed. Then, the 
empirical d.f. Fngiven by (1.4) can be used to construct the M-estimator r(Fn) 
for p = ( a ,  P ) ~ ,  where r(.) is defined by (3.1). Since Fnis a proper bivariate 
d.f., by Lemma 3.2(i) we know that r(Fn) is well defined. Since, by Theorem 
3.1, r(.) is Hadamard differentiable at F ,  from (3.2) of Theorem 3.1 in Ren 
and Sen (1995) and from (3.6), we know that for a continuous F, 

6 [ 7 ( F n )  - r ( F ) ]  = r ; i . ( 6 [ ~ ,- F ] )  + op(l) 

where ci = A-'($(Xi - a - PT,), $(Xi - a - P T ~ ) T ~ ) ~ .Since Ci, 1I i I n, 
are i.i.d. observations with zero mean, by the Central Limit Theorem, we 
obtain the asymptotic normality of the regression M-estimator r(Fn). We 
state this result in the following corollary. 

3.1. 
Fnbe given by (1.4) and r(Fn), defined by (3.11, be the M-estimator for linear 
regression model (1.1) with complete i.i.d. sample (Xi, Ti), 1I i I n. Then, 

COROLLARY Assume (All-(A3), and assume that F is continuous. Let 

where Zo= covF(Si). 

Bivariate observations under the uniuariate right censoring case. For any 
real numbers x and t, we denote x v t = max(x, t} and x A t = min(x, t}. 
Suppose that for the linear regression model (1.11, the following i.i.d. bivari- 
ate observations under univariate right censoring are observed: 
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where i = 1,...,n, and Ci is the right censoring variable which is indepen- 
dent from (Xi, Ti). This type of censoring is considered by Lin and Ying 
(1993). From (2.3) and the appendix of their work, a bivariate d.f. estimator 
for bivariate d.f. F of (X,, Ti) can be obtained as 

where Hn is the product-limit survival function estimator based on Ci = xiVc,6," = 1- 6,"6: for 1Ii 5 n, and the weak convergence of G[F," - F]to a 
centered Gaussian process on some compact set [a,, b,] x [0, c] can be 
obtained. Now, define a functional r,(.) as the root of the equations 

Then, the regression M-estimator in model (1.1) based on data (3.9) c y  be 
constructed as -ro(#,"). From our Lemma 3.2(ii), we know that r,(F,") is 
defined when F," is close to F. By Theorem 3.1, we know that r,(.) is 
Hadamard differentiable at F and its Hadamard derivative rbF is given by 
(3.6) with integration region [a,, b,] x [0, c]. From the weak convergence of 
P," and from Theorem 11.8.1. of Andersen, Borgan, Gill and Keiding (1993), we 
know that 

From rb$.), Lemma 3.1, and the weak convergence of G[#," - F],  we obtain 
that r;$G[P," - F]) converges in distribution to a bivariate normal distribu- 
tion. We state this result in the following corollary. 

COROLLARY Assume (Al) and (A2). Under the conditions that l/;;[#,"3.2. 
- F] weakly converges to a centered Gaussian process on a compact set 
[a,, b,] x [0, c], the regression M-estimator rO(#,"), defined by (3.10), for 
model (1.1) based on data (3.9) satisfies 

where 2 ,  is the ^covariance matrix determined by rbF and the limiting 
covariance of G[F," - F] ,  which can be derived from (2.4) of Lin and Ying 
(1993). 

The bivariate right-censored sample case. Suppose that for the linear 
regression model (1.1), the following i.i.d. bivariate right-censored sample is 
observed: 
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where i 1 , .. . , n, and (Ci,= DL)is the bivariate right censoring variable 
which is independent of (Xi,T,). This type of censoring is considered by 
Dabrowska (1988, 1989), among others. From the bivariate survival function 
estimator of Dabrowska (19881, page 1484, a bivariate d.f. estimator #id 
using data (3.11) can be obtained, and from Dabrowska (1989), the weak 
convergence of h [ # i d  - F ]  to a centered Gaussian process on some compact 
set [a,, b,] x [0, c] can be obtained. Thus, the regression M-estimator in 
model (1.1) based on data (3.11) can be constructed as rO(#in), where 7, is 
defined by (3.10). The asymptotic normality of this estimator r0(#id) follows 
from the proof of Corollary 3.2 discussed above. We state this result in 
Corollary 3.3. 

