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a b s t r a c t

The currently existing estimation methods and goodness-of-fit tests for the Cox model

mainly deal with right censored data, but they do not have direct extension to other

complicated types of censored data, such as doubly censored data, interval censored

data, partly interval-censored data, bivariate right censored data, etc. In this article, we

apply the empirical likelihood approach to the Cox model with complete sample, derive

the semiparametric maximum likelihood estimators (SPMLE) for the Cox regression

parameter and the baseline distribution function, and establish the asymptotic

consistency of the SPMLE. Via the functional plug-in method, these results are extended

in a unified approach to doubly censored data, partly interval-censored data, and

bivariate data under univariate or bivariate right censoring. For these types of censored

data mentioned, the estimation procedures developed here naturally lead to

Kolmogorov–Smirnov goodness-of-fit tests for the Cox model. Some simulation results

are presented.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

In survival analysis, the following Cox (1972) model is one of the most widely used procedures for modeling the
relationship of covariates to the survival times:

lðt; zÞ ¼ l0ðtÞexpðzTb0Þ, ð1:1Þ

where for observed random vectors

ðX1,Z1Þ, . . . ,ðXn,ZnÞ, ð1:2Þ

Zi is a p-dimensional vector of covariates, b0 is the regression parameter, lðt; zÞ is the conditional hazard function of
random variable (r.v.) Xi given Zi ¼ z, and l0ðtÞ is an arbitrary unspecified baseline hazard function whose corresponding
distribution function (d.f.) is F0. For the case that the response variable X in (1.2) is subject to right censoring in practice,
there has been a rich literature on the estimation of b0; see Cox (1972), Breslow (1974), Andersen et al. (1993), Kalbfleisch
and Prentice (2002), among others. On the goodness-of-fit tests for the Cox model with right censored data, see McKeague
and Utikal (1991), among others. Recently, some researchers, such as Qin and Jing (2001), Lu and Liang (2006), Ren and
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Zhou (to appear), among others, have applied the empirical likelihood technique (Owen, 1988), which is a nonparametric
likelihood approach, to study the Cox model with right censored data. For the case that the response variable X in (1.2) is
subject to interval censoring Case 1 or Case 2 as described in Groeneboom and Wellner (1992), there have been the works
on the estimation of b0 by Finkelstein (1986), Satten (1996), Huang (1997), among others. However, the approaches
developed for right censored data and interval censored data do not have direct extension to other complicated types of
censored data, such as doubly censored data (Turnbull, 1974; Chang and Yang, 1987; Gu and Zhang, 1993; Ren and Gu,
1997), partly interval-censored data (Huang, 1999), bivariate right censored data (Dabrowska, 1989), bivariate data under
univariate right censoring (Lin and Ying, 1993), etc., for which there have not been any published works on the estimation
of b0. Also, for these complicated types of censored data as well as for above mentioned interval censored Case 1 or Case 2
data, there have been no works on the testing methods to assess the goodness-of-fit for the Cox model (1.1). It is known
that doubly censored data, interval censored data and partly interval-censored data have been encountered in some
important medical research, such as breast cancer (Ren and Peer, 2000), AIDS (Kim et al., 1993), heart disease (Odell et al.,
1992) and diabetes (Enevoldsen et al., 1987), and that the importance or data examples of bivariate data under bivariate or
univariate right censoring have been discussed in Dabrowska (1989) and Lin and Ying (1993). Thus, it is desirable and is of
great interest and importance to develop a unified approach to provide consistent estimators for regression parameter b0

and goodness-of-fit tests for Cox model (1.1) with complicated types of censored data aforementioned, so that the Cox
model could be more broadly applied to analyze survival data.

In this article, we first apply the empirical likelihood approach (Owen, 1988) to formulate the full likelihood function for
ðb0,F0Þ in Cox model (1.1) with complete sample (1.2), and derive the consequent semiparametric maximum likelihood

estimator (SPMLE) for ðb0,F0Þ. Then, we establish the asymptotic properties of the SPMLE, and extend the results in a unified
approach to various types of censored data using the functional plug-in method. These results naturally lead to
Kolmogorov–Smirnov goodness-of-fit tests for the Cox model with various types of censored data aforementioned. For
simplicity of presentation, throughout we consider the case that the covariate Z in (1.1) is a scaler, i.e., p=1, noting that the
generalization of our results to multivariate case is straightforward.

The main results of this article are organized as follows. Section 2 applies the empirical likelihood to formulate the full
likelihood function for Cox model (1.1) with complete sample (1.2) for case p=1, and derives the SPMLE ðbn,FnÞ for ðb0,F0Þ.
Section 2 also establishes some asymptotic properties of ðbn,FnÞ. Section 3 uses the functional plug-in method to extend the
results of Section 2 to the cases where Xi is subject to different types of censoring, such as right censoring, double censoring
and partly interval-censoring, and where (Xi,Zi) is subject to univariate right censoring as in Lin and Ying (1993) or bivariate
right censoring as in Dabrowska (1989). Section 4 presents some simulation results. For the complicated types of censored
data above mentioned, Section 5 constructs the Kolmogorov–Smirnov goodness-of-fit tests for assessing the validity of Cox
model (1.1), where bootstrap procedures are suggested for computing the p-value of the tests and some simulations results
are presented.

It should be noted that the usual partial likelihood is only for regression parameter b0 in Cox model (1.1) with right
censored data, and it does not have direct extension to other types of censored data. In contrast, our use of the empirical
likelihood approach allows us to formulate the full likelihood function for parameters b0 and F0 simultaneously with
complete sample (1.2), and it leads to a general formulation which makes it possible to apply the functional plug-in method
for desired extension of the results to other types of censored data. Moreover, our approach directly makes inferences on the
baseline d.f. F0 to construct the goodness-of-fit tests for the Cox model with various types of censored data.

