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Hadamard Differentiability on D[0, 1]7
Jian-J1aN REN
University of Nebraska-Lincoln
AND

PraNAB KUMAR SEN
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We show that a statistical functional is asymptotically normal if it induces a
Hadamard differentiable functional defined on the space D[0,1]”. This work
involves p-dimensional empirical processes. As an example we illustrate the use of
the von Mises method in proving the asymptotic normality of Spearman’s rank
correlation coefficient. ¢ 1995 Academic Press. Inc.

1. INTRODUCTION

The asymptotic normality of a statistical functional via the Hadamard
derivative for univariate observations has been studied by Reeds [7]
(1976) and Fernholz [2]. In this paper, we generalize their method to
multivariate observations.

If we have a univariate sample X, .., X, from a distribution F, a func-
tional 7( -) of the sample distribution function F,(x)=n"'3"_ I{ X, <x},
te, T(F,), 1s regarded as a natural estimator of the parameter 0= T(F).
This functional 7( -) is defined on a space & of distribution functions (d.f.)
F (on R). Using a form of the Taylor expansion involving the derivative of
the functional, von Mises [ 12] expressed 7(F,) as

T(F,)=T(F)+ T(F,— F)+ Rem(F, — F: T), (1.1)

where T i1s the derivative of the functional at F and Rem(F, — F; T) is the
remainder term in this first-order expansion. Note that F,(x) is based on
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HADAMARD DIFFERENTIABILITY 15

n independent and identically distributed random variables (i.i.d.r.v.), and
that T'-is a linear functional. Hence, T'=(F,, — F) is an average of niid.r.v.’s.
For drawing statistical conclusions (in a large sample), T’ plays the basic
role, and in this context, it remains to show that Rem(F, — F; T) is asymptoti-
cally negligible to the desired extent. Appropriate differentiability conditions
are usually incorporated towards this verification. Since the Fréchet differen-
tiability condition is generally too stringent, less restrictive concepts such as
Gateaux and Hadamard (or compact) derivatives have been considered by
various people in different studies (Viz,, Kallianpur [ 5]; Reeds [ 7], Fernholz
[2]. Gill [3], Ren and Sen [8], Ren [9], among others). In a majority of
statistical applications, Hadamard differentiability usually suffices. Here we
shall focus on the use of Hadamard differentiability conditions.

It is known (viz., Fernholz [ 2]) that a statistical functional 7{ -) induces
a functional on the space D[0, 1] (of right continuous functions having
left-hand limits) as

(G)=TG-F), GeD[0,1].
Thus, (1.1) can be written equivalently as
o(U,)=1(U)+1,(U,~ U)+ Rem(U, — U; 1), (1.2)

where U, is the empirical d.f of F(X;), 1 <i<n, and U is the classical
uniform d.f on [0, 1] (ie, U(r)=1t, 0<t<1). Using Hadamard differen-
tiability condition (along with some other regularity conditions) Reeds [7]
has shown that

\/;;Rem(U,,—U;t)—ﬁ 0, as n— oo (1.3)

so that noting that t (U, — U)y=n""'37_, IC(X;; F, T), where IC(x; F, T)

i=1
is the influence curve of T at F, and assuming that O<g’=
Var{IC(X;; F, T)}} < oc, one obtains

JITF)—8] £ /nty(U,— U)-5 N(0,6%), as n- o (1.4)

In the multivariate case, a parameter € ( = T(F)) is often regarded as a
functional 7(-) on aspace ¥, of p-dimensional d.f’s F on R, where p> 1.
For instance, the covariance of two r.v.’s X and Y is given by

o, =T(F)= j f xydF(x,y)— f f F(x, o0) Floo, y) dx dy,
and the grade correlation coefficient is given by

pe=T(F)=12 [ [ [Rx, 0) =] [F(e0, y) =31 dFx,p), (L5)
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where F is the joint d.f. of X and Y. Using an idea similar to the one for
univariate observation described above, we have T(F,) as the natural
estimator of # and have a form of the Taylor expansion (1.1) for F,, where

Fix)=n""Y% I{X,<x,, ... X,,<x,} (1.6)

for x=(x,,...x,)eR”, is based on n iidrv’s: (X,, .., X) i=1,..n,
each having the df F(x)=P{X, <x,, .., X,<x,}.