COROLLARY Assume (Al) and (A2). Under the conditions that &[#id3.3. 
- F] converges weakly to a centered Ga~ssian~process on a compact set 
[a,, b,] x [0, c], the regression M-estimator r0(Fid), defined by (3.10), for 
model (1.1) based on data (3.11) satisfies 

where Zed is theAcouariance matrix determined by rbF and the limiting 
covariance of 6[~i~- Fl. 

REMARK4. In Corollary 3.2 and 3.3, rO(F) is well defined, but may not be 
equal to p. They are almost the same if (A3) holds and [a,, b,] x [0, c] is 
sufficiently close to the support of ( X ,TI. 

4. Computation and example. In this section, we consider the compu- 
tation of the regression M-estimator r(#,,) for r(.) defined by (3.1) and #,, 
given by (2.6), and its application to a doubly censored data set encountered 
in the study of primary breast cancer [Peer, Van Dijck, Hendriks, Holland 
and Verbeek (1993)l. 

Without loss of generality, assume that T, < ... < T,, and all V,, . . . , V,, 
are distinct. Then, for t = Tk in (2.3) we have that d,,(Tk) = k/n and 

Thus, (2.4) is equivalent to (2.2) of Mykland and Ren (1996) and can be 
computed by their algorithm (2.5) which gives 

k 

(4.1) 1 , , ( x )  = za , ,qv ,  2 4 ,  
i =  1 

where ak i  2 0 with C:= ,aki s 1. One'may note that condition (2.9) can be 
satisfied if a proper initial point in the algorithm is chosen. For detailed 
discussion, see Mykland and Ren (1996). Since dn(Tk) = k/n, by (2.5) we 
have 
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From (2.4), we can see easily that the equation changes only according to 
T, 5 t < Tkcl. Thus, we have that for any x and t 2 T,, 

where Tn+, = m, a , , ,  ,= aO, i= 0 and b k i  = (k/n)a k i  - (k - l / n ) ~ , , , ~ .  
Since (2.4) does not have a unique solution [see Mykland and Ren (1996) or 

Gu and Zhang (1993)1, the solution of (2.6) giv:n by (4.3) is not unique. 
Nonetheless, since the asymptotic properties of Fnestablished in Section 2 
apply to any solution of (2.6) satisfying (2.9), then any solution of (2.6) 
satisfying (2.9) may be used to construct the regression M-estimator r(#n) for 
the linear model (1.1) when the sample size is large. 

For an #,, given by (4.3), to find the regression M-estimator T(#~)  defined 
by (3.1), we need to solve the following equations: 

This is a system of nonlinear equations and can be solved using the 
Newton-Raphson method [Press, Teukolsky, Vetterling and Flannery (1992), 
pages 372-378). To illustrate our proposed method, we apply the regression 
M-estimator r(gn) defined by (3.1) to a real data set below. 

EXAMPLE.In a recent study of the age-dependent growth rate of primary 
breast cancer (Peer, Van Dijck, Hendriks, Holland and Verbeek (1993); Ren 
and Peer (1997)1, a doubly censored sample is encountered. The age X (in 
months), at  which a tumor volume was developed, was observed among 236 
women aged 41-84 years. From 1981 to 1990, serial screening mammograms 
with a mean screening interval of two years were obtained. Among the tumor 
volumes detected by the screening mammograms, 45 women had tumor 
volumes observed at the first screening ,mammograms, yielding left-censored 
observations; 79 did not have tumor volumes observed at the last screening 
mammograms, yielding right-censored observations and 112 were observed 
with tumor growth during the period of the serial screening mammograms, 
yielding uncensored observations. For each woman, the age T (in months) at  
which she started the first screening mammogram was recorded. To study the 
relation between X and T, which is an important issue in breast cancer 
research, we use the linear regression model (1.1) with data (Vi, 4,Ti), 
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1s i s 236. In Figure 1, we display the scatterplot of (V,, Ti), 15 i 5 236, 
which indicates that the linear model (1.1) might be appropriate for this data 
set. Using Huber's score function $ given by 