It also should be noted that in literature, there has been inconsistent usage of terms on various types of censored data.
For instance, the ‘doubly censored data’ considered by Kim et al. (1993), Sun et al. (1999) are completely different censoring
scheme from what we consider here. In Kim et al. (1993), the HIV data from heavily treated group are interval censored
Case 2 data as described in Groeneboom and Wellner (1992) (see more discussion in Ren, 2003), while the HIV data from
lightly treated group are interval censored Case 2 data combined with some exact observations, thus it is a partly interval-

censored data set as described in Huang (1999). The doubly censored data recently considered by Cai and Cheng (2004) are
similar to our doubly censored data (Turnbull, 1974), but they imposed stringent conditions on the censoring variables in
their studies. Moreover, interval censored Case 1 or Case 2 data above mentioned are not the same as Huang’s (1999) partly
interval-censored data.

2. Semiparametric maximum likelihood estimators

In this section, we consider Cox model (1.1) with a complete nonnegative random sample (1.2) for case p=1, i.e., a
nonnegative random sample

ðX1,Z1Þ, . . . ,ðXn,ZnÞ ð2:1Þ

from a nonnegative bivariate d.f. G(x,z), where we assume jb0jrMbo1 for some constant 0oMbo1. As follows, we
derive SPMLE ðbn,FnÞ for ðb0,F0Þ.

Let FðtjZiÞ be the conditional d.f. of Xi given Z=Zi, and f ðtjZiÞ and f0ðtÞ be the density functions of FðtjZiÞ and F0(t),
respectively. Then, under (1.1) each Xi satisfies

F ðtjZiÞ ¼ ½F 0ðtÞ�
ci 3 f ðtjZiÞ ¼ cif0ðtÞ½F 0ðtÞ�

ci�1, ð2:2Þ
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where ci ¼ expðZibÞ with b¼ b0, and F 0ðtÞ ¼ ½1�F0ðtÞ� denotes the survival function of F0. Thus, under the Cox model
assumption (1.1), the likelihood function of Xi given Z ¼ Zi, 1r irn, is given by

Yn

i ¼ 1

f ðXijZiÞ ¼
Yn

i ¼ 1

cif0ðXiÞ½F 0ðXiÞ�
ci�1:

As the usual empirical likelihood treatment (Owen, 1988), we restrict all possible candidates for the maximum likelihood
estimator of F0 to those d.f.’s that assign all their probability mass to points Xi’s and interval ðXðnÞ,1Þ. And without loss of
generality, we assume X1o � � �oXn. Then, the likelihood function for ðb0,F0Þ in the Cox model (1.1) with complete random
sample (2.1) is given by

Lðb,FÞ ¼
Yn

i ¼ 1

cipi

Xnþ1

j ¼ iþ1

pj

0
@

1
Aci�1

, ð2:3Þ

where ci ¼ expðZibÞ,pi ¼ ½FðXiÞ�FðXi�Þ� for 1r irn, and FðxÞ ¼
Pn

i ¼ 1 piIfXirxg satisfies
Pnþ1

i ¼ 1 pi ¼ 1 with 0rpnþ1r1. In
the Appendix, we show that for any fixed value bZ0 and âi ¼ ðciþ � � � þcnÞ

�1, this likelihood function Lðb,FÞ is maximized
by

F nðt;bÞ ¼
Y

Xi r t

ð1�âiÞ ¼
Y

Xi r t

RR
Xi ruezb dGnðu,zÞ�n�1RR

Xi ruezb dGnðu,zÞ
, ð2:4Þ

where Gnðx,zÞ ¼ n�1
Pn

i ¼ 1 IfXirx,Zirzg. Note that expression (2.4) is equivalent to

logF nðt;bÞ ¼ n

Z t

0
log

RR
xruezb dGnðu,zÞ�n�1RR

xruezb dGnðu,zÞ
dGnðx,1Þ, tZ0, ð2:5Þ

which allows ties among Xi’s or Zi’s. Replacing F in (2.3) by Fnðt;bÞ, from the proof of (2.4) given in the Appendix (see
Eq. (A.1)) we obtain likelihood function for b0:

lðbÞ ¼
Yn

i ¼ 1

ciâið1�âiÞ
ðciþ���þ cnÞ�1: ð2:6Þ

Thus, the SPMLE for b0 is given by the solution b%

n which maximizes the value of lðbÞ, and the SPMLE for F0(t) is given by
F%

n ðtÞ � Fnðt;b
%

nÞ. By differentiating loglðbÞ, straightforward algebra shows that b%

n should be a solution of equation cnðbÞ ¼ 0,
where

cnðbÞ ¼ Znþn�1
Xn

i ¼ 1

dilog
ðciþ � � � þcnÞ�1

ciþ � � � þcn

¼ Znþn

Z 1
0

ZZ
xru

zezb dGnðu,zÞ

� �
log

RR
xruezb dGnðu,zÞ�n�1RR

xruezb dGnðu,zÞ
dGnðx,1Þ, ð2:7Þ

with Zn ¼ n�1
Pn

i ¼ 1 Zi and di ¼
Pn

j ¼ i ZjexpðZjbÞ for 1r irn.
Throughout this section so far, all arguments require condition bZ0 which is to ensure all ciZ1 so that for fixed b, the

maximization of Lðb,FÞ has a finite solution, and to ensure all 0r âir1 in (2.4) so that the maximization problem solution
Fnðt;bÞ given by (2.4) is well-defined. To incorporate more general situation with bo0, we assume that the covariate
variable Z has a finite support, which implies that from jbjrMbo1, there exists a constant 0oMo1 such that jZibjrM

for all 1r irn and for any jbjrMb. Thus, we can rewrite Cox model (1.1) as lðt; zÞ ¼ l0,MðtÞexpðzbþMÞ with
l0,MðtÞ ¼ e�Ml0ðtÞ, which gives ci,M ¼ eMci ¼ expðZibþMÞZ1 for all 1r irn and for any jbjrMb. For these ci,M’s, following
the arguments in (2.3)–(2.6), we know that (2.7) becomes

cn,MðbÞ ¼ Znþn�1
Xn

i ¼ 1

die
Mlog

ðci,Mþ � � � þcn,MÞ�1

ci,Mþ � � � þcn,M

¼ Znþn

Z 1
0

ZZ
xru

zezbþM dGnðu,zÞ

� �
log

RR
xruezbþM dGnðu,zÞ�n�1RR

xruezbþMdGnðu,zÞ
dGnðx,1Þ: ð2:8Þ

In the Appendix, we show that for fixed M,

cn,MðbÞ ¼jnðbÞþOp
logn

n

� �
as n-1, ð2:9Þ

and that for any given survival sample (2.1),

cn,MðbÞ ¼jnðbÞþoð1Þ as M-1, ð2:10Þ

J.-J. Ren, B. He / Journal of Statistical Planning and Inference 141 (2011) 961–971 963