We observe that these statistical functionals T(F,,) induce some func-
tionals on the space D[0, 1]7 (defined in Section 2) as

(G)t) = T(G(F\(t,), .. F,(1,))), GeD[O, 1]7, (1.7)
where t=(t,,...1,)€[0.1]” and F; are the marginal distributions of X,
j=1,..p. Thus for a continuous F whith strictly increasing marginal

distributions F,, j=1, .., p, (1.1) can be written equivalently as
W) =t(W)+ 1 (W,— W)+ Rem(W, — W, 1), (1.8)

where W, is the p-dimensional empirical d.f. of sample (U,, .., U,),
i=1,..n gven by Wy(t)=n"'37_ KU, <1t..,U,<t,} for
Us=F(Xy), j=1.,p;i=1 .,nand t=(t,,..,1,)e[0,1]”, and Wis a
df given by Wit)=P{U, <1, .., U, <t,}. To draw statistical conclusions
(in a large sample), we need to extend the result (1.3) to (1.8), i.e., to

establish
\/;Rem( W,,—W;r)—LO, as n-—» oC. (1.9)

In Section 2, we introduce the space D[0, 1]7, some notations, and the
notion of Hadamard differentiability. In Section 3, we establish (1.9) and
show that an estimator given by t(W,) is asymptotically normal if 7 is
Hadamard differentiable. To illustrate the use of the von Mises method, we
show, in Section 4, that Spearman’s rank correlation coefficient is
stochastically equivalent to an estimator which is Hadamard differentiable,
so that by our result (1.9), Spearman’s rank correlation coefficient is
asymptotically normal.

2. PRELIMINARIES

Let E,=[0,117, B={p=(p,, .. p,); p,=0 or 1 for j=1,..,p}, and
define quadrants for every t=(t,...t,)eE, and peP by Qp.t)=
Lpy, t))x - x1(p,, t,), where I(p;, 1,)=1[0,1,), if p,=0: (1,,1], if p,=1.
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For a function f defined on E, and teE,, pe*B, if lim, . f(t,) exists
with  (the necessarily unique) limit f(t+0,) for every sequence
{t.} =Q(p,t) #F with t, > ¢, then f(t+0,) is called the p-limit or the
quadrant limit of f at t. The space D[0, 1]” is the space of all real-valued
functions f: E, — R for which the p-limit (or the quadrant limit) of f at t
exists for every teE, and pe®P with Q(p,t)# J, and which are
“continuous from above” in the sense that f(t)=/f(t+0,) for 1=(1, .., 1).

The space C[0, 1]7 is the space of all continuous functions f: E, > R. It
is clear that C[0, 1]7 is a subspace of D[0, 1]7. More detailed discussions
on the space C[0, 1])7 and D[0, 1]7 can be found in Neuhaus [6] or Sen
[10, Chap. 2].

Let | .| denote the uniform norm. In this paper, we consider the space
(DO, 1]7, |-1l, D) and the space (C[0, 174, [|- ]|, €), where D is the o-field
of subsets of D[0, 1]” generated by the open balls and & is the g-field of
Borel subsets of C[0, 1]*. Note that (D[0, 1]7, |-} is a (non-separable)
Banach space and that (C[0, 1]7, ||-]]) is a separable Banach space.

The p-dimensional empirical process considered in this paper is given by

Wity=n""% KU, <t,,.,U,<t,}, (2.1)

i=1

where t=(1;,...1,)€E, and U,=(U,, .., U,), i=1,.,n, are iidrv’s
with a joint distribution function

Wty=P{U, <t,,..,U,<t,}. (2.2)

The random variables U, j=1,..,p; i=1, .., n, are uniform (0, 1) r.v’s.
Note that for U, i=1,...n, W, is an element of D[0, 1]7, and that the
choice of the o-field D given above is to ensure that W, is a random
element in space D[0, 1]7%.

We introduce the notion of Hadamard differentiability as follows: Let V
and W be the topological vector spaces and L,(V, W) be the set of con-
tinuous linear transformations from V to W. Let .o/ be an open set of V.