C, if x > C, 
x, i f - c s x s c ,  
-c, if x < -c, 

where c = 330, the regression M-estimator constructed for model (1.1) in 
Theorem 3.1 is calculated as (&,, 6,) = (36.4,1.03) by the methods discussed 
above using (K,ai, Ti), 1Ii I 236. The fitted regression line 9 = Gn + bnx 
is plotted in Figure 1(for a different choice of c the fitted regression line does 
not appear to be very much different). Our experience shows that computa- 
tion is efficient for a reasonable sample size. In Figure 1, we also plot the 
fitted regression line by the usual least squares estimate (LSE) method [i.e., 
the solution of (1.3) with score function $(XI = X I  using (V,, Ti), 1 I i I 236, 
which ignores censoring in the data. One may note that the fitted regression 
line by the proposed M-estimate method is located above that by the LSE 
method. This may very well be expected, since the proposed method takes the 

Breast Cancer Data 

400 500 600 700 800 900 
T (in months) 

FIG. 1. --, fitted regression line by proposed method using (V,, S,, T,), 15 i 5 236; - - - - -, 
fitted regression line by LSE method using (V,,T,), 1 I i I 236. 

1000 
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censoring mechanism of the data into account and the data set is more 
heavily right censored than left censored. 

5. Proofs of Theorems 2.1 and 2.2. 

PROOFOF THEOREM2.1. Suppose that for each n, $n(x, t)  is a bivariate 
function given by (2.5) satisfying (2.9). Then, conditions (2.5) and (2.6) of Gu 
and Zhang (1993) are satisfied by (2.9) and (2.12). Applying Theorem 1of Gu 
and Zhang (1993), we have that for each t with FT(t) > 0, II'~,,- FtI + 0 
almost surely as n + w. Since 

I'n(x,t) - '(x,t)I II'n,t(x) -Ft(x)Idn(t)  + J't(x)Idn(t) -'T(t)I, 
we have that for each t, ~ u ~ , l $ ~ ( x ,t) - F(x, t)l + 0 and ~ u ~ , l @ ~ ( x ,t - -

F(x, t - )I + 0 almost surely as n + co. 

In the next step, we prove that the convergence is uniform in t. For any 
E > 0, let - w  = to It, I I tk = w be a sequence of points such that 
FT(ti- ) - FT(ti- I E ,  i = 1,...,k. From the first step, for almost all w in 
the sample space, we can choose N, such that s ~ ~ , l # ~ ( x ,ti) - F(x, ti)[s E 

and ~ u ~ , l $ ~ ( x , t ~- )  - F(x , t i  -)I I E for n 2 N, and i = 0,1, ..., k.  Since 
we have 

l$n(x,t) - ~ ( x , t ) lI rnax $n (x , t i )  -F (x , t i ) 1  
O s i s k  

+ max 12n(x,ti-1 - ~ ( x , t ~-)I
O s i s k  

+ max IF(x,  ti - )  - F ( x ,  ti - )  1,
151 l k 

we see that ~ $ ~ ( x ,t) - F(x, t)l is bounded by 38 on the same w when n 2 Nu. 
This shows that the convergence is uniform in t almost surely. 

Before proving Theorem 2.2, we need to define some notation. With F 
reserved for the true bivariate distribution function of ( X ,TI,  we denote FA, 
F;,,, F,, ,, m 2 1and F' as distribution functions such that 

F' - F E Do([a,b] x R), 

Km =F.,rn -Fy , rn ,  

where S;(X, t) = FA(w, t)  - FA(%,t) and St(x,t) = F1(w,t) - F1(x,t). With 
these definitions, we have a lemma similar to Lemma 2 of Gu and Zhang 
(1993). 