Author's personal copy

where jnðbÞ is Cox’s partial likelihood estimating function for b0 (Tsiatis, 1981) given by

jnðbÞ ¼ Zn�n�1
Xn

i ¼ 1

di

ciþ � � � þcn
¼ Zn�

Z 1
0

RR
xruzezb dGnðu,zÞRR
xruezb dGnðu,zÞ

dGnðx,1Þ: ð2:11Þ

Note that jnðbÞ does not depend on constant M. Thus, based on (2.9) and (2.10), for the rest of this article we refer the
SPMLE for b0 as the solution bn of equation jnðbÞ ¼ 0, and we refer the SPMLE for F0(t) as FnðtÞ � Fnðt;bnÞ given by (2.5),
where log of any nonpositive value is set to 0 whenever it occurs, and this does not affect our asymptotic results in this
article. Some simulation results comparing b%

n and bn are presented in Section 4, which show they have quite similar
performance for large samples.

To establish some asymptotic properties of ðbn,FnÞ, we let 0ozo1 be any constant inside the support of F0, and let
Fn,zðtÞ ¼ Fnðt;bn,zÞ given by (2.5), where bn,z is the solution of equation jn,zðbÞ ¼ 0 for Zn,z ¼

RR
xr zz dGnðx,zÞ and

jn,zðbÞ � Zn,z�

Z z

0

RR
xruzezb dGnðu,zÞRR
xruezb dGnðu,zÞ

dGnðx,1Þ: ð2:12Þ

The proofs of the following theorem follow line-by-line of those of Theorem 2 (see Section 3) given in the Appendix, thus
are omitted in this article.

Theorem 1. Assume that Z has a finite support, and assumeffiffiffi
n
p
ðGn�GÞ)

w
G0 as n-1, ðAS1Þ

where G0 is a bivariate centered Gaussian process. Then, under model (1.1) we have

(i)
ffiffiffi
n
p
ðbn,z�b0Þ converges in distribution to a normal random variable;

(ii)
ffiffiffi
n
p
ðFn,z�F0Þ weakly converges to a centered Gaussian process on ½0,z�.

Remark 1. Theorem 1 uses the fact that under model assumption (1.1), the support of the baseline d.f. F0 is the same as the
d.f. FX of X. The use of finite constant z in Theorem 1 is to avoid overly complicated technical details in the proofs. Our
method used in the proofs of Theorem 2 on ðb̂n,z,F̂ n,zÞ for censored data is generally applicable to various types of censored
data, but it does not apply to ðbn,FnÞ or ðb̂n,F̂ nÞ. Thus, the asymptotic properties of ðbn,FnÞ or ðb̂n,F̂ nÞ are only known in the
sense of those for ðbn,z,Fn,zÞ or ðb̂n,z,F̂ n,zÞ, where z is an arbitrary constant in the support of the lifetime variable X.
Nonetheless, all of our simulation studies in Sections 4 and 5 show that ðbn,FnÞ or ðb̂n,F̂ nÞ performs very well. In practice,
one may either use ðbn,FnÞ; or use ðbn,z,Fn,zÞ with a pre-decided constant z and if z happens to be larger than X(n), then we
have Zn,z ¼ Zn,bn,z ¼ bn and Fn,z ¼ Fn, which works similarly on ðb̂n,F̂ nÞ for various types of censored data.

3. Extension to censored data

Here, we first use the functional plug-in method to extend results in Section 2 to a general setting of censored data.
Then, we show that our results include doubly censored data (Turnbull, 1974), partly interval-censored data (Huang,
1999), bivariate data under univariate (Lin and Ying, 1993) or bivariate right censoring (Dabrowska, 1989) as special cases.

Consider the practical situation where sample (2.1) is not completely observable, instead we observe a set of censored
survival data, generally denoted as

O1, . . . ,On: ð3:1Þ

Suppose that based on censored data (3.1), bivariate d.f. G(x,z) can be consistently estimated by a nonparametric estimator
Ĝnðx,zÞ, i.e., the construction of estimator Ĝnðx,zÞ does not rely on the Cox model assumption (1.1). Since Gn(x,z) is a
nonparametric estimator of G(x,z) for complete sample (2.1), and since Eqs. (2.5), (2.11) and (2.12) are all functionals of
Gn(x,z), by the functional plug-in principle we replace Gn in these equations by Ĝn, and obtain estimator ðb̂n,F̂ nÞ of ðb0,F0Þ

for censored data (3.1) as follows:

F̂ nðtÞ ¼ F̂ nðt; b̂nÞ for logF̂ nðt;bÞ ¼ n

Z t

0
log

RR
xruezb dĜnðu,zÞ�n�1RR

xruezb dĜnðu,zÞ
dĜnðx,1Þ, ð3:2Þ

where for Ẑ n ¼
RR

z dĜnðx,zÞ, b̂n is the solution of equation:

