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It has been shown (Reeds, 1976, Ph.D. dissertation, Harvard University) that the
remainder term of a form of the Taylor expansion, involving Hadamard derivative,
of the statistical functional is asymptotically negligible. This result is extended to a
more general form with respect to weighted empirical processes in order to establish
some (uniform) linear functional approximations, which is usually needed for
drawing statistical conclusions (in a large sample).  © 1991 Academic Press, Inc.

I. INTRODUCTION

In nonparametric models, a parameter 0 (= T(F)) is regarded as a func-
tional 7(-) on a space # of distribution functions (d.f.) F. Thus, the same
functional of the sample df F, (ie, T(F,)) is regarded as a natural
estimator of 6. Using a form of the Taylor expansion involving the
derivatives of the functional, Von Mises [8] expressed T(F,) as

T(F,)=T(F)+ Tp(F,— F)+ Rem(F,— F;, T(-)), (1.1)
where T} is the derivative of the functional at F and Rem(F,— F; 7(-))
is the remainder term in this first-order expansion. Note that
F,(x)=(1/n)2"_, I(X;<x) is based on »n independent and identically dis-
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tributed random variables (i.i.d.r.v.) X, .., X,, each having the d.f. F, and
that T, is a linear functional. Hence, 7, (F,— F) is an average of n
iid.r.v’s. For drawing statistical conslusions (in a large sample), T plays
the basic role, and in this context, it remains to show that
Rem(F,— F, T(-)) is asymptotically negligible to the desired extent.
Approptiate differentiability conditions are usually incorporated towards
this verification.

We observe that a statistical functional induces a functional on the space
D[0, 1] (of right continuous functions having left-hand limits) in the
following way:

(G)=T(G-F), GeD[0,1]. (1.2)
Thus, (1.1) can be written equivalently as
WU,)=t(U)+ (U, — U) + Rem(U,— U; 1(-)), (1.3)

where U, is the empirical d.I. of the F(X,), 1<i<n, and U is the classical
uniform d.f. on [0, 1] (ie., U(¢z)=1 0<r<1). Since the expansion in (1.1),
written in (1.3), is based on some kind of differentiation, it is quite natural
to inquire about the right form of such a differentiation to suit the desired
purpose. The current literature is based on an extensive use of the Fréchet
derivatives which are generally too stringent. Less restrictive concepts
involve the Géteaux and Hadamard (or compact) derivatives (viz.,
Kallianpur [4], Reeds [6], and Fernholz [2], among others). Using the
Hadamard differentiability (along with some other regularity conditions),
Reeds [6] has shown that

JnRem(U,— U;1(-))—£50, as n— o (1.4)

so that noting that <t (U,—U)=(1/n)X"_,IC(X;;F, T), where
IC(x; F, T) is the influence function of 7 at F, and assuming that
a?=Var {IC(X;; F, T)} < o, one obtains that

Jn(T(F,)—0) L /nt,(U,—U)—Z> N(O, 62). (1.5)

In the context of the law of iterate logarithm or some almost sure (a.s.)
representation for TF,), one may require a stronger mode of convergence
in (1.4), and this, in turn, may require a more stringent differentiability
condition. However, in a majority of statistical applications, Hadamard
differentiability suffices, and we shall explore this concept in the context
of extended statistical functions arising in robust (M-)estimation in simple
linear models.

Our main results in Section 3 extend the result (1.4) to a more
general form with respect to the weighted empirical process:
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{S,’,"{-,u);ueR n>1}, where, for a sequence {c,} with ¥ c2=1,
S¥(,u)=X"_, . I(Y;<F '(-)+c,u). Our results deal with the remain-
der term uniformly over a variable « in a compact set so that they, as an
application, may be applied to uniform asymptotic linearity of some
statistics, viz., the M-estimators in linear regression models.

