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SOME ASPECTS OF HADAMARD
DIFFERENTIABILITY ON REGRESSION
L-ESTIMATORS

JIAN-JIAN REN

University of Nebraska

We propose a modified version of Welsh's (1987) one-step L-estimator of regression to improve the
stability of the estimator and simplify the computation of the estimator. This modified L-estimator of
regression is equivalent to a Hadamard differentiable functional defined on the space D[0, 1] x
D[0, 1]. Such differentiability property of the estimator leads to its linear approximation in a
straightforward way. Thereby, the asymptotic normality of the estimator is derived under less
stringent conditions.
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tical functional, weighted empirical processes.

1. INTRODUCTION

Among the robust alternatives of the classical estimators, which are less sensitive
to the deviations from the classical assumptions, three broad classes play the most
important role: M-estimators, L-estimators and R-estimators. Each of these
estimators has advantages and disadvantages in robustness, efficiency, ap-
plicability and usability, depending on the situation (Huber, 1981). Linear
combinations of order statistics, called L-estimators, have long been of interest as
estimates for the classical location model, because of their computational
simplicity, scale-equivariance and efficiency. However, the L-estimators do not
have any straightforward extension to the linear regression model. Some attempts
have been made to develop such extension by various people, such as Bickel
(1973), Ruppert and Carroll (1980), Bassett and Koenker (1982), Koenker and
Portnoy (1987) and Welsh (1987), among others. Particularly, Welsh (1987)
proposed and investigated the asymptotic properties of a general class of one-step
L-estimators of regression depending on a preliminary estimator, which carry
over the robustness, efficiency and computational simplicity of the L-estimator for
the location model to the linear model.

However, for the sake of convenience in proving its asymptotic properties, the
one-step L-estimator of regression proposed by Welsh (1987) involves a matrix
depending on the preliminary estimator. Simulation shows that such a matrix may
cause some instability of the estimator, especially when the sample size is
relatively small or iterations are performed (see Ren and Lu, 1994). In this paper,
we propose a modified version of Welsh’s L-estimator of regression through
replacing this matrix by one which depends only on the design matrix. This
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modified L-estimator retains those robustness, efficiency and reparametrization
invariance properties possessed by Welsh’s estimator. Additionally, our modified
L-estimator improves the stability of Welsh’s estimator (Ren and Lu, 1994) and is
easier to compute than Welsh’s estimator. We should note that Carroll and Welsh
(1988) considered an estimator which is similar to our modified L-estimator and
that Jureckovd and Welsh (1990) studied the asymptotic properties of their
estimator. Our estimator in this paper is proposed based on the differentiability of
statistical functional induced by the estimator. While more discussions on our
modified L-estimator can be found in Ren and Lu’s (1994), here we focus on the
application of von Mises (1947) method to L-estimators of regression. We use
Hadamard differentiability properties of statistical functionals to study the
asymptotic properties of our modified L-estimator of regression under weaker
conditions.
We consider the following simple linear model:

XE-ZCE—BU-FE,-, =1 (1‘1)

where ¢/ =(1,¢c,...,¢,)=(1,¢-) with 37, ¢ =0, k=2,...,p, are known
p-vectors of regression constants with p>1, 8, is the vector of unknown
(regression) parameter to be estimated, and ¢; are independent and identically
distributed random variables (i.i.d.r.v.’s) with distribution function (d.f.) F. Our
modified version of the L-estimators of regression proposed by Welsh (1987) is
given by
T(G, 0 0"

-y 2 e [ar=n-comGone

No=0y+ [ _
+ 3 wd(@)1= G}~ a)

1G,)
-3 oo [ =y G v + 3 w01 = G @)

i=1
(1.2)
where 7, = X, — ¢/0,, 1 =i =n, are the residuals from a preliminary estimator 0,,
G,(x) =n""2/" {r,=x}; ¢,(r) is any pointwise consistent estimator of ¢(¢)=
[F'(F7'()]"" h is the weight function; ,, ..., w,, are constant weights and..
0<g, <+ <gq, <1 with m < ox;

=0, +

m

T(G,) = J:I G, '(Oh(r)dr + J:: G, (1) dm(z), with m(t) = gl w g, =t}

n 07
0 C,.