0¼ ĵnðbÞ � Ẑ n�

Z 1
0

RR
xruzezb dĜnðu,zÞRR
xruezb dĜnðu,zÞ

dĜnðx,1Þ: ð3:3Þ

In addition, we denote b̂
%

n as the solution of equation ĉnðbÞ ¼ 0, where

ĉnðbÞ � Ẑ nþn

Z 1
0

ZZ
xru

zezb dĜnðu,zÞ

� �
log

RR
xruezb dĜnðu,zÞ�n�1RR

xruezb dĜnðu,zÞ
dĜnðx,1Þ: ð3:4Þ
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To extend the results of Theorem 1 to estimator ðb̂n,F̂ nÞ for censored data, we let F̂ n,zðtÞ ¼ F̂ nðt; b̂n,zÞ, and let b̂n,z be the
solution of equation ĵn,zðbÞ ¼ 0, where

ĵn,zðbÞ � Ẑ n,z�

Z z

0

RR
xruzezb dĜnðu,zÞRR
xruezb dĜnðu,zÞ

dĜnðx,1Þ, ð3:5Þ

with Ẑ n,z ¼
RR

xr zz dĜnðx,zÞ. While the proofs are deferred to the Appendix, the following theorem includes Theorem 1 as a
special case. Note that for those types of censored data above mentioned, the nonparametric estimator Ĝnðx,zÞ may
correspond to a signed measure. Nonetheless, under assumption (AS2) of the following theorem, the denominator in (3.5)
is always positive in probability as n-1; see Eq. (A.9) of the proofs given in the Appendix. Thus, (3.5) and b̂n,z are well
defined asymptotically.

Theorem 2. Assume that Z has a finite support, and assume on interval ½0,z�ffiffiffi
n
p
ðĜn�GÞ)

w
Gc

0 as n-1, ðAS2Þ

where Gc
0 is a bivariate centered Gaussian process. Then, under model (1.1) we have

(i)
ffiffiffi
n
p
ðb̂n,z�b0Þ converges in distribution to a normal random variable;

(ii)
ffiffiffi
n
p
ðF̂ n,z�F0Þ weakly converges to a centered Gaussian process on ½0,z�.

Doubly censored data: If Xi’s in (2.1) are subject to double censoring as described in Turnbull (1974), the actually
observed data are censored data (3.1) with

Oi ¼ ðVi,di,ZiÞ where Vi ¼

Xi if DioXirCi, di ¼ 1,

Ci if Xi4Ci, di ¼ 2,

Di if XirDi, di ¼ 3:

8><
>: ð3:6Þ

Here, Ci and Di are right and left censoring variables, respectively, and they are independent of Xi satisfying PfDioCig ¼ 1.
For doubly censored data (3.6), Ren and Gu (1997) constructed a nonparametric estimator Ĝnðx,zÞ for bivariate d.f. G(x,z)
as follows. For each Zk, compute the conditional nonparametric maximum likelihood estimator (NPMLE) F̂ XjZk

ðxÞ ¼Pn
i ¼ 1 p̂ikIfVirxg for FXjZk

ðxÞ ¼ PfXrxjZrZkg using doubly censored sub data set fðVj,djÞj1r jrn,ZjrZkg; see computation
algorithm given in Mykland and Ren (1996). Then, for empirical d.f. Hn(z) of sample Z1,y,Zn, obtain Ĝnðx,zÞ through
computing Ĝnðx,ZkÞ ¼ F̂ XjZk

ðxÞHnðZkÞ for all 1rkrn. Under regularity conditions, Ren and Gu (1997) showed that
ffiffiffi
n
p
ðĜn�GÞ

is asymptotically centered Gaussian, i.e., assumption (AS2) of Theorem 2 holds for Ĝn by Ren and Gu (1997). Thus, Theorem
2 holds for doubly censored data (3.6).

It should be noted that right censored data is a special case of doubly censored data (3.6) with Di ¼ 0, 1r irn. Thus, if
ðVi,diÞ’s in Oi ¼ ðVi,di,ZiÞ’s are right censored data, then above F̂ XjZk

ðxÞ is the Kaplan-Meier estimator computed with right
censored data fðVj,djÞj1r jrn,ZjrZkg; see Chang (1990).

Bivariate data under univariate right censoring: If (Xi, Zi) in (2.1) are subject to univariate right censoring as described in
Lin and Ying (1993), the actually observed data are censored data (3.1) with Oi’s given in Lin and Ying (1993). For such a
data set, Lin and Ying (1993) constructed a nonparametric estimator ĜLY ,nðx,zÞ for G(x,z), and they show that

ffiffiffi
n
p
ðĜLY ,n�GÞ is

asymptotically centered Gaussian on compact set under certain conditions, i.e., assumption (AS2) of Theorem 2 holds for
Ĝn ¼ ĜLY ,n. Thus, Theorem 2 holds for bivariate data under univariate right censoring.

Bivariate right censored data: If (Xi,Zi) in (2.1) are subject to bivariate right censoring as described in Dabrowska (1989),
the actually observed data are censored data (3.1) with Oi’s given in Dabrowska (1989). For such a data set, Dabrowska
(1989) constructed a nonparametric estimator ĜD,nðx,zÞ for G(x,z), and she shows that

ffiffiffi
n
p
ðĜD,n�GÞ is asymptotically

centered Gaussian on compact set under certain conditions, i.e., assumption (AS2) of Theorem 2 holds for Ĝn ¼ ĜD,n. Thus,
Theorem 2 holds for bivariate right censored data.

Partly interval-censored data: If Xi’s in (2.1) are subject to partly interval-censoring as described in Huang (1999), the
actually observed data are censored data (3.1) with Oi’s given in Huang (1999). For such a data set, the conditional NPMLE
F̂ XjZk
ðxÞ for FXjZk

ðxÞ ¼ PfXrxjZrZkg using partly interval-censored observations with ZjrZk can be computed as in Huang
(1999). Then, for the empirical d.f. Hn(z) of sample Z1, y,Zn, a nonparametric estimator ĜH,nðx,zÞ for G(x,z) can be obtained
in the same way as that for doubly censored data (3.6) described above. Since Huang’s NPMLE with partly interval-
censored data is shown to be asymptotically centered Gaussian, the same is expected for

ffiffiffi
n
p
ðĜH,n�GÞ. Thus, assumption

(AS2) of Theorem 2 should hold for Ĝn ¼ ĜH,n; in turn, Theorem 2 should hold for partly interval-censored data.