Consider the simple linear model:

X;=bTc,+e;, ix1, (1.6)

where the ¢, are known p-vectors of regression constants, p=(f,, ..., ﬁp)"- is
the vector of unknown (regression) parameters, p > 1, and e; are i.id.r.v.’s
with d.f F(e#%). Based on a suitable score function ¥:R— R, an
M-estimator B, of B is defined as a solution (with respect to 0) of the
equations

Y c(X;—07c,)=0, (1.7)
i=1
where “=0" accommodates the possibility of left-hand side being closest to
0 when equality in (1.7) is unattainable (such a case may arise when / is
not continuous everywhere). Setting Y, =X, — B¢, (iid.r.v.’s with d.f. F),
we shall see that the empirical function

SHuu)=Y ¢, (Y, <F '(r)+ciu), 1€[0,1],ueR?, (1.8)

i=1

arises typically in the study of the asymptotic properties of f,, where the
¢,; are suitably normalized version of the ¢;. For cxamplc wc may set
Of every h g p? C Za-— 1 crc {ij)l =i, }é,ﬂ’ C Dlag( ull’ ¥ Cnpp)
€,i=(C2) " '¢,=(Cpits s Cpip) s 1 <i<n. Thus letting u=C2(0 —B) and

n

M, (u) = Z ¢, ¥(Y;—c,u (1.9)

we see that (1.7) is equivalent to
M, (u)=0 (with respect to u), (1.10)

The solution of the implicit (set of) equations is greatly facilitated by
the following type of (JureCkova-)uniform asymptotic linearity for
M-processes: for every finite real number K> 0, as n — oo,

sup{|[M,,(u) — M,(0) + Q,uwy|: [u| < K} - 0, (1.11)

where ||-| stands for the Euclidean norm, y=[ ¢'dF>0 and
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Q,=Y"_,c,cr=(C% 'C,(C% . Under various conditions on the (c,,},
the score function y and the d.f. F, (1.11) has been established {Jureck-
ova [3]), and this provides an easy access to the study of the asymptotic
properties of the M-estimator f,. We consider a different approach here.
For simplicity of presentation, we consider the case of p =1, ie., the ¢, are

real numbers. Since for each ue R, M (u) i1s a linear functional of S (¢, u),
ViZ.,

M, (1, u)= [ W(F (1)) S )

M (1) could be the Hadamard derivative of a certain functional 1. Thus,
using the results of this paper, for a proper functional 7, we have, for any

K>0,as n—
c Sl u]) (S,T( 0))))
CotCoil\ T\ =r - | "\~
;§| ( ( f=1 Cm' Za’=1 Cm‘

Y M,,(O)]‘ g (L12)

sup
|lul < K

Therefore, (1.11) follows from showing

; S;"(-,u)) (S,?‘(-,O)))
Cni| T n -t n +uy
,';1 ( (z:‘= 1 Cm‘ i=1 Coi i

Some notations along with basic assumptions are presented in Section 2.
In the same section, the notion of statistical functional and the concept of
Hadamard differentiability are also introduced. The main results along
with part of their derivations are considered in Section 3. The proof of
Theorem 3.1 is given separately in Section 4.

sup 0.

|l = K

2. PRELIMINARY NOTIONS

Consider the D[0, 1] space (of right continuous real valued functions
with left-hand limits) endowed with the Skorohod-J, (denoted by |-||,)
topology. The space C[0, 1] of real valued functions, endowed with the
uniform (denoted by |:|) topology, is a subspace of D(0, 1]. For every
ue R, denote by