Note that, compared with the L-estimator of regression by Welsh (1987), who
uses an inverse of the matrix: Cy, = 27, ¢;¢/{h(G,(r;)) + 2/, w;} in (1.2) instead

0 Cnx—.

Cn = Z c{'cr?r: DJIDI: |: :|r Wllh Dn = (cls srey CM)T-
i=1
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our C,. does not depend on the preliminary estimator 6,. This simplifies the
computation of Welsh’s estimator. Also note that our estimator given by (1.2)
would be the same as the one given by Carroll and Welsh (1988) if we could put
G.(G,'(9))=gq, 0<g<1, and this holds to a good degree of approximation
when n is large.

To consider a normalized form of (1.2), we denote a matrix

Vn 07}
0 ¢l

where d; is the column vector of D,,. 'I‘hen we notice that the normalized form of
(1 2), CY(N,, —8,,), is a statistical functional of two wughted empirical processes
S¥(t, u) and J%(z,u), t € [0, 1] for u= C3(8, — 0,) € R”, viz.,

Cahs —9,)

C., = Diag{ ||d,||,..., [|d,|} = [

VnT(G,)
Q' [ 1 =9 0Go ) &y + S ()l 1= G (0}
T,,(S_f(‘, “)r Jf(’ “))

_ \/—TI(J*(' u)) J (1.3)
L= Q7S5 w), T3(, W) + 73, (SHC, ), T3, w))} )
where
=)= (VR Y, Q=) CE@ =) o

Skt u) =2, ¢, Y, < clu+ F (1)},
i=1

Jitu)=n""Y KY,=clu+ F'(n)},

i=1

with ¥, = X, — ¢/0, (i.i.d.r.v.’s with d.f. F), and

T(J5(, ) = J’I F U J¥ (¢, u), w)h(t) de + fl F7'(J¥ (¢, u), u) dm(2),
I, m, 1) = [ 87 Wi w) o

81w, T2, m) = [ S0, w0 m (),

with J3¥7'(x, uw) = inf{y;J¥(y, u) =x}. We will show, in the proof of our main
theorem, that the functional given by (1.3) is uniformly equivalent to a Hadamard
differentiable functional 7 defined on DJ0, 1] X D[0, 1], i.e.,
Ci(N, — 8,) = 7(S3(-,w), I ( u))
[ Vnt,(Ji(-,u) ]

QuHTa(SH (- w), T3, w)) + 73(S3C, w), J5C, W)} &
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where
T(SEC, W), T3, w)) = fﬂ SEUE (1 w), w(e) dm(r).

Note that the essential idea of Von Mises method is linear approximation. Hence,
from the results on Hadamard differentiability by Ren and Sen (1991) or Ren
(1994), we immediately have that such functional 7 is equivalent to a linear
functional L as below:

sup |7(S%(-,u), J5(,w)) = CAT(F), 07)T - L(Si(-,w)|——>0, asn—o,
=K -

(1.5)

where K>0 and S¥(r,u)=3/, ¢, /{Y;=clu+F'(1)}. Since the following
Jure¢kové-uniformly asymptotic linearity for a linear functional was already
established (Ren, 1994) under certain regularity conditions:

sup |[L(S¥(,u)) — L(S¥(-,0)) —u| 250,  asn— o, (1.6)
u=K
where L(§§(-,0)) =21 ¢, ¥(Y;) for a real function ¢, therefore the asymptotic
properties of our modified L-estimator of regression follow easily from (1.5) and
(1.6).
Along with the preliminary notion, the basic assumptions for our research are
presented in Section 2. In Section 3, the asymptotic normality of our modified
L-estimator of regression is derived by Hadamard differentiability approach

under weaker conditions on the design matrix D, than those required by Welsh
(1987) and than those by Juretkovd and Welsh (1990).