4. Simulations

This section presents some simulation results on Theorems 1 and 2 with complete sample (2.1) and doubly censored
sample (3.6), respectively. In our studies, b%

n given by (2.7) and b̂
%

n given by (3.4) are calculated using the Newton-Raphson
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method with bn given by (2.11) and b̂n given by (3.3) as the initial values for the algorithms, respectively. Routines in
FORTRAN for computing b%

n and b̂
%

n are available from the authors.
Let ExpðmÞ represent the exponential distribution with mean m. Our simulation studies consider FZ=Exp(1) as the d.f. of

Z, and FXjZ ¼ Expðe�ZÞ as the conditional d.f. of X given Z, which imply that (X,Z) satisfies Cox model (1.1) with F0= Exp(1)
and b0 ¼ 1. To compare the performance of bn with b%

n , we generate 1000 such complete samples (2.1) with n=50, 100, 200,
respectively. For each n, Table 1 includes the simulation average of bn and b%

n with the simulation standard deviation (s.d.)
given in the parenthesis. To compare the performance of b̂n with b̂

%

n for censored data, we conduct the simulation studies
in Table 1 for doubly censored data (3.6), and include the results in Table 2. Clearly, Tables 1 and 2 show that for large
samples, bn and b%

n perform similarly, while b̂n and b̂
%

n perform similarly.
For Theorem 2(ii), we compare simulation distributions of Un ¼

ffiffiffi
n
p

JF̂ n�F0J and U�n ¼
ffiffiffi
n
p

JF̂
�

n�F̂ nJ, where F̂ n is given by
(3.2), and F̂

�

n is computed by formula (3.2) using the bootstrap sample O�1, . . . ,O�n which is drawn from sample (3.1) without
replacement. Note that the bootstrap consistency for doubly censored data and partly interval-censored data have been
established in Bickel and Ren (1996) and Huang (1999), respectively. Here, Fig. 1 displays the simulation distributions of Un

and Un
* based on 10,000 doubly censored samples considered in Table 2 with sample size n=100. Clearly, Fig. 1 supports the

bootstrap method for estimating the distribution of Un.

Table 1
Comparison between bn and b%

n for complete samples.

Sample size Average of bn (s.d.) Average of b%

n (s.d.)

n=50 1.0349 (0.2097) 0.9973 (0.2105)

n=100 1.0221 (0.1445) 1.0047 (0.1418)

n=200 1.0084 (0.0975) 1.0031 (0.0976)
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Fig. 1. Curves of Un and U�n with doubly censored samples. Un=solid line; Un
* =dashed line. Doubly censored samples with n=100, C=Exp (3) and

D¼ 1
4C�2:5.

Table 2

Comparison between b̂n and b̂
%

n for doubly censored samples.

Sample size Ave. of b̂n (s.d.) Ave. of b̂
%

n (s.d.) Censoring Percentage

C ¼ Expð3Þ D¼ 1
4C�2:5

n=50 0.9877 (0.2649) 0.9582 (0.2659) 13.6% 2.3%

n=100 0.9762 (0.1887) 0.9625 (0.1888) 13.6% 2.3%

n=200 0.9750 (0.1579) 0.9684 (0.1576) 13.7% 2.3%
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5. Goodness-of-fit tests

In this section, we construct goodness-of-fit tests for the Cox model (1.1) with censored data (3.1), which is a general
expression that includes those types of censored data mentioned in Section 3 as special cases.

First, we notice that for censored data (3.1), there are two different ways to estimate bivariate d.f. G(x,z) in (2.1). One is
the nonparametric estimator Ĝn, which is discussed in Section 3. Another one is a semiparametric estimator ~Gn, which,
based on our estimator ðb̂n,F̂ nÞ for ðb0,F0Þ under Cox model (1.1), is given naturally as follows. Note that under Cox model
(1.1), equations in (2.2) implyZ z

0
ð1�½F 0ðxÞ�

expðub0ÞÞdGð1,uÞ ¼

Z z

0
FðxjuÞfZðuÞdu¼

Z z

0

Z x

0
f ðtjuÞfZðuÞdt du¼

Z z

0

Z x

0
gðt,uÞdt du¼ Gðx,zÞ, ð5:1Þ

where fZðzÞ is the density function of covariate variable Z, and g(x,z) is the density function of bivariate d.f. G(x,z). Thus, a
natural semiparametric estimator for G(x,z) under Cox model (1.1) with censored data (3.1) is given by

~Gnðx,zÞ ¼

Z z

0
ð1�½F̂ nðxÞ�

expðub̂nÞÞdĜnð1,uÞ, ð5:2Þ

where b̂n and F̂ n are given by (3.2) and (3.3). From Theorem 2, it is easy to show that under the Cox model (1.1) and
assumption (AS2),

ffiffiffi
n
p
ð ~Gn,z�GÞ weakly converges to a centered Gaussian process on ½0,z�, where

~Gn,zðx,zÞ ¼

Z z

0
ð1�½F̂ n,zðxÞ�

expðub̂n,zÞÞdĜnð1,uÞ; ð5:3Þ

in turn, we have that under Cox model (1.1),
ffiffiffi
n
p
ðĜn�

~Gn,zÞweakly converges to a centered Gaussian process on ½0,z�. Hence,
the discrepancies between Ĝn and ~Gn,z may be used to assess the validity of model assumption, and a natural Kolmogorov–
Smirnov goodness-of-fit test statistic for Cox model (1.1) with censored data (3.1) is given by

Tn,z ¼
ffiffiffi
n
p

JĜn�
~Gn,zJz, ð5:4Þ

where J � Jz represents the uniform norm on interval ½0,z�.
Note that by Remark 1, if in practice constant z is set large enough, we could have b̂n,z ¼ b̂n and F̂ n,z ¼ F̂ n, which imply