S:(Ii H}Z Z CarfI(YFQF_][r)+C:ra'u]a fe [Oa 1] (21]

i=1
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where Y, are 1id. random variables with d.f. and ¢, are all given real
numbers. It is easy to see that, for every u(e R), S¥(-, u) is an element of
D[0, 1]. The population counterpart of the I(Y,<F~'(t)+c,;u) are the
F(F~'(t)+ c,;u), and this leads us to consider the following:

n

S(t,u)=Y c F(F\(t)+cyuu), te[0,1],ucR. (2.2)

i=1

We also write

Ci=Cr; —C er=max{0, ¢}t | e;=-min{0,c;}; (23)

ni * ni

S,’,"*{I,u}=ic+.f(Y,-$F Ye)+ ¢k u), te[0,1],ue R (24)

ni ni
i=1

S*(Lu)=Y ¢ g Y, <F '(t)+c,u), te[0,1],ueR (2.5)

i=1
so that S¥(f, u)=S¥"(t,u)— SF¥ (¢, u). Then let
W.(t,u)= Skt (2u—1)K)— S,(¢, (2u — 1)K), (2.6)

WOt u)=S,(t, Qu—1)K)—t ¥ c,s, (2.7)

I =

s

where K is a positive real number and (1, u)e [0, 1]% Also, let f be a
function defined on [0, 1]° and let us denote by

w(8) =sup{|f(t, u) — f(s, v)|; |t — 5| <6, |[u—v| <5} (2.8)

Some assumptions, which may be required for our main results, are
given below:

(A1) ¢,;20.i=1.2...;/m
(A2) 31, =1, im, max, .;c,c%=0;

=1 " ni

(B) F is absolutely continuous and has a positive and continuous
derivative F' with limits at + ooc.

In order to prove our results in Section 3, some basic concepts about
statistical functional and Hadamard differentiability are needed.

DeFiNITION.  Let X, ..., X, be a sample from a population with d.f. F
and let T,=T,(X,, .., X,,) be a statistics. If T, can be written as a func-
tional T of the empirical d.f. F, corresponding to the sample X,,.., X,
ie, T,=T(F,), where T does not depend on n, then T will be called a
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statistical functional. The domain of the definition of T is assumed to
contain the empirical d.f’s F, for all n=> 1, as well as the population d.f. F,
and the range of T will be the set of real numbers.

As we saw earlier, any statistical functional T induces a functional 7 on
D[O0, 1] by the relation given in (1.2). In Sections 3 and 4, we will always
assume that functional 7 is induced by a statistical functional T.

Let ¥ and W be the topological vector spaces and L(V, W) be the set of
continuous linear transformation from ¥ to W. Let .«/ be an open set of V.

DeFINITION. A functional T:./ - W is Hadamard differentiable (or
compact differentiable) at Fe of if there exists T, e L(V, W) such that for
any compact set I” of V,

. T(F+tH)—T(F)—T.(tH)
lim e

(] t

0 (2.9)
uniformly for any He . The linear function T is called the Hadamard
derivative of T at F.

For our current study, we actually consider an extended statistical func-
tional, ie., the domain of the definition of 7 is assumed to contain
SEF(-), u)/2!_,c,foralln>1 and ue R, as well as the population d.f. F,
and the Hadamard differentiability of the extended statistical functional is
just the same as the definition above treating S*(F(-), u) as an element of
D[0, 1] for a fixed ue R.

For convenience sake, in (2.9), we usually denote

Rem(tH) = T(F+ tH) — T(F)— T}(tH),
then, correspondingly in Sections 3 and 4, we always use the notation
Rem(tH)=1(U+tH)—t(U)—1t,,(tH),

where H is an arbitrary element of D[0, 17].

3. MaAN REsuLTS

TueoreM 3.1.  Suppose t: D[0, 1] — R is a functional and is Hadamard
differentiable at U. Assume (A1), (A2), and (B). Then, for any K> 0,

sup
lul = K

n
i=1 %ni

n S* 2
Z Cpi Rem (M_U())‘_’f_’os as  n— oo, (31]

i=1
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Therefore, we have, as n — oo

S {r (Li{" ”})fr(U{-n}
i=1 i=1 Cm'
—e(S2.0=UC) ¥ )| 20

Remark. We notice that (1.4) is just the special case of (3.1) for
c;=1/m 1<i<n

sup
|lul = K

. (3.2)

The proof. of Theorem 3.1 will be given+in Section 4. When (A1) is not
satisfied, we have the following theorem.