2. PRELIMINARIES AND ASSUMPTIONS

We write the components of Si(r,u) for re[0,1], weR” and ¢, =
(Cuits++ + » Cupp)” as below,

Sﬁk(rs “) = z Cm'.l'.f{yi = C:;—Il G F_l(r)}y k = 2: ey P
i=1
Then,

T(SEC ), TGy w) = f B()S5(1, WhA(, w) di,
Ton(SHC W), TEC, W) = jﬂ SEUE (1 w), W, (0) dm (1),

T3(Sh(5 w), J3(, w)) = J; Su (e w), W) (1) dm(r).

It is clear that for any fixed u, 7, and 7, are functionals defined on D[0, 1] X
D[0, 1]. We will always denote U as the classical uniform d.f. on [0,1] and
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&) =[F'(F7'(1))]"". Also, ||| and |-| will always stand for Euclidean norm and
uniform norm for space R”, respectively.
We impose throughout the following basic conditions on the model (1.1).

BASIC CONDITIONS ON THE MODEL

(i) €%(®, —0,) is bounded in probability;
(i) 2y ca=0,fork=2,...,p;
(iii) {p.(q;) — #(g)}>0, asn— =, for 1 <i=m;
(iv) [oh@)dt+3" 0, =1; ’
(v) h is the difference of two nonnegative functions.

More assumptions required by our main theorem is given as below.

ASSUMPTIONS

(Al) ]imn—-'r Max)=;=n Hcm ”2 == 09

(A2) There exists a positive definite p X p matrix Q such that lim,_...Q, = Q;

(B) F has a positive and uniformly continuous derivative F';

(C) h is bounded and continuous, a.e., with A(t) =0 for ¢ ¢ [a, B], where
O<a<B<l

REMARK 1. It can be easily shown that our requirements on the design matrix D,
is weaker than Welsh’s (1987) basic condition (ii) and than those by Juretkova
and Welsh (1990). We should note however that Juretkovd and Welsh (1990)
studied stronger asymptotic properties of one-step L-estimator of regression. It is
clear that meanwhile we do not require any stronger conditions on weight and
error distribution F.

ReEMARK 2. The choice of the pointwise consistent estimator ¢, of ¢ is discussed
in Welsh’s (1987).

We give the definition of Hadamard differentiability as below. More about
Hadamard differentiability theory can be found in Fernholz’s (1983).

DEerFiNiTION. Let V and W be the topological vector spaces and L(V, W) be the set
of continuous linear transformation from V to W. Let & be an open set of V,.a
functional 1: & — W is Hadamard Differentiable (or Compact Differentiable) at
S e o if there exists 75 e L(V, W) such that for any compact set I' of V,

i T+ tH) = ©(S) = TH) _

—0 t

uniformly for any H eI'. The linear function 75 is called the Hadamard
Derivative of 7 at S.
For our current study, we consider the functional 7 defined on the space
D[0, 1] X D[0, 1], and denote the remainder term of the first order expansion as
Rem(tH; 1) = ©(S + tH) — ©(S) — t5(tH),

where S = (U, U), t € R and H e D[0, 1] x D0, 1].

En
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3. MAIN RESULTS

MaiN THEOREM. Assume the basic conditions (i)—(v) on the model (1.1), and
assume (Al), (A2), (B) and (C), we have for Ay= 0, + (T(F),0,...,0)"

{c?,(x,, “M) - Q2 ()| L0, asnoe, (3.1)
i=1

where

00) == [lHr =3} = FOIED) dy - 3 @)= F (@)} - )

i=1

Therefore
Ci(A, —A) == N,(0,0°Q7"), asn—e (3.2)

where 0 < o? = [ ¢*(x) dF(x) < .

Remark. Note that our Main Theorem for the modified Welsh’s L-estimator of
regression is essentially the same as Theorem 1 of Welsh (1987). The use of CY
(instead of Vn) allows us to weaken the conditions on D, for the asymptotic
normality of L-estimator of regression.

The proof of Main Theorem will be given after the following lemmas and
theorems.

Lemma 1. Let 7,:D[0, 1]— R be a functional defined by

TI(G):-[) F~ NG (t)h (1) dr+J; F7Y(G7'(1)) dm(z),

where h:[0,1]— R is bounded with hA(r) =0 for 0<a <t<pB <1. Then 1, is
Hadamard differentiable at U with derivative

7},(G) = —fo ()G(0h(r) dt - L d(1)G(1)dm(t), G e D0, 1].