~Gn,z ¼
~Gn; in turn, we have Tn ¼

ffiffiffi
n
p

JĜn�
~GnJ. Recall that the bootstrap estimation for the distribution of statistic

Un ¼
ffiffiffi
n
p

JF̂ n�F0J is discussed in Section 4. Similarly, the p-value of this Tn may be estimated by the distribution of
T�n ¼

ffiffiffi
n
p

JðĜ
�

n�
~G
�

nÞ�ðĜn�
~GnÞJ, where Ĝ

�

n and ~G
�

n are calculated based on the bootstrap sample O�1, . . . ,O�n which is drawn from
sample (3.1) without replacement. For this test statistic Tn, Table 3 displays the power of the goodness-of-fit test with 5%
significant level for doubly censored data (3.6), where the sample size is n=100 (rather small considering the censoring
percentages), the r.v. X given Z is generated by Expðe�ZÞþg, and the rest are the same as those used in Fig. 1, which means
that the null hypothesis corresponds to g¼ 0. In Table 3, each value of the power is based on 400 doubly censored samples,
and the p-value for each of these 400 samples is based on 400 bootstrap samples.

Remark 2. While the detailed proofs are omitted, the goodness-of-fit test (5.4) is consistent due to the following. When
the Cox model assumption (1.1) does not hold, it can be shown that under assumption (AS2) in Theorem 2, we have
b̂n,z-

P b1, as n-1, where b1 is the solution of equation jzðbÞ ¼ 0 for

jzðbÞ �
ZZ

xrz
z dGðx,zÞ�

Z z

0

RR
xruzezb dGðu,zÞRR
xruezb dGðu,zÞ

dGðx,1Þ, ð5:5Þ

which is the limit of (3.5). Moreover, it can be shown that under assumption (AS2), from F̂ n,zðtÞ ¼ F̂ nðt,b̂n,zÞ given by (3.2)
and from (5.3) and the proofs of Theorem 2, we have J ~Gn,z�G1J-

P
0, where G1aG when Cox model assumption (1.1) does

not hold. Note that in the usual situations statistic T�n,z is still asymptotically Gaussian under (AS2) when Cox model
assumption (1.1) does not hold, but Tn,z-

P
1, as n-1, when (1.1) does not hold. Hence, the proposed goodness-of-fit test

(5.4) is consistent, and clearly the simulation results presented in Table 3 support this. Finally, we note that although the
theory of above goodness-of-fit test does not apply to interval censored Case 1 or Case 2 data mentioned in Section 1, in the
case that Z has only a few possible values, comparing the marginal d.f.’s of Ĝnð�,zÞ and ~Gnð�,zÞ for a given z can be used as a
graphical method for checking the goodness-of-fit for interval censored data.

Table 3
Power of goodness-of-fit test for doubly censored samples.

c �2 �1 0 1 2

Censoring% for C 0.9% 3.0% 13.8% 38.1% 55.6%

Censoring% for D 32.5% 8.7% 2.3% 0.6% 0.2%

Power 0.363 0.105 0.052 0.162 0.207
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Appendix A

Proof of (2.4). For any fixed bZ0, we have ciZ1 for all 1r irn, thus Lðb,FÞ has a finite maximum value over all F. Let
ai ¼ pi=bi and bi ¼

Pnþ1
j ¼ i pj, then we have b1 ¼ 1,bnþ1 ¼ pnþ1,biþ1 ¼ ðbi�piÞ, and (1�ai)=bi +1/bi. From

Qn
i ¼ 1ð1�aiÞ ¼ bnþ1

and

Yn

i ¼ 1

ðaiÞ
ci ð1�aiÞ

n�hi ¼
Yn

i ¼ 1

ðaiÞ
ci

 !Yn

i ¼ 1

biþ1

bi

� �n�hi

¼
Yn

i ¼ 1

ðaiÞ
ci

 !
ðbnþ1Þ

nð1�c Þ
Yn

i ¼ 1

ðbiÞ
ci ,

where hi ¼ c1þ � � � þci and c ¼ n�1
Pn

i ¼ 1 ci, we can rewrite (2.3) as

Lðb,FÞ ¼
Yn

i ¼ 1

cipiðbi�piÞ
ci�1
¼
Yn

i ¼ 1

ciðpiÞ
ci

1�ai

ai

� �ci�1

¼
Yn

i ¼ 1

ciðpiÞ
ci

 !Qn
i ¼ 1 aið1�aiÞ

½n�1�ðc1þ���þ ci�1Þ�Qn
i ¼ 1ðaiÞ

ci ð1�aiÞ
½n�ðc1þ���þ ciÞ�

¼
Yn

i ¼ 1

ciðpiÞ
ci

 !Qn
i ¼ 1 aið1�aiÞ

½n�1�ðc1þ���þ ci�1Þ�

ðbnþ1Þ
nð1�c ÞQn

i ¼ 1ðpiÞ
ci

¼
Yn

i ¼ 1

ciaið1�aiÞ
ðciþ���þ cnÞ�1: ðA:1Þ

From the 1st and 2nd partial derivatives of log L with respect to ai’s, we know that the solution of equations @ðlogLÞ=@ai ¼ 0,
1r irn, is given by âi ¼ ðciþ � � � þcnÞ

�1, 1r irn, and it maximizes Lðb,FÞ with all 0r âir1 because ciZ1 for all 1r irn.
Hence, (2.4) follows from that the d.f. F corresponding to âi’s is given by F nðt;bÞ ¼