DerINITION. A functional 1. &/ — W is Hadamard differentiable (or
compact differentiable) at Fe o/ if there exists t7.e L,(V, W) such that for
any compact set K of V,

im (F+tH)—1(F)—te(tH)

r—0 4

=0 (2.3)

uniformly for any He K. The linear function t% is called the Hadamard
derivative of T at F.
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For the sake of convenience, in (2.3) we usually denote the remainder
term of the first-order expansion as

Rem(tH;t)=1(F+tH)—to(F)—1t-(tH). (2.4)

Particularly, for our study in this paper, we consider the functional
defined on the space D[0, 1]” and consider

Rem(tH;t)=t(W+tH)— (W) —1-(tH) (2.5)

for He D{0, 1]7.

3. HADAMARD DIFFERENTIABILITY THEORY ON D[0, 177
We establish (1.9) of Section | in the following theorem.

THEOREM 3.1.  Suppose t: D[0, 117 — R is a functional and is Hadamard
differentiable at W. Then,

ﬂRem(W,,—W;t)—P—»O, as n-— oo, (3.1)
Therefore,

\/r;[r(W,,)—t(W)]=\/;lz"W(W,,—W)+o,,(l), as n-— oC. (3.2)

The proof of Theorem 3.1 is given at the end of this section. Based on
Theorem 3.1, we can easily show in the next theorem that an estimator 0,
of ¢ 1s asymptotically normal if it can be expressed as a Hadamard
differentiable functional defined on D[0, 1]7%.

As below, we denote an influence curve of functional t defined on
D[0,1)” at W as

d
1C(x; W, 1) =— W+t(d,—W)li—o-

where d, is the d.f. of the point mass one at xe E,.

THEOREM 3.2. Let 0,=1(W,) be an estimator of O=1(W). If the
Sfunctional ©: D[0, 117 — R is Hamadamard differentiable at W and if
0<o?=Var{IC,(U; W, 1)} <, then

\/;[9,,—0]—D> N(0, a?), as n— w

when IC (x; W, 1) is centered so that jIC,,(x; W, t)dW=0.
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Proof. By Theorem 3.1, we have that as n — oo,

"

S0, =01 = /n T (W, — W) +o0,(1)=n"" ¥ 1,,(3y,~ W) +0,(1)

i=1

because 1) i1s a linear function. Since by the definition of the Hadamard
derivative,

ICp(X; W, 1) =lim i t(éx — W) =W = T/Hr'(éx -W),

=0 t

the proof follows from the central limit theorem, Slutsky’s lemma, and the
fact:

\/f;[(i,,—ﬁ]:n“”2 Y IC,(U; W, 1) +0,(1), as n—>owo. |

i=1

Before proving Theorem 3.1, we first establish the following lemmas with
the proofs given in the Appendix. Since the space D[ 0, 1]7 is not separable,
we will consider a continuous version of W,, say W¥e ([0, 1]”, so that
the tightness of the sequence of probability measures corresponding to W.*
can be obtained later. We note that the rectangles

Ri={teE, | U,;<t,,.,U,<t,}, i=1,..,n,

divide E, into finite pieces and that W,(t) is a simple function, ie., the
value of W,(t) is a constant in each piece divided by R/s. Hence, the con-
tinuous version of W,,, denoted by W*, may be obtained by smoothing W,
through some hyperplanes according to R;’s. We have the following lemma
on the difference between W, and W}

LemMa 3.3.  With probability one, any edges of different rectangles in the
interior of E, do not overlap or partially overlap. Therefore, with probability
one

IW,— Wi <pn (3.3)

We note that such continuous version W} of W, is a continuous func-
tion defined on E, for given U,, i=1, .., n, and is piecewise linear. We also
note that for any fixed te E,, the cross section WX(t) is a simple function
of U;, i=1,..n Hence, W*(t) is a random variable. Thus, W} is a
random element of the separable space C[0, 1]”.
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Lemma 34, Let {P,;nz 1} be the sequence of probability measures
corresponding to T, (t)= ﬁ [WXt)— Wit)] for teE,. Then, {P,n>1}
is relatively compact.

