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Abstract

This paper considers the use of the m out of n bootstrap (Bickel, Gotze,
and van Zwet, 1994) in setting critical values for Cramér—von Mises good-
ness of fit tests with doubly censored data. We show that, as might be
expected, the usual n out of n nonparametric bootstrap fails to estimate
the null distribution of the test statistic. We show that if the m out of n
bootstrap with m — co, m = o(n) is used to set the critical value of the
test, the proposed testing procedure is asymptotically level «, has the cor-
rect asymptotic power function for' \/_ alternatwes and is asymptotwa.lly
consistent.
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1 Introduction

It is logically clear but not always evident or a.pprecla.ted that the usual non-
parametric bootstrap (the n out of n bootstrap) should fail when one tries to
estimate the distribution of test statistics under a semiparametric (restricted
nonparametric) hypothesis and ignores the restrictions imposed by the hypothe-
sis. For example, Freedman (1981) points out that in setting confidence intervals
~ on the usual slope estimate for regression through the origin, one must resample
not the residuals but the residuals centered at their mean. If one considers set-
ting confidence bands as the dual of hypothesis testing, a moment’s thought will
' show that not centering the residuals is tantamount to not imposing the model
requirement that the expectation of the error is zero.

For more recent examples, see Hardle and Mammen (1993), Mammen (1992),
Bickel, G6tze and van Zwet (1994). The same phenomenon occurs when one
considers hypothesis testing problems using a censored or incomplete sample.
Imposing hypothesis restrictions for censored data can be very complicated given
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the unknown distributions of the censoring variables. In the situation we con-
sider here, it is impossible to estimate the censoring distribution! Specifically,
we consider Cramér—von Mises goodness of fit tests with doubly censored data.
The problem is introduced in Section 2, where we show that the usual n out
of n nonparametric bootstrap fails to estimate the null distribution of the test
statistic. In Section 3, we propose that one uses the m out of n bootstrap to
set the critical value of the test and show that the proposed testing procedure is
asymptotically consistent and has correct power against /n alternatives with
the proofs deferred to Section 5. For the exponential distribution family, Sec-
tion 4 presents a simulation result which compares the power functions using
the true critical value and the one by the m out of n bootstrap.

One should note that the testing procedure proposed here includes the good-
ness of fit tests for proportional hazards model with right censored data (Wei
(1984)) as a special case, and that the proposed procedure easily applies to many
other models with censored data or with uncensored data. An alternative to the
m out of n bootstrap method in the model of this paper, the Fredholm Integral
‘Equation (FIE) method, has been constructed by Ren (1993). The m out of n
bootstrap method, although less powerful to second order, has the advantage of
easy implementation and generalization to essentially any semiparametric test.

In collaboration with Gotze, van Zwet and others we are in the process of
studying this broad applicability and the critical issue of choice of m. In the
example we study in Section 4, m = /n is chosen arbitrarily and evidently
performs reasonably well. :

We close the basic heuristics of this method which are evident in the classic
problem of testing H : u=0 vs K : up> 0 when Xj,...,Xp areiid N(u,1).
The correct test is to reject if \/n X, > 2(1 — @), where Xn=1Y",Xi and
z(1 — «) is the 1 — a quantile of A(0,1). Suppose that we instead use the
bootstrap critical value of /n X, . That is call é,, the 1 —a quantile of
the distribution of /m X, where X{,..., X} are a sample of size m with
replacement from X3, ..., X, and reject if \/n X, > émn. 1t is easy to see that
if m — oo with m = o(n), then &nyn = 21—o + 0p(1) not only for u = 0 but
also for p = :7""‘; , A > 0. Thus, the local power function of our test is the same
as that of the z test. Furthermore, if g > 0 is fixed, then émn = Op(y/m)
and P,{yn X > &nn} — 1 since m = o(n). This is the kind of behavior we
exhibit in our more complicated context. :

2 Goodness of Fit Tests with Doubly Censored
Data

In medical follow-up studies and in reliability studies, the data available to be
analyzed are often incomplete due to various reasons. Recently, some more com-
plicated types of censored data than right censored data, such as doubly cen-
sored data, interval censored data, truncated data, etc., have started to catch
the attention of statisticians, as these data occur in important clinical trials.
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For instance, doubly censored data are presented in a recent study of the age-
dependent growth rate of primary breast cancer (Peer et al. (1993)). Other
examples of doubly censored data encountered in practice have been given by
Gehan (1965), Mantel (1967), Peto (1973), Turnbull (1974), and others. In sta-
tistical analysis, assumptions on the underlying lifetime distributions are often
made for various reasons. To check if these assumptions are correct, one would
naturally wish to conduct a goodness of fit test. In this study, we are interested
in the goodness of fit test with doubly censored data.

Let Xi,Xa,...,Xn be independent observations on a nonnegative r.v. X
with a continuous d.f. F. If it is wished to test the null hypothesis

Hp: =Ly, ™ (2.1)

ii_rhere Fp is a specified d.f., then the Cramér—von Mises test statistics are given
by -
Tu=n [ [Fa@) - R 4Fo(@), (2:2)
0

where F, is the empirical d.f. based on X;,X>s,...,X,. In this study, one
observes not {X;} but a doubly censored sample:

Xi ¥Z;< XY, 6=1
Wi=d{ Y EX>Y, o (2.3)
Zy i X; < Z;, 6 =3

where (X;,Y;,Z;),i=1,2,...,n, are independent observations on (X,Y, Z) for
nonnegative variables X, Y and Z, and the r.v.’s Y; and Z; are called right
and left censoring variables, respectively. This means that X; is observable
‘whenever X; lies in the interval [Z;,Y;], and we know whether X; < Z; or
"X; > Y; and observe the value of Z; or Y; accordingly. The usual assumptions
on this model are that X; and (Y;, Z;) are independent and P{Y > Z} =1 (see
Chang and Yang (1987), Chang (1990), Gu and Zhang (1993)). Right censored
data, that is, Z = —oo in (2.3), is a special case of the doubly censored data
"(2.3). The problem considered here is to test the goodness of fit of F' based on
(Ws,8:) .
Let (W;, 6;) be distributed as (W, 6), and denote

Qit)=P{W<té=75}, =123,

Sx(t) = P{X >1t}, Sy(t)=P{Y>t}, Sz(t)=P{Z>t}.