Proof. The proof follows from Proposition 7.2.1 of Fernholz (1983). [

Lemma 2. Let 75: D[0, 1] X D[0, 1]— R be a functional defined by

(G, H) = f S(GOR(H()) d,

where h: R— R is continuous piecewise differentiable with bounded derivative,
then 7, is Hadamard differentiable at (U, U) with derivative

T3,u(G, H) = r S(NG(Dh(t) + h'(HH (1)} dt, G, H e D|0, 1].

o
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Proof. The functional 7, can be expressed as a composition of the following
Hadamard differentiable transformations:

yi: D[0, 1] X D[0, 1]— D[0, 1] X L'[0, 1] defined by y,(G, H) = (G, h(H)), is,
by Proposition 6.1.2 of Fernholz (1983), Hadamard differentiable at (U, U) with
derivative

Y10u(G, H) = (G, h'H).

¥2: D[0, 1] X L'[0, 1]— L'[0, 1] defined by 7v,(G, H)=GH, can be easily
shown to be Hadamard differentiable at (U, h) with derivative

Vhos(Gr H) = Gh + H.
ys: L'[0, 1]— R defined by y3(G) = [} G(t)$(t) dt, is Fréchet differentiable at
Uh with derivative
1
¥1,6) = [ Goswa,
0
because it is a linear and continuous functional.
We have
(G, H) = vi(y2(7:1(G, H))).

Hence, by chain rule (Fernholz, 1983), 7, is Hadamard differentiable at (U, U)
with derivative

TG H) = ¥3,,° Y2000, ° V(G H)
— 'y;{mo yé[b’.k](G’ h 'H)

=1v3,(Gh +h'H) = J [G(O)h(t) +h'(OH(D)](t) de. O
LemMma 3. Let 730 D[0, 1] X D[0, 1]— R be a functional defined by
w(G, )= [ GG )60 m(),

]

then 75 is Hadamard differentiable at (U, U) with derivative

T3,u(G, H) = f (G(t) — H())d(t) dm(r), G, H € D|0, 1].

Proof. The functional 7; can be expressed as a composition of the following
Hadamard differentiable transformations:

yi: D[0,1] X D[0, 1]— D[0, 1] X L'[0, 1] defined by y(G, H)= (G, H™"), is,
by Proposition 6.1.1 of Fernholz (1983), Hadamard differentiable at (U, U) with
derivative

Vil G, H) = (G, —H).
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¥>: D[0, 1] X L'[0, 1]— L'[0, 1] defined by y,(G, H) = G°H is, by Proposition
6.1.6 of Fernholz (1983), Hadamard differentiable at (U, U) with derivative
Y20(G, H)=G + H.
ys: L'[0, 1]— R defined by y3(G) = [ G(¢)$(t) dm(t), is Fréchet differentiable
with derivative

i j G(0)(r) dm(0),

because it is a linear and continuous functional.
We have

T3(G, H) = ?3(?2(?|(G! H)))
Hence, by chain rule (Fernholz, 1983), 7, is Hadamard differentiable at (U, U)
with derivative

rg{b’.t}}(G’ H) = '))‘.;UD yétb‘.b’}o y;{U.L-'I(G’ H)
1
=3, ¥4 G ~H) = %3G — H) = [ 16~ H@)lo(0) dm(0). D
0
LemMma 4. Assume (B), we have for any K =0,

sup Wi, u) — 1|40, as n— o,
re[0,1]. u=K

Proof. By the proof of Theorem 3.1 of Ren (1994), we have sup{Vn(J¥(z, u) —
E{%(r,w)}); 1 €[0,1], juj=K} is bounded in probability. Therefore, the proof
follows from the facts:

sup  |E{E(t u)t — E{E( 0)} — 0, as n— o,

re[0, 1], m=K
and E{J¥(t, 0)}=¢ forte[0,1]. O
For the sake of convenience, we state, without proof, the following theorems of

Ren (1994) on Hadamard differentiability and uniform linearity of a linear
functional.