The following lemma is a generalized version on D[0, 1]” of Lemma
4.3.1 of Fernholz [2]. The proof follows line by line of the one for Lemma
43.1 (Fernholz [2]). Let K be a set in D[0,1])” and He D[0, 177, we
denote

dist(H, K)= inf |H—G]||.
GekK

LemMa 3.5 Let Q: D[0, 1]” x R— R and suppose that for any compact
set K in D[0, 1]

lim Q(H,1)=0 (3.4)

11— 0

uniformly for He K. Let ¢ >0, and let 9, be a sequence of numbers such that
0,—~ 0. Then, for any compact set K in D[0, 1]? there exists a positive
integer N such that for any n> N, dist(H, K) < pd,, implies that

IQ(HS 57:” <&

Proof of Theorem 3.1. By Lemma 3.4, {P,;n>1} is relatively compact
in C[0,1]7, where P, {4} =P{T,eA}. Since C[0,1]” is complete and
separable, by Prohorov’s theorem (Billingsley [1, Theorem 6.21]),
{P,;nz1} is tight, ie, for any ¢>0, there exists a compact set K in
CT0, 1]7 such that for all n > 1,

P{T,eK}>1-e (3.5)

Since C[0, 1]# is a subspace of D[0,1]”, K is also a compact set in
D[O1}V. T, = \/; [W¥—WleK and |W,— WX*|| <p/n, then

dist(\/n [ W, — W1, K) <p//n.
Hence, by (3.3) and (3.5), we have
P{dist(\/n [W,— W1, K)<p//n} >1—¢

Since 7: D[0, 1]7 — R is Hadamard differentiable at W, by the definition
of Hadamard differentiability, (3.4) holds for Q(H, t)=Rem(tH, 7)/t. By
Lemma 3.5, there exists N such that for n> N, dist(H, K) < p/ﬁ implies

|/n Rem(H/\/n; 1)| <&



HADAMARD DIFFERENTIABILITY 21

Therefore for n> N and H= \/r; [W,— W1, we have

P{/nRem(W,—W,t)<e} >1—c |

4. ASYMPTOTIC NORMALITY OF SPEARMAN’S RANK
CORRELATION COEFFICIENT

Let (X}, Y)), .., (X,, Y,) be a random sample from F(x, y) which is con-
tinuous with strictly increasing and continuous marginal d.f. F, and F,. Let
R,,.,R,and §,, .., S, denote the ranks of the X;s and ¥/’s, respectively.
A popular estimate of the strength of the association between the two
characteristics in the population from which the sample is drawn is given
by

" (R,—R)S,—5)
S (R -RPY (5,87

(4.1)

where R=n"'Y"_ | R, and S=n"'3Y"_, S, Known as Spearman’s rank
correlation coefficient, r, was proposed by Spearman [ 11]. We will use our
results on Hadamard differentiability given in Section 3 to prove the
asymptotic normality of r,.

First, we observe that by virtue of the assumed continuity of the
marginal d.f’s, ties among Xs or Y/s are neglected in probability,
and hence R=S=(n+1)2 and YY" (R,—R)?*=Y"_,(5,—-85)?*=
n(n*—1)/12. Therefore we have

s n+1 n+1
= 5 R ()
12n+1 < > ; l)
<n+1 2/

Fx,y)=n""Y KX, <x, Y,<y}

i=1

i=1

If we denote

n

G x)=n""'Y HX,<x}=F,(x, ©)

i=1

Hyy)=n"' Y HY, <y} =F,(o,)

i=1



22 REN AND SEN

then a natural estimator of the grade correlation coefficient

= 12| [ [Fux) = 4I0F. () - $1 dRLx, )
1s given by

re=12 | [ [G(x) = NI, — 1T dF,ix.y)

(4.2)
=12n"" Z (GAX)—3H,(Y,)—3)
i=1
It is easy to verify that
(n+1) 122n+1) 6(n+1)
= . 43
s (n—l)rg nin®— ; nin—1) 4.3)

We note that if, in (2.1), we let U;=U,=F(X,)and V,=U,=F,(Y)),
then for (s, t)e E,,