Q
Xi r tð1�âiÞ. &

Proof of (2.9) and (2.10). We give the proof assuming that Z has a finite support and that M is any constant such that for
some constant d41, we have ci,M Zd41 for all 1r irn and for any jbjrMb. From Taylor’s expansion, we obtain in (2.8),

cn,MðbÞ ¼ Znþn�1
Xn

i ¼ 1

die
M �

1

Di
�

1

2x2
i D

2
i

 !
¼jnðbÞ�

1

2
Rn, ðA:2Þ

where Di ¼ eM
Pn

j ¼ i cj, xi is between 1 and ð1�D�1
i Þ, and Rn ¼ n�1

Pn
i ¼ 1 die

MðxiDiÞ
�2. Since for D¼ ð1�d�1

Þ
2 we have

jRnjr
1

n

Xn

i ¼ 1

di

eMDð
Pn

j ¼ i cjÞ
2
r

ZðnÞ
neMD

Xn

i ¼ 1

1

n�iþ1
�Rn,M , ðA:3Þ

then (2.9) holds because for fixed M, we have Rn,M ¼Opðlogn=nÞ, as n-1. Also, (2.10) holds because for any given sample
(2.1), we have Rn,M-0, as M-1. &

Proof of Theorem 2(i). Without loss of the generality, assume that 0 is the left-end point of the support interval of X and
F0. First, notice that under (2.2), we have for x40,

fXðxÞ ¼

Z 1
0

gðx,zÞdz¼

Z 1
0

f ðxjzÞfZðzÞdz¼ f0ðxÞ

Z 1
0

ezb0 ðF 0ðxÞÞ
ðezb0 Þ�1fZðzÞdz,

which implies limx-0þ fXðxÞ=f0ðxÞ ¼
R1

0 ezb0 fZðzÞdz40, where gðx,zÞ, fXðxÞ and fZðzÞ are continuous density functions of
G(x, z), X and Z, respectively. Thus,ZZ

xru
ezb0 dGðu,zÞ ¼

ZZ
xru

ezb0 f ðujzÞfZðzÞdu dz¼

Z 1
0

F ðxjzÞezb0 fZðzÞdz

¼

Z 1
0
ðF 0ðxÞÞ

ezb0 ezb0 fZðzÞdz¼

Z 1
0

F 0ðxÞ

f0ðxÞ
f ðxjzÞfZðzÞdz¼

1

l0ðxÞ

Z 1
0

gðx,zÞdz¼
fXðxÞ

l0ðxÞ
ZMz40, for 0rxrz,

ðA:4Þ

where Mz is a constant. Notice that by (AS2), integration by parts, Andersen et al. (1993, Theorem II.8.1), and Iranpour and
Chacon (1988, pp. 154–157), we know that as n-1, each component of

ffiffiffi
n
p
ZZ

u40
ðezb,zezbÞ>d½Ĝnðu,zÞ�Gðu,zÞ� ¼

ffiffiffi
n
p

Z
ðezb,zezbÞ>d½Ĝnð1,zÞ�Gð1,zÞ�

converges in distribution to a zero-mean normal random variable for any fixed b, andZZ
u40

zkezbd½Ĝnðu,zÞ�Gðu,zÞ� ¼Opðn
�1=2Þ, k¼ 0,1,2 ðA:5Þ

uniformly for jbjrMb, because Z has a compact support and each component is a linear map of
ffiffiffi
n
p
½Ĝnðx,zÞ�Gðx,zÞ�. Also,

notice that by (AS2), Andersen et al. (1993, Theorem II.8.1), and similar arguments in Ren and Gu (1997, Lemma 3.1 ) and
Iranpour and Chacon (1988, pp. 154–157), we similarly know that each component of

ffiffiffi
n
p RR

uoxðe
zb,zezbÞ>d½Ĝnðu,zÞ�Gðu,zÞ�
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weakly converges to a centered Gaussian process on x 2 ½0,z� for any fixed b, and we haveZZ
uox

zkezbd½Ĝnðu,zÞ�Gðu,zÞ� ¼Opðn
�1=2Þ, k¼ 0,1,2 ðA:6Þ

uniformly for jbjrMb and x 2 ½0,z�. Hence, we have that as n-1,

Wn)
w
G, WZ

n)
w
GZ on ½0,z�, ðA:7Þ

where ðWnðxÞ,WZ
n ðxÞÞ

>
¼

ffiffiffi
n
p RR

xruðe
zb0 ,zezb0 Þ

>d½Ĝnðu,zÞ�Gðu,zÞ�, and G and GZ are centered Gaussian processes. In turn, by
(A.4) and (A.7) we haveZZ

xru
ezb dĜnðu,zÞ ¼

ZZ
xru
ðezb�ezb0 ÞdĜnðu,zÞþn�1=2WnðxÞþ

fXðxÞ

l0ðxÞ
; ðA:8Þ

and by (A.5)–(A.6) we haveZZ
xru

ezbdĜnðu,zÞ ¼Opðn
�1=2Þþ

ZZ
xru

ezb dGðu,zÞ, ðA:9Þ

where
RR

xruezb dGðu,zÞZ
RR

zruezb dGðu,zÞ has a positive lower bound uniformly for any x 2 ½0,z� and jbjrMb, because Z has
a compact support.

From (3.5), (AS2), (A.4), (A.7)–(A.8), Taylor’s expansion, and the proof of Lemma 3.1 in Chang (1990), we have

ffiffiffi
n
p

ĵn,zðb0Þ ¼Opðn
�1=2Þþ

ffiffiffi
n
p

Ẑ n,z�
ffiffiffi
n
p

Z z

0
n�1=2WZ

n ðxÞþ

R
zgðx,zÞdz

l0ðxÞ

� �
�

l0ðxÞ

fXðxÞ
�n�1=2WnðxÞ

l0ðxÞ

fXðxÞ

� �2
( )

dĜnðx,1Þ

¼ tð
ffiffiffi
n
p
ðĜn�GÞÞþopð1Þ, ðA:10Þ

where

tð
ffiffiffi
n
p
ðĜn�GÞÞ ¼

ffiffiffi
n
p
ZZ

xr z
z d½Ĝnðx,zÞ�Gðx,zÞ��

ffiffiffi
n
p

Z z

0

Z
zgðx,zÞ

fXðxÞ
dz d½Ĝnðx,1Þ�Gðx,1Þ�

�

Z z

0
WZ

n ðxÞ
l0ðxÞ

fXðxÞ
�WnðxÞ

l0ðxÞ

f 2
X ðxÞ

Z 1
0

zgðx,zÞdz

 !
dFXðxÞ: ðA:11Þ

Since tð�Þ is a linear map, from (AS2), Andersen et al. (1993, Theorem II.8.1) and (A.10)–(A.11), we know that as n-1,ffiffiffi
n
p

ĵn,zðb0Þ converges in distribution to tðGc
0Þ, which is a zero-mean normal random variable by similar arguments in Ren

and Gu (1997, Lemma 3.1) and Iranpour and Chacon (1988, pp. 154–157).