LEMMA5.1. Let h,, g,, m 2 1, and g be functions in Do([a,b] x R) such 
that llg, - gll + 0 and R,h, = g, and A,, R, and K, are defined as in 
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(2.17) with ( F ,F,, Fz) replaced by (F:,,Fy,.,,Fz, ,,,I. Suppose that the condi-
tions of Theorem 2.2 hold and for all t > t o ,where t o  is a fixed number such 
that F(m, t o )> 0 ,  

(5 .1)  	 lim sup 
, t K m ( u )  

Let R F  be given by (2.17). Then there exists h E D,([a, bl X R) such that 
IIKmhm- Khll - 0 ,  as m + m, and R F h  = g .  

PROOF.First, we show that if IlK, h ,  l l  I 1, then (06, h ,  , m 2 1) is totally 
bounded on the space Do([a,b1 X [ t o ,a)). The proof of this is split into three 
steps. 

Step 1. Define 

We are going to show 

lim sup {Iu:(x;  t r ,t ) l ;t o 5 t < t ' ,  It' - tl 5 6 )  = 0 ,  
8 - 0  x ,  t ' , t 

(5.4) 
lim sup { ( v , ( x ; t ' ,t ) ( ;t o  5 t < t r ,Itr - tl 5 6 )  = 0 .  
8 - 0  x ,  t ' , t 

The argument of Step 2 in the proof of Lemma 2 of Gu and Zhang (1993) 
can be used to show that 

and the same equation holds, with the argument ( x ,t ' )  and ( u ,t ' )  in the 
integration replaced by ( x ,t )  and ( u ,t ) , respectively, since F ( x , t ' ) > F ( x , t ) .  

To prove the first half of (5.4),we are left with the case F ( x , t ' )  2 7,. We 
have 

since 

FA(x , t ' )  FA(x , t )  t ' )  - t )F ~ ( x ,  F ~ ( x ,  

FA(u, t ' )  FA(u, t )  FA( u , t ' )  

F h ( x , t )  FA(u, t ' )  - F k ( u , t )
-

FA(u, t )  FA( u , t r )  

The second half of (5.4)can be proved in the same way. Details are omitted. 
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Step 2. We will show 

(5.5) lim sup ( l K m h m ( x , t r )- K m h m ( x , t ) l ; r _ < t < t ' , I t ' - t l _ <6 )  = O  
8-0  . , t8 , t  

Simple calculation shows that 

(5.6)  
Rm,Fi_(.,t)(hm(.,t r )- hrn(., t ) ) ( x )  

= - v ; ( x ;  t ' ,  t )  - u,(x;  t ' ,  t )  + g,(x ,  t ' )  - g m ( x ,t ) ,  

where R m ,F k ( . , t )  is a one-dimensional operator as in (2.9) of Gu and Zhang 
(1993) with (FA(.,t ) ,F,,,, F,,,). Lemma 2 of Gu and Zhang (1993) shows 
that the operator R;:,; is continuous in terms of its defining function 
(FA,Fy,,, F,,,) (with supremum norm). Thus, (5.5) follows from (5.4) and 
(5.6).Moreover, we have 

(5.7)  SUP IIR,fFL(.,till < a.  
t € [ t , , ~ )  

Hence, (5.5) follows from (5.6) and (5.7) combining with (5.4) of Step 1. 
Step 3. Equation (5.5) shows the total boundedness of K m h m ( x ,t )  with 

respect to t .  The total boundedness of Kmhm is established if we show it is 
totally bounded with respect to x. The arguments in Step 1 and Step 2 of the 
proof of Lemma 2 of Gu and Zhang (1993)can be used with the observation 
that the inequalities and limits there are all uniform in t with t 2 to.  

With (5.7), the proof of the total boundedness of K m h m  on the space 
Do([a ,b ]  x [ t o ,a]))follows exactly the argument in the proof of Lemma 2 of 
Gu and Zhang (1993).We omit the details. 