THEOREM 3.2. Suppose t: D[0, 1] — R is a functional and is Hadamard
differentiable at U. Assume (A2) and (B). Then, for any K>0, as n — oo,

*+ n S*
| § coe(E2L8) 5 o - (Se0)
lul<Kli=1 i—vlcm i=1Cni
_T(U] Z Cm'_T:U(S:(‘! H]“ U() Z Cm') _P’ 0. (33)
i=1 i=1
Proof. Denolc & —c;’,/d”r and &= /d; for I P=YL, [et)*

al'ld dn )2 1—1 ( m] Since Z -1 (Cm) =1 and z 1 (Er; )2 = 15 there-
fore, for ¢% and ¢,,, (Al) and (A2) are satisfied, and 0 <d,, d, <1.
We observe, for |u| €K,

S:-‘—(I H) zr lCmI[YrgF l(t)+c )

i=1Cni ) 20
2 LY EF(D4ctu
=Z 1 m ( B E+(} ni 1] IH]1$K-

i=1"%ni

Therefore, by Theorem 3.1, we have, for any K> 0, as n — 0,

z () o)

_ri’(w_[}() i C,“)‘—-—--)O,

Since 0 <d, <1, we have, as n — o0,

gt () oo

—r’U(S,’,” - U(-) Z ,,,)‘ 0. (3.4)

fm]

sup
lul= K

i=1

sup
lul = K
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Similarly, we can show that, as n — oo,

i Cni {T (M)—T(U{-})}

i=2 i=1"%ni

—rb(s:-(-,u)—vm 3 c,;)

i=1

sup

lul = K

IE 50, (3.5)

Therefore, (3.3) follows from (3.4) and (3.5). |}

Remark. As an application to _M-estimators of regression, our
Theorem 3.2 allows regression coefficients {c,} to be positive or negative in
order to establish (1.11) by the method given in Section 1.

4. PrROOF OF THEOREM 3.1

In this section, (A1), (A2), and (B) are assumed. First, we notice that
(Al) and (A2) imply that

c
1

i = 00, as n— 0. (4.1)

I =

i

We also notice that (B) implies that F’ is bounded and uniformly con-
tinuous.

Due to the uniformity over u in result (3.1), the proof will be achieved
through  the  bivariate version of S¥(-,-). Unfortunately,
S*(t, 2u—1)K)¢ D[0, 1]*> (Neuhaus [5]); therefore any existing results
do not directly involve S*(-, -). We will deal with this problem through the
bivariate smoothed version of S¥ in our proof.

In order to see the difference between S*(-, -) and its smoothed version,
we first will show that, with probability one, the biggest jump of SX(t, u)
is no greater than 2 max, _,_, ¢,

For any 0 < K < oo, consider

n

S¥t,u)=Y ¢, (Y, <F '(t)+c,u), te[0, 1], lu <K

i=:
For each i,

1 if FY,—cuu)<t

ISR Sl {0 otherwise

the curve /,;: t = F(Y,;— ¢,;u) is nonincreasing and continuous in x. Hence,
foreachn>=1and Y,, .., Y,, [0,1]x[—K, K] is divided into finite pieces
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by smooth curves /,;, | <i<n, shown (for n=3) in Fig. 1 and the value of
S¥(t, u) is a constant in each different pice, or region:

region(0, 0, 0): Sk(r, u) =0; region(0, 1, 0): S¥(t, u) =c,»;
region(0, 1, 1): S¥(t, u)=cp+ Cp3; region(1,0,0): S¥(t, u)=c¢,;
region(l, 1, 0): S¥(z, u) =, + ¢,2; region(1, 1, 1): S¥(t, u)=c,; + €po+ Cp3.