W(s, 1)y=F(F (s), F (1)),

x ¥

Wis, 1y = F(F '(s), F7\(1)),

and the estimator r, of p, can be expressed as a functional of W, :
1 -1
re=¥(W, = IZJ J [Wis, ) =3[ W, (1, 0)~1]dW (s, ). (44)
0 Y0

Note that Wis,1)=s and W(l,t)=1t hence the grade correlation
coefficient p, can be expressed as the same functional of W:

A1 ol
pg=lP(W)=12JO JO [s—11[r=17dWis, 1), (4.5)

Next, we show that this functional ¥ is Hadamard differentiable at W.
Let

E= {HED[OI] jj|dH| }

for some constant C>1 (see Gill [3, p. 109] for the discussions on E).
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THEOREM 4.1. Let ¥: D[0, 1]> > R be a functional given by

1 1
‘P(H):lzj | [ 1) = 1ILH(L 1) = 3] dH(s, 0,
0 Yo
where W(H) is defined for He E. Then, ¥ is a Hadamard differentiable at
W with Hadamard devivative

1l I pl
' — Ly, 1 (¢ 1
v'w«H)—lz(jO J, (5= B=YdHs 0+ | | Ls = H(L D
+{t—1) H(s, 1)] dWs, t)).

Proof. By (4) of Gill, it suffices to show that

Rem(thn; ql) _ YI(W+ lan) - ‘11( W) - qllw’(thn) =0
t, L,

for every sequence t,e R, H,e D[0,1]* with 1,—»0, H,— H, as n — o,
and He D[0,1]% G, =W +1,H,eE Since W(s,1)=sand W(1,1)=1t, we

have

. 1 1
R 2, [ ) L0 AW, 0
0 Y0

+12j‘1 5‘ Wy ls, )y +1,H,(s, 1) H(1, HY} d[G,— W],
0 Y0
where W (s, 1) =[s— 3] H(1, 1)+ [1— 3] H,(s, 1). Note that

1 1
tnf f H(s, 1) H(1, 1) dW(s, t)| < Mt,
00

and

Jl Jl thn(S» 1) Hn(l’ t) d[Gn_ W])
0 Y0

<M, {L] L’ 4G, | + jol jo' }dWI} <2MC1,,
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for some constant M > 0. Also, note that

1

0

o1
[ vt atG,-wi)

< W~ vl {[] [ 10,1+ [ [ aw}

ol

+J0

<2C wm—wnw'j [ outs 06, - W]\;

1
[ uts.n a6, - W]’.

1
0
hence from |, — i =0, as n — oo, it suffices to show that

1 el
J f I,D,,(S.I)CI[G,,——W]{—»Q as n— o,
o Yo

Since ¥, € D[0, 1]° from Lemma 1.5 of Neuhaus [6], we have that for
any &> 0, there exists a simple function ¥%,(-) =3, a, /g (), where N,
is a positive integer, R, are rectangles, I () is the indicator of R,, and
a, € R, such that

H'I/u_l//lbu e
The proof follows from
P

" [ aw
@G, 1+ [ [ 1awi)}

0 j()

['[ waarG,-wy t S W=Vl {J

+U01 jol Vd( G, — W]’

N,

5 o {[f, d0.-[ [, aw}]

k=1
S2C+4 Y5, 16, — W]
=2C+4 |yl |H,|1,~0.  as n—oo. |

<2eC+

THEOREM 4.2.  Assume F(x, y) is a continuous d f. with strictly increasing
and continuous marginal df. F, and F . Then, we huve

Sl —p, -2 N0,62),  as n-s o, (46)
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where 6> = Var{Z,} for
Z=12 {[F,\.(X,.) —3LF.(Y)~4] +J f {LF(x) =31 Y, <y}

LA =3 X)) dit
Therefore, we have

\/; [r,—pe] 2, N0, al), as n— oo, (4.7)

Proof. We first note that it suffices to establish (4.6), because by (4.3)
we have

n+1 12(2n+ 1) ﬁ 6(n+1)
\/;(r,v_rg)—\/’;<n_l*l>rg ’(}’l ,EIR' i \/_(n—l)