PROOFOF THEOREM2.2. We first observe that since for t < t ' ,  F ( u ,  t r )I r 
implies F ( u ,  t )  I r and S ( u ,  t ' )  I r implies S ( u ,  t )  I r ,  condition (2.22) 
implies that for any to  with F(m, t o )> 0,  

lim sup 
~ F Y ( u )+ 

T + O  t 2 t o  ( L < ~ ( ~ , ~ ) < ~K ( u )  L<s(u , t j<TK ( u )  

which in turn, implies the condition of Lemma 5.1 if we discretize the 
distribution F,  F y  and F,. The proof for the weak convergence of &(Pn - F )  
on the set [ a ,b ]  x [ t o ,m) follows from the one for Theorem 2 of Gu and Zhang 
(1993) with Lemma 2 there replaced by Lemma 5.1 in this paper. The weak 
convergence of i 6 ( P n- F )  on the set [ a ,b ]  x ( - m ,  t o ]can be deduced in the 
same way as above by noting that 

A 

where F ( x ,  t )  = P{X Ix ,  T > t }  and F,, is the corresponding estimator of F.  
We observe that if Pn satisfies (2.6), then gn satisfies (2.6) withfhe  corre-
sponding changes in the definitions for QF), j = 0,1 ,2 ,3;  thus Fn satisfies 
the corresponding equation (2.18).Finally, we note that F(a ,  t o )I 6 implies 
that F(m, t o )2 1 - 6 .  Therefore Lemma 5.1 again can be applied. The details 
are omitted. 



DOUBLY CENSORED REGRESSION M-ESTIMATORS 2657 

6. Proofs of Lemmas 3.1, 3.2 and Theorem 3.1. 

PROOFOF LEMMA3.1. From (Al) and (A2), we know that for any fixed x 
and 0, each of +,(t) = +(b - OTt)tand +',,,(t) = +'(x - OTt)tis of bounded 
variation on [0,c] and 

Since +' = 0 outside of [ dl, d, I, then for a fixed 0, there exist -cc < a' < b' < 
w such that for any H E MO, 

where C, and C, are constants, and 

It suffices to show (3.4) for all bivariate d.f. H. First, it is easy to check that 
(3.4) holds for H(x, t) = I{A I x, B 5 t}, where A E [a,b] and B E [0, c]. 
This implies that for any bivariate d.f. H, (3.4) holds for an empirical d.f. HN 
based on a random sample of size N from H. Letting N + w, the proof 
follows from (6.1)-(6.3). 

PROOFOF LEMMA3.2(i). From (Al), we know that p is nonnegative, 
continuous and convex with lim, ,,,p(x) = w. Thus, for any bivariate d.f. F, 
R(0) given by (3.3) is convex and continuous, and by (Al), it is twice 
differentiable. From Bazaraa, Sherali and Shetty [(1993),page 1181, we know 
that if R(0) attains its global minimum at some point O,, then its gradient 

must satisfy VR(0,) = 0. Thus WOO,F )  = 0, because VR(0) = -W(O, F). 
Hence, to show the existence of a solution of W O ,  F )  = 0, it suffices to show 
that R(0) has a global minimum. Since R(0) is continuous, it suffices to show 
that 

lim R(0) = m, 
l l8 l l2+"  
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which is equivalent to 

lim inf R( -Ae) = m. 
A + m  lIel12=1 

Let e = (el, e2)T with e; + e; = 1. Suppose el 2 0. Since p(x) -t ~ . o ,  as 
1x1 -) m, then for any M > 0, there exists AM> 0 such that p(x) 2 M for 
I xl 2 AM.Denote pF as the measure corresponding to F on [w,,without loss 
of generality, we may assume that ~ ~ ( 1 x 1  pF{lxla 1,I 1, t 2 11 > 0 and 
0 a t r 41 > 0. If e, 2 0, then for 1x1 a 1and t 2 1,we have 

x + AeTt= x + A(el + e,t) 2 -1+ A(el + e,) 2 -1+ A 

because (el + e,)' = 1+ 2e1e22 1. Hence, for large enough A, we have 
x + AeTt2 A Mand 

Ife,  r 0, thene2a - f i w h e n 0  r e l  a +,and - f i r e ,  i Owhenel 2 1. 

For 0 a el < i,e, a - fi,1x1 r 1, t 2 1, we have 

thus for large enough A, we have x + heTt I -AM and (6.6). For el 2 1,  
- f i r  e, I 0, 1x1 5 1 , 0  r t a 1,wehave 

thus for large enough A, we have x + AeTt2 AM and 

This completes the proof for (6.5) when el 2 0. Similarly, (6.5) can be shown 
for the case of el a 0. 