If 15, 5, l5; intersect at one point shown as Fig. 2, the biggest jump of
S¥(r, u) is €3+ ¢35+ ¢33. However, Lemma 4.1 shows that, with probability
one, no more than two curves will intersect at one point.

LemMa 4.1.  For each n, no more than two I's intersect at one point in
region [0, 1] x [ — K, K] with probability one.

tA
1t

Y

FIGURE 2
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Proof. Without loss of the generality, suppose that I, /,,, and [,
intersect at one point (1,, u,). Since F is strictly increasing, we have

Yi—cuo=Y,—cpg=Y;— iy (4.2)

and c,,; # c,; for i # j in (4.2) because, with probability one, ¥, # Y, for i # j.
Therefore, /,,,, /,,, and /,; intersect at one point iff

Y,-Y, Y,-Y,

Ug=
Cot —Cpm2 €1 — Cp3
Since F is continuous, then i
Y]._Y2 Y]_Y3 {:2"—(‘1 (.I_CZ
P{ = =Ply,=m"my mTmy g,
Cot = Cp2 Oy — Cp3 Cpp — Ch3 Cp1 — Cp3

For each n, the probability that more than two I’s intersect at one point
only depends on {c,, ¢, .. ¢,y }. Hence, with probability one, no more
than two /’s intersect at one point for each n=1. |

Lemma 4.1 implies that, with probability one, no more than two /'s
intersect at one point along {/,,, ..., ,,,; n = 1}. Therefore, with probability
one, the largest jump of S*(s, u) is no larger than 2 max,_;.,c,. Let
S*(t, u) (obtained by smoothing S¥(z, u) through the regions shown in
Fig. 1.) be a bivariate continuous version of S*(z, u); then S*(z, (2u—1)K)
is an element of C[0, 1]* and

I|§:(-, )_ S:('s ')H < 2 max Chis a.s. (4'3)

I=i=n

LEMMA 4.2. For any >0, lim; _,lim, P(wy,(6)=2¢)=0.

Proof. Consider a weighted  empirical  process Z,(1) =
> e LI(F(Y;)<t)—t], for 0<t<1. From the Corollary 2 of Shorack
and Wellner [7, p. 109], we have that

lim im P(w,(d)>e)=0. (4.4)

=0 n—w

Since, for 0<x, y,u,v<1 with |x— y|<d, |u—v| <4, and a constant
M>=1, by (B),

|F(F '(x)+ ¢, KQ2u—1))— F(F (y)+ ¢,;K(2n—1))|
S |F(FY(x)+ ¢, KQu—1))— F(F~'(x) + ¢, K(2v —1))|
+ |F(F'(x)+ c,uKQ2v—1))— F(F () + ¢, K(2v —1))|
=|F'(&)c,;.2Ku—v)| + |x+ F'(n) c,; K(2v—=1)— y— F'({) ¢,, K(2v — 1)
<Mé+0+ KM }IQ?:H [Cpils
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then

sup iWﬂ(xaH}_ Wn(y’v” < sup |Zn(t)_zn(s}|a

x—y|l=dlu—vl<d lt—s| <6

where 0= M(26 + Kmax,_,., |¢,|). By (A2), we have

lim P(w,(8)>¢e)< Im P(w,(8))>6)< Tm Plw,(6")>¢), (4.5)

where 0" = 3MJ. Therefore, the proof follows from (4.4) and (4.5). |

PrOPOSITION 4.3. Let T, (t,u)=S8¥1t, Qu—1)K)—tX"_,c,i. (tiu)e
[0, 17% and let {P,;n=1} be the sequence of probability measures corre-
sponding to T,, n=1. Then, {P,} is relatively compact.