THEOREM 5. Suppose 7: D[0, 1] X D[0, 1]— R is a functional and is Hadamard
differentiable at (U, U). Assume (A1) and (B). Then, for any K >0, 2=k =p, as

n— o

sup |3 et Rem( GO 00, 73w - UG )| L0,
and

sup EtcmkRem(H UC), JEC, ) = U(); 7 ﬂ—m
for

H
Cpixe = max{0, Cm'k}) Crix = —min{0, Cnr'k}rS:k+(rr u) = 2 C::'kf{}/:' = CE;“ =t Fnl(‘)}
i=1

and
5 u) =2 crul{Y;=ciu+ F'(1)}.
i=1
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Therefore, as n —

3 il i, w) - w0, v

] n ot
-3 ciuttuo S U, J1Cw) - U)o,
sup 2 cnfe( S22, ) - 0 u0)
—2 T, U)(S':"]( :k) UG, T#C, w) = UC) ‘_.)o
and
sup |3 et fc,ff s >)

Jlmk

THEOREM 6. Assume (B) and assume a real function ¢: R— R, is bounded,
nondecreasing and right or left continuous with [ ¢ dF = 0. Let

l—‘n (u) = i auf‘t’()}i o B;;u)~

Where u, oy, Bm’ € RP W1th limn—hx maxX,<;=, ”txm'”2 = 09 hmn—»'x max ==, ” Bm’ |I2 ==
0 and 37, [le, /> =M, 2, ||B.]>=M for a constant M >0. Then, for any
K=0,

Sup [Ln(“) - L,,(O)] + E am‘Br:arr'“')’qb NN 0, as n— o,
i=1

|uj=
where 0 <1y, = [F'd¢ <=,

Proof of Main Theorem. First, we notice that, by the proof of Theorem 3.1 of
Ren and Sen (1991) and Lemma 3.5, Lemma 3.6 of Ren (1994), we have for any
K =0,

sup  |S¥(, w)| = 0,(1), k=2,...,p. (3.3)

=K, 1[0, 1]
Therefore, the basic condition (iii), we have

sup [ T3, (S, w), J2(, w)) = 73(ST(, w), J3C W) ——0, asn—x, (34)

which gives us (1.4). We also notice that, by Lemma 1 and Theorem 5 for
¢ =1/Vn, we have,

sup Va{r,(Ji(, w) — 1(U()) — 71 (T3¢, w) — U L50,  asn—c,
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Since 7,(U) = T(F), and

£L,03 0 = UO) = = [ 66w - 0 @ [ S0z w - 1 dm)

n

=n"'Y W(Y, — clu),

we have, as n— @

s [Vate e o) - 1) - B -] 0. 9

We will first prove the theorem under the assumption that 4 is continuous and
piecewise differentiable with bounded derivative. From Lemma 1 and Lemma 2,
we know that functional 7; for j =2,3, are Hadamard differentiable at (U, U).
Hence, by Theorem 5, we th(:‘, that, forany K>0and j=2,3;k=2,...,p,

n S*+ _,
2 Cpik %‘(%’T“), " ol £ “))

i=1 i=1%nik

u
- 2 Cﬂ!k 1(2 (C_ )’J*( ) Ju r](Snk(" ll), 0)‘ L)Or as n— =,
i=1YLYnik

Since, forj=2,3and k=2,...,p,

sup

=K

Snk il
T(SE(, u), JE(, u) = Z Cret }(% T3, )

=1Lk
= z cn:k _{( nk ( ) ‘].a:( ))
F= Ecmk

and

D200 (S, W), 0) = Ll G (0)S5(t, wh(r) dr = Z] Crik | HF(Y, — cu} = thh (1) (1) dt,

T30, (S, w), 0) = L St w(1) dm(t) = 2, 3 cu{F (Y, — erm) = gjlo,d(q)),

i=1j=1

by (1.3), (A2), (3.4) and (3.5), we have, as n — =

sup |C2N, —8,) - Q;" T(F)+\f2 w(Y; — chu) 2.0

=K
- {le_(,-](sf( » “)) 0) + T?.[;,-.{_.-,(S:( ’ ll), 0)}
(3.6)
Note that if we denote, for k=2,...,p