Suppose that WO, F )  = 0 has two different solutions 8, and 8,. Then from 
Bazaraa, Sherali and Shetty [(1993), page 1181, we know that R(0) attains its 
global minimum at 8, and 8,. From convexity of R(O), we know that 
h(A) = R(A0, + (1 - A)O,) ="the minimum value of R(O)," for 0 a A r 1, 
thus, for any 0 a A I1, AOl + (1 - A)O, is a solution of WO, F )  = 0. Hence, 
we have 

0 = h(A)  = / / s f (x  - (10, + (1  - -A ) o , ) ~ ~ ) { ( o ,  dF(x ,  t ) ,  
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which implies +'(x - i(0, + ~ , ) ~ t )= 0 for any x E [a ,  b], t E [0,c]. This 
means +(x - $(ol + 02)~ t )= i for any x E [ a ,  b], t E [0, c]. From (Al), we 
know that there exists a unique point x, in 58 such that +(x,) = 0. Hence, we 
must have 5 # 0. Since +(el + 8,) is a solution of q(0,  F )  = 0, we have 

a contradiction. Therefore, the solution of q(0 ,  F )  = 0 is unique. 

PROOFOF LEMMA3.2(ii). Without loss of generality, we consider the case 
of -m < a < and b = m, because other cases can be shown similarly. 

Choose some number b' such that a < bf < m and denote 

From the proof of (6.5), we know that R',(0) + m, as 1l01l2 -t m. Let R,(p) = 

M, for R,(0) given by (3.3), then there exists 0, E [W2 such that R',(0,) = 

M > M,, and there exists AM> ((P((2such that 

(6.8) R',(0) 2 M, for llOllz 2 AM. 
We choose a real number 5 such that 

(6.9) 0 < i <  + ( M  - M,). 

Since +' = 0 outside of [dl ,d,], there exists b" such that b' s b" < m with 
+(x - oTt)= C1 = +(m) for I(H112 1 2AM,x 2 b", t E [O,c], and 

Note that for H E M, and 110112I 2AM, 

(6.10) I C , ~ ~ ~ ~ B T ~d ~ ( x ,t )  
b 0 

(6.11) q ( 0 ,  H )  = /b"/c$(x - oTt)tdH(x ,  t )  + dH(x,  t ) ,  
a 0 b" 0 

s 112 for 0112 s 2AM 

which is the negative gradient of 

Denote 

(6.13) G ( 0 )  = ~ ~ " j ~ p ( x- oTt)dH(x ,  t ) ,  H E M,, 
a 0 

then for ll0lla 5 2AM, 

Since pf = + and + is bounded, we know that p is of bounded variation. 
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From the proof of Lemma 3.1, we can show that for any H E M,, 

~ ( 0 )= / b u { / C ~ ( x- , t - )  d + ( ~- oTt) dx 
a 0 I 

where pf(H) = pH([a, bft]X [0, c]) for pHgiven in (3.41, and similarly we also 
can show that for any H E MO, 

/ I T t d ~ ( x ,t )  = c [ H ( a , a )  - H(bIt,m)] - /'[H(w, t - )  - H(bt l ,t - ) ]  dt.  
b 0 0 

Hence, for any H E AdO,there exists BM> 0 such that 

lRf;-F(0) 1 5 BMIIH- FII, 
(6.16) 

I ~ , / : ~ 0 ' t d [  H - F] 1 r BM1lH- Fll for 0112 I 2AM.  
b 0 

Let 0 < q < [/(4BM), then noting that p is nonnegative, by (6.14), (6.16) and 
(6.10), we have that for H E Mo satisfying IIH - FII I q, 

%(0) 2 Rb(0) - BMIIH - FII - BMIIH - FII - [/2
(6.17) 

2 M - i, for AMI ll0llz I 2AM,  

and by (6.14), (6.16), (6.10) and (6.91, 

pH(P) IRF(P)  + BMIIH- FII + BMIIH - FII + 1/2
(6.18) 

IM, + [< M - i for llPll2 I AM. 