Proof. Note that T,((z, u)e C[0, 1]* and S¥(0, —K)=0, for n>1. By
(4.3), we have

|T,(0,0)] =|S¥0, —K)| <2 max c,, as.

l=i=n

Hence, P?= Pr,' converges in distribution. By virtue of Neuhaus [5]
(discussion on pp. 1290-1291), it suffices to show that any &> 0,

lim lim P(w.(8)=¢)=0. (4.6)

d—=0n—oo
Since for any (¢, u), (s, v)e [0, 1],

|Tu(la H) - .Tn(-?? U}'

= | [5%(t, (2u—1)K)— §%(s, @o— 1)K~ (t—=5) I ¢

i=1

<|[S¥1t, Qu—1)K)—S¥(s,2v—1)K)]
= [S3(t, Qu—1)K) - S}(s, (20— DK) ]|
+W(t, u)— W, (s, 0)| + |Wa(t, u)— Wi, v)|
by (4.3), we have

w7 (6)<4 max c,+wy, (8)+ w,o(d), a.s.
1€ign o

Hence, by (A2) and Lemma 4.2, (4.6) follows from showing

@ yo(8) =0, as n—oo,0—0. (4.7)
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Let G(#, u)=(2u—1) KF'(F~'(r)), then, by 37_, cs. =1,

sup | WUt,u)—G,(t,u)|

(ru)e [0.1]2

5 c,,,-[F{F*m+v,,r-u)—r]—uF'(F-lm)‘

i=1

= sup
te[0, 1], |ul= K

= sup
re[0,1]. |yl =K

v S GUF )~ FE )

fwm ]
<K Y ¢ sup |F'(&,)—F(F' ),
i=1 te[0,1]
where &, is between F~'(t) and F~'(1)+c,u. By (A2) and the uniform

continuity of F’, we have

sup | Wt u)— G, (1, u) =0, as n— o0. (4.8)

(r.u)e [0, 172

Note that GeC[0,1]* and wuo(0) <2 W?—Gll + wg(d), then (4.7)
follows from (4.8) and the uniform continuity of G on [0, 1]% |

Let " be a set in D[0, 1] and He D[0, 1]; define

dist(H, I')= inf |[H~G|. (4.9)

LEMMA 44. Let Q: D[0, 1] x R— R and suppose that for any compact
set I' in D[0, 17,

lim Q(H, 1)=0 (4.10)

uniformly for HeI'. Let ¢>0 and let a,, B, be sequences of real numbers
such that o, — 0, f,— 0, as n - co. Then, for any compact set I' in D[0, 1],
there exists a positive integer N such that, if dist(H, I') < «,,, then

|Q(H, B,)|<e, for nz=N.

Proof. Suppose not. Then, for a real number ¢ > 0, there exists a com-
pact set I"in D[0, 1) and sequence {H,} = D[0, 1] with dist(H,, ') <«
such that

ny,

|Q(Hy, ) =& (4.11)

Since dist(H,,I')<w,, we can choose H¥el such that
|H,— H¥|| <wa,. Since {H}} <l and I is a compact set, {H}¥} has an
accumulation point H*e I Therefore, we can choose a subsequence of
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{H}} also denoted by { H}} such that H¥ — H*, as k — co. Since a,, — 0,
we also have H, —» H*, as k —» o0, and the set I';= {H;k=>1} U {H*} is
compact. By (4.10), we have Q(H,, t) — 0, as 1 — 0, uniformly for H, e Il',.
This contradicts (4.11). J

Proof of Theorem 3.1. By Proposition 4.3, { P, } is relatively compact in
C[0,1]% where P,(A)=P(T,eA). Since C[0,1]> is complete and
separable, by Prohorov’s theorem (Billingsley [1, Theorem 6.2]), {P,} is
tight, i.e., for any ¢> 0, there exists a compact set I" in C[0, 1]? such that
PT,el')>1—¢ n>=1. By (4.3), we have

P{T,el, |IS*,-)—S*(:,-)| <2 max ¢,;}=1—¢  for n=>1. (412)
l=si=n

Let I'y={T,(-,u); T,el, ue[0, 1]}, then I', is a compact set in C[0, 1]
and is also a compact set in D[0, 1], because C[0, 1] is a subspace of
D[0,1]. Since T, e I implies T,(-,u)e ", for any ue [0, 1], ie,