Differentiating (3.5) with respect to b, we obtain

ĵun,zðbÞ ¼ �
Z z

0

RR
xru

1 z

z z2

� �
ezb dĜnðu,zÞ

����
����

ð
RR

xruezb dĜnðu,zÞÞ2
dĜnðx,1Þ, ðA:12Þ

where j � j represents the determinant of matrix. From (A.5)–(A.6) and (A.9), it is easy to see that there exists a constant

Cz40 such that in probability, we have jĵun,zðbÞjZCz40 for jbjrMb. Thus, from the asymptotic normality of
ffiffiffi
n
p

ĵn,zðb0Þ

and

�ĵn,zðb0Þ ¼ ĵn,zðb̂n,zÞ�ĵn,zðb0Þ ¼ ĵun,zðxÞðb̂n,z�b0Þ, ðA:13Þ

where x is between b̂n,z and b0, we have b̂n,z-
P b0, as n-1. The proof follows from that (A.4)–(A.6) and applying the

Dominated Convergence Theorem in (A.12) imply as n-1,

�ĵun,zðxÞ-
P Dz ¼

Z z

0

ZZ
xru

1 z

z z2

� �
ezb0 dGðu,zÞ

����
���� l0ðxÞ

fXðxÞ

� �2

dGðx,1Þ: & ðA:14Þ

Proof of Theorem 2(ii). Note that under (2.2), we know that Theorem 2(i), (A.4), (A.7)–(A.8), and the arguments in
(A.10)–(A.11) give

ZZ
xru

expðzb̂n,zÞdĜnðu,zÞ ¼ n�1=2WnðxÞþ
fXðxÞ

l0ðxÞ
þ

ZZ
xru
ðezb0þOpðn

�1=2ÞÞzðb̂n,z�b0ÞdĜnðu,zÞ

¼ n�1=2WnðxÞþ
fXðxÞ

l0ðxÞ
þðb̂n,z�b0Þ

R
zgðx,zÞdz

l0ðxÞ
þOpðn

�1Þ:
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Thus, (A.4), the argument in (A.10) and Taylor’s expansion imply that for any 0rxrz,

log

RR
xruexpðzb̂n,zÞdĜnðu,zÞ�n�1RR

xruexpðzb̂n,zÞdĜnðu,zÞ
¼�

1

n

l0ðxÞ

fXðxÞ
�

l0ðxÞ

fXðxÞ

� �2

n�1=2WnðxÞþðb̂n,z�b0Þ

R
zgðx,zÞ dz

l0ðxÞ

� �( )
þOpðn

�2Þ,

which implies that for F̂ n,zðtÞ ¼ F̂ nðt; b̂n,zÞ given by (3.2) and for any 0rtrz,

logF̂ n,zðtÞ ¼Opðn
�1Þ�

Z t

0

l0ðxÞ

fXðxÞ
dĜnðx,1Þþ

Z t

0

l0ðxÞ

fXðxÞ

� �2

n�1=2WnðxÞþðb̂n,z�b0Þ

R
zgðx,zÞdz

l0ðxÞ

� �
dĜnðx,1Þ

¼ opðn
�1=2Þþ logF 0ðtÞ�

Z t

0

l0ðxÞ

fXðxÞ
d½Ĝnðx,1Þ�Gðx,1Þ�

þn�1=2

Z t

0

l0ðxÞ

fXðxÞ

� �2

WnðxÞdFXðxÞþðb̂n,z�b0Þ

Z t

0

Z 1
0

zgðx,zÞl0ðxÞ

fXðxÞ
dz dx: ðA:15Þ

Since (A.15) can be written as

F̂ n,zðtÞ ¼ opðn
�1=2ÞþF 0ðtÞþF 0ðtÞ �

Z t

0

l0ðxÞ

fXðxÞ
d½Ĝnðx,1Þ�Gðx,1Þ�

�

þn�1=2

Z t

0

l0ðxÞ

fXðxÞ

� �2

WnðxÞdFXðxÞþðb̂n,z�b0Þ

Z t

0

Z 1
0

zgðx,zÞl0ðxÞ

fXðxÞ
dz dx

)
,

thus by (A.10)–(A.14) we haveffiffiffi
n
p
½F̂ n,zðtÞ�F0ðtÞ� ¼ opð1ÞþtF ð

ffiffiffi
n
p
ðĜn�GÞÞ, ðA:16Þ

where

tF ð
ffiffiffi
n
p
ðĜn�GÞÞ ¼

ffiffiffi
n
p

F 0ðtÞ

Z t

0

l0ðxÞ

fXðxÞ
d½Ĝnðx,1Þ�Gðx,1Þ��F 0ðtÞ

Z t

0

l0ðxÞ

fXðxÞ

� �2

WnðxÞdFXðxÞ

�tð
ffiffiffi
n
p
ðĜn�GÞÞ

F 0ðtÞ

Dz

Z t

0

Z 1
0

zgðx,zÞl0ðxÞ

fXðxÞ
dz dx ðA:17Þ

is a linear map of
ffiffiffi
n
p
ðĜn�GÞ. From (AS2), Andersen et al. (1993, Theorem II.8.1) and (A.16)–(A.17), we know that as n-1,ffiffiffi

n
p
½F̂ n,zðtÞ�F0ðtÞÞ�weakly converges on t 2 ½0,z� to tF ðG

c
0Þ, which is a centered Gaussian process by similar arguments in Ren

and Gu (1997, Lemma 3.1) and Iranpour and Chacon (1988, pp. 154–157). &
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