Since it is continuous, pH(0) must have a local minimum in llOllz < 2AW 
Hence, from (6.11) and (6.12), we have that for H E Mo satisfying IIH - FII I 
q, *(0, H )  = 0 has a solution in ll0ll2 I AM< 2AM. 

Moreover, from Lemma 3.1 we know that *(0, H )  converges to T(0,  F )  
uniformly on any compact set of 0 when IIH - FII -t 0. Thus, for any solution 
0, satisfying *(OH, H )  = 0 and l10Hl12rAM,we have 

*(OH,F) =*(0, ,F) -*(0,,H) - t o  asIlH-FII-t  0. 

From the dominated convergence theorem and the uniqueness of the solution 
for T(0, F )  = 0, we have that 110, - pll2 -t 0, as IIH - FII -t 0. 

PROOFOF THEOREM3.1. First, we show that q (0 ,  H )  given by (3.1) is 
Hadamard differentiabl-ea t  (P, F )  with Hadamard derivative 



2661 DOUBLY CENSORED REGRESSION M-ESTIMATORS 

where H E M,. From Definition 3.1 of the Hadamard derivative, we need 
to show that for tn + 0, 5, -+ 5 E R ~ ,Hn - + H E  DO,as n +a,with F + 
tnHn E Mo, 

Note that from Lemma 3.1, we have 

2 M$IIHn- HII + 4IIHniI II*n(c)ll2 

where M,,, > 0 is a constant and 

+,,(t) = [*(b - pTt - t n 5 3 )  - * ( b  - pTt)lt ,  

*L,,,(t) = [*'(x - pTt - tn@) - *'(x - pTt)]t. 

If [a ,  b] is not finite, then for any n and t E [0, c], we have $4,.(t) = 0 and 
[ $(x - pTc - tng:c) - Q(x - pTc)I = 0 when I xl is large enough. Hence, the 
integration region on the right-hand side of the inequality of (6.21) can 
always be equivalently considered as a compact set, say [a', b'l X [0, c]. Since 
H E Do,by Neuhaus (1971), we know that H can be approximated uniformly 
by a step function on [a', b'] x [O, cl. Following the last part of the proof of 
Lemma 3 by Gill [(1989), pages 110-1111, we can show that the last term on 
the right-hand side of the inequality (6.21) converges to 0 as n -+ m. Thus, 

as n -+ co. 

Since 

(6.20) follows from (6.22) and the dominated convergence theorem. 
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From Lemma 3.2(ii), we know that for H E M,,T(0, H )  = 0 has a solution 
in the neighborhood of f3 when H is in a neighborhood of F. We also know 
that for a fixed H E Ad,, T(0, H )  is continuous and differentiable in 0. Thus, 
by the Implicit Function Theorem on R2, we know that q(0,  H )  = u has a 
solution T(u, H )  = 0 for u E R2 in the neighborhood of 0, H in the neighbor-
hood of F and 0 in the neighborhood of P. 

The partial derivative of T(0, H )  with respect to 0 at (P, F )  is given by the 
matrix A in (3.7). From (A3) and Remark 1in Section 3, we have that for any 
U E R2, 

Hence, A is positive definite, thus nonsingular. 
To use the Implicit Function Theorem of Fernholz (1983), Theorem 3.2.4, to 

show that the functional r ( . )defined by (3.1)is Hadamard differentiable at F ,  
it suffices to verify the following compact preserving condition: if r is any 
compact set in m/0, and K a compact set in R2,then for any t, -t 0, as n -t 
and {(H,, (,I} c r x K with F + tnHnE Ad0, 

is bounded. Let *(On, F )  = t,(,, T(t,c,, F )  = On, Wq,,  F + tnHn)= t,(, 
and T(t, (,, F + t, H,) = q .. Then, from (Al) it can be shown that there exist 
constants C > 0 and M > 0 such that for sufficiently large n, 

and 

Hence, (6.23) follows from the usual straightforward argument. 
The asymptotic normality of 7(#,) follows from (3.6), (3.4), the weak 

convergence of 6[#,- F],  Theorem 11.8.1 of Andersen, Borgan, Gill and 
Keiding (1993) and Iranpour and Chacon [(1988), pages 154-1571. 
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