[5:‘{‘, Qu—-1)K)—-U(-) i cm}eﬂ, forany ue[O0,1], (4.13)

i=1
and, since |S*(-, -)— S*(-, -)| €2 max, .;, ¢, implies
IS¥(-, Qu—1)K)—S(-, 2u—1)K)|
<2 max c¢,, forany ue[0,1], (4.14)

lsisn

then, by (4.12) and the fact (4.13) and (4.14) imply

dist ([S,’,"(-, Qu—1)K)-U(-) Y c,“-], F1>£2 max c,;, Yue [0, 1],
t=1 l=isn

we have, forn=1,
P {dist ([S;,*(-, Qu-1)K)-U(-) ¥ .«:,,,.], rl)

=2 max c,,;, Yue [0, 1]}) 1 —e (4.15)

l<isn

Since 7: D[0, 1] — R is Hadamard differentiable at U, by the definition
of Hadamard differentiability, (4.10) holds for Q(H, t)=Rem(tH)/t. By
Lemma 4.4, {4.1), and (A2), for the above compact set I';, there exists a
positive integer N such that, for n > N if dist(H, I';) <2 max, _,_, c,;, then

n H
Z cm'k Rem ( n )
i=1 Za’= 1 Cm'k

<&,
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Therefore, taking H=[S¥(-, 2u—1)K)-U(-)X/_,¢,] for n=N and
ue[0,1], we have that {dist([S*(-, 2Qu—DK)—=U(-) X' ,¢.). )<
2max, o;., €y Yue [0, 1]} implies

zc,,,Re (s* Qu—1)K)

i=1 J—']Cm

U(<))‘ <g, for uel0,1]. (4.16)
Since (4.16) implies

sup
lul = K

Z c,; Rem (M— U(- )‘

=1 i=1

by (4.15) we have, for n= N,

i ¢,; Rem (M— U{‘})‘ ée}, |

I—s{P{sup .
i=1 2=t Cni

lul < K

Remark. 1If in Theorem 3.1,

n S*( H)
Z . Rem (Z;— | Chi U( . ))l

=1

sup
lul = K

is not measurable, we replace |u| < K by ue Qy, where Q, = {all rational
numbers in [ —K, K]}; then, it is measurable. Our main results in Sec-
tion 3 will be slightly different, but still good enough for the study of (1.11).

ACKNOWLEDGMENTS

The authors are grateful to the referees for their useful comments on the manuscripts.

REFERENCES

[1] BiLLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.

[2] Fernnorz, L. T. (1983). Von Mises Calculus for Statistical Functional. Lecture Notes in
Statistics, Vol. 19. Springer-Verlag, New York.

[3] JURECKOVA, J. (1984). M-, L-, and R-estimators. In Handbook of Statistics, Vol. 4: Non-
parametric Methods (P. R. Krishnaiah and P. K. Sen, Eds.), pp. 463-485, North-Holland,
Amsterdam.

[4] KaLLianpur, G. (1963). Von Mises function and maximum likelihood estimation.
Sankhya A 23 149-158.

[5] Neunaus, G. (1971). On weak convergence of stochastic processes with multidimensional
time parameter. Amer. Math. Soc. 42 1285-1295.

[6] ReeDs, J. A. (1976). On the Definition of Von Mises Functionals. Ph.D. dissertation.
Harvard University.

[7] SHOrRACK, G., AND WELLNER, J. A. (1986). Empirical Processes with Application to
Statistics. Wiley, New York.

[8] Von Mises, R. (1947). On the asymptotic distributions of differentiable statistical
functions. Amer. Math. Soc. 18 309-348,

Printed by Catherine Press, Ltd., Tempelhof 41, B-8000 Brugge, Belgium