2 /n _12(2n+1)ﬁ

]+n—1pg nin®—1)

7 6(n+1)
x Y RS +—m——,
,; Jnn—1)

where

12Q2n+1) /n 2 12(2n+1 ﬁ s e
1) Z RS,\ \/i Ri \/Zi:ls

ni(n?—

2(2n+1 f

n*(n—1) °

and \/E [rs_pg] =ﬁ [r,y—‘rg] +\/;; [rg_pg]'
By Theorem 4.1, we know that the functional ¥ is Hadamard differen-
tiable at W. By (4.4), (4.5), and Theorem 3.1, we have, as n — oo,

St = pd=/n [EW,) = W) ] = /n O (W,— W) +o,(1).  (48)

Since

i=1

YW, — W)—lzj j — Y=Ly dW,(s, 1)
2 [N b= awis o

Jl {s=H WL+ —% Wis, D)} dWi(s, 1)
0
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P
‘IZJ J {s—5) t+(r—35) s} dWis, 1)

0 Y0

PRI
WV, =H=12] | (5= D=5 dWis. )

S0 Y0

=12n 'Y (U,-
i=1

[(SIE

nool1

+12n ! ZJ

i=

=Y HU<s}) dWs, 1)

I

1
| ts=hrvs<

0

al 1
-12 [ fs= D+ t—D st dWis, )
YD Y0

=120 'Y {(U,—é)(V,—éHj | fe=hnv<y
=1 0 0

=Y U <5} dWs, r)}

AR EERD]
—12| | {s= D= D+ (s =D t+(t—3) 5} dWs, 1),

0 Yo
then
Y W, —W)=n ! Z [Zi_E{Zi} 1
i=1

+LF, () = R X, <3} dFxy )}

are L1.d.r.v.’s. Therefore, by (4.8) we have that as n — o,

"

Snlre—pd=n""2Y [Z~E{Z}]1+0,(1)-5 NO,a?),

i=1

where g2 =Var{Z}. 1|
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Remark. Hoeffding [4] has an elegant proof of the asymptotoc nor-
mality of r, through explicit representation in terms of two U-statistics.
Although in general U-statistics are not Hadamard differentiable, our alter-
native formulation does provide a simple proof of the asymptotic normality
for the U-statistics with bounded kernel. Additionally, if instead of r,, we
consider a general score statistic { J(G,(x)) L(H,(y)) dF,(x, y), where the
score functions J(-) and L(-) are of bounded variation, we may not have
an explicit representation in terms of U-statistics, but our Hadamard dif-
ferentiability condition holds. This shows the adaptability of the proposed
method in a wider class of statistics.

APPENDIX

Proof of Lemma 3.3. For the sake of simplicity, we consider the case of
p=2. Note that the largest jump of W, is no larger than 2/n, if any edges
of different rectangles in the interior of E, do not overlap or partially over-
lap. The proof follows from the fact that with probability one, U, # U,
and U, # U, for i#j, because U, are continuous random variables. |

Proof of Lemma 34. Note that T,(t)eC[0,1]?, W, (0)=0, and
W(0)=0. Hence, by Lemma 3.3, we have

IT(0)] =/n |WX0)| < p//n.

with probability one. Therefore, P?= Pr, ' converges in distribution. By

virtue of Neuhaus [ 6, discussion on p. 1290-1291], it suffices to show that
for any £> 0,

lim im P{w,(8)>¢} =0, (Al)

S—=0n—

where @, (0) =sup{|T,(s)— T, (t)]; |s—t| <J}.
Since for any s, te E,, we have

IT,(8) — T,()] < /n [ WEs)— WXH]—[W,(s)— W, (0)]|
+ /[ Wals) — W ()] — [ W(s)— W(D)]],

then by (3.3), we have that for any >0 and T, :ﬁ [W,— W],

wr,(0d) <2p/\/; + @ :(0)



28 REN AND SEN

with probability one. Therefore (Al) follows from

lim Lim (Ur;(d) =0

d—0n— x

which, in turn, follows from Neuhaus [ 6, discussion on p. 1292-1294]. |
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