L(Si( ) = T, (SE(, ), 0) + T3, (SE(-, W), 0)
= j (St wh(r) dr + f S5t W (©) dm(D) = — S et (Y, — ),
(3.7)
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and for k =1,

LESHC W)= = 2 Gunt (¥~ ) = =02y, - eh,

then L is a linear functional of S}(-, u) for any fixed u. Since ¢ is the sum of two
monotone functions and left continuous with

Yo = j- F'(t) dy(r) = h(r) de + Z w; =1

i=1

and [ ¢(x) dF(x) =0, from Theorem 6, we have for k =1,2, ..., p,

sup nk( “)) L(s ( ’ 0)) - Zl Cm'kc:-r“

=K

Therefore, by (3.6) and (3.7), we have

— 0, as n— o, (3.8)

1 n
sup [Con, - 8,) - Q1| Vi T(F) +_\/_E-21 w(¥—cm) [ |2
=K i=
= L(S3(-, w))

furthermore, by (3.8), as n — =

T(F)

sup |CI(n, - ,,)—CE{ .

u=K

] + Q;lz cnicz;'u T Q;lz cn;!}"(}’:‘) _P_) O
i=1 i=1

Since Q, =X, ¢,¢,;, and since u=C)(0, — 0,), by the basic condition (i), is
bounded in probability, then

Ca(N, = 8,) + €0, — No) — Q' c.th(Y)) = 0,(1).

Therefore (3.1) follows. By Hdjek and Sidak (1967, page 153), (3.2) follows

immediately from 37, ¢, (Y;) 2> N,(0, 0°Q), as n — = and (A2).
To prove the theorem assuming that only condition (C) holds for A, it suffices
to establish for k=2,...,p

sup | 72(S(, w), JEC, w) - f S(OSE(L wWh(r)dt| 250,  asn—oo. (3.9)

luj=

For any € >0, from Royden’s (1968, page 68) and the continuity of 4 at 0 and 1,
there exists a continuous function A, and a set E = (8, 1 — §) for some 8 >0 such
that

W) —h()|<e,  forallse E",
and u(E) < e€/Ms, where M; is an upper bound of [F'(F~'(¢))] ' fort € (8,1 — 8)

and p is Lebesgue measure on real line. Since, for a constant M >0,

Z,(u) = Ll (T7(, w) = he(J3(1, w))| (1) dfﬂf M¢(t)dt =M, foranyu =K,
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and Z,(u,) = sup,,=x Z,(u), by Dominated Convergence Theorem and Lemma 4,

sup fﬂ (Tt w)) = h(J3(, w)| (1) dt —2— f @) - kD@D dr, asn—e.

(3.10)
Since
1
j |h(t) — h (1) d(t)dt =€ + Mj d(t)di=e+ M dx =€+ Mu(F'(E)),
0 E F(x)eE
and since there exists ;= (a;, b;]<[8,1— 8], i=1,2,..., such that Ec|J~, [,

and w(E)=2_, u(l)) <2e/M;, we have

WEEN = S WP )= S 6) = F @) =My S ul) <26,

therefore,

1
J' [h(t) — h. (1) d(r) dr = (2M + 1)e.
0
By (3.3) and (3.10), we have for large n and a constant M, >0,

sup | oS, w), J3 (-, w)) — J;] (S5t wh (J5(t, w)) df‘ =M,e

=K

in probability. For h,, there exists a continuous g, such that g, is piecewise
differentiable with bounded derivative, say |g/| = M., and |h.(1) — g.(1)| = €, for all
t € [0, 1]. Therefore, by (3.3), we have for a constant M, >0,

To(Shi(c, u), J3(-, w)) — L d(0)SE(t, w)g (J(t, u))dr‘ste (3.11)

sup
=K
in probability, and

U; (St wh(t)dt — | d(6)Sk(r, w)g. (1) dr‘ =M,e (3.12)

in probability. From the first part of the proof of this theorem, we have (3.9) for
g.. Therefore, (3.9) follows from (3.11) and (3.12). O
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