By Turnbull (1974), Tsai and Crowley (1985), the Nonparametric Mazimum
Likelihood Estimator (NPMLE) S,, of Sx is one of the solutions of the following
equation: ;

S=1-a00+ [ =P~ [ =8 j(@) dQf(w), (24
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where

QM) = EI{W; <t&=j5}, =123,

1-=1
3
QM) = ZQ§")(t)
j=1

with [, =0 if S§)(t) =0 and [, , = 0 if S§(t) = 1 (The solutions of
(2.4) are not unique, see Gu and Zhang (1993) for examples, but all solutions
are asymptotically equivalent). This equation (2.4) is obtained by generalizing
the idea of the self-consistent estimater for right censored data originally given
by Efron (1967, (7.4) on page 840). One may see Efron (1967) for an intuitive
explanation for such an equation. The NPMLE S, may be found numerically
by the method suggested by Mykland and Ren (1994), which is based on the

EM algorithm. -
Let U denote the uniform distribution function on [0, 1], and let

F,=1-8, and U,=F,oF;". (2.5)

F,, is the NPMLE of F'. For the test (2.1), one would naturally want to replace
F, in (2.2) by Fy; that is, to use

T /0 [Fole) = Fo(@dFy(s) = n fo [0.—UPdU  (26)

as the test stablstlcs. For the rest of the paper, we will always refer 7, to (2.6).
If Up = FoFy !, under some regularity conditions Gu and Zhang (1993) showed
that

V1 [Un — Up] weakly converges to Gp, asn — oo (2.7)
where Gp is a Gaussian process with mean 0 and a covariance function . The
covariance function + is determined by Sx, Sy and Sz and its specific formu-
lation is given by Ren (1993). Hence, it is easy to see that the null distribution
of T, is given by .

. 2 /G2 R ZA o 28

i=l

where Z; are independent normal random variables with mean 0 and variance 1,
and \; are the eigenvalues for the following eigenvalue problem:

/ﬂ V(s,)6()dt = A(s), & € L0, B]. © (29)

One should note that even under Hp, the limiting covariance function + of
the NPMLE F,, depends on unknown survival functions Sy and Sz. To set
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the critical value of the test, one needs to estimate the unknown null distribution
given by (2.8). As expected the usual nonpa:ametnc n out of n bootstrap fails’
in this case.

To see the reason for this failure and justify our other arguments, we need to
extend the central limit theorem for the bootstrapped empirical process of Giné
and Zinn (1990) to the doubly censored case considered in this study. We state
the results as below with a proof sketched in Section 5 under the assumption
(A1)—(A6) outlined in Chang (1990). Under these conditions (A1)—(A6), Chang
(1990) established (2.7) on [0, 7] for any T > 0.

Let m be the bootstrap sample size satisfying m — oo as n — oo, and
let EZ be the NPMLE based on the bootstrap sample. Then :

Proposition 2.1 Suppose that \/n[F, — F] weakly _converges to a Gaussian
process Z as n — oo. Then, with probability 1, \/m[F} — F,] weakly converges
to Z as n— 0. .

Irnniedia.tely, we have that with probability 1,
Vm[U% — U,] weakly converges to G, (2.10)

where U% = F% o F;'. Let Ty be given by (2.6) based on the bootstrap
sample. Hence, for m = n, i.e., when the n out of n bootstrap is used, we have

Va[ly —U)= Va0 = U]+ va[0n — U] = G}, + G, (2.11)
and thus 3 . ' 1
= f [Gr]?dU +2 f GrGndU + f [Gn]2dU. (2.12)
0

Let O, = {(W;,&); 1 < i < n}, then from (2.7) and (2. 10), we know that
under Hj,

1
P{T: <0} — P{ [ (G + GrJ'dU < tiGr}, ssn—oo,
0

where G%, and Gp, are two independent centered Gaussian processes with the
same covariance function. As stated in the introduction, we need to “bootstrap”
taking the restrictions of Hp into atcount. For the simpler right cénsored case,
one may draw a sample X7,..., X} from Fy and a sample Y7*,..., Y from
the estimator of Sy (see Chang and Yang (1987) for the formulation of such
an estimator) to obtain the bootstrap sample. It is well known that the n out
of n bootstrap method estimates the null distribution consistently. However,
this method does not easily generalize to the doubly censored case. The rea-
son is that in the doubly censored case, one would need to obtain a sample of
(¥7", Z%),...,(Y¥, 2%) from an estimator which estimates the joint distribution
of (Y,Z), because Y and Z are usually not independent random variables.
From (2.11) and (2.12), we see that in a general way, the problem can be
solved by resampling fewer observations, i.e., using m = o(n) with m — oo as
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the bootstrap sample size. More specifically, with m = o(n), by (2.7), we have
that (2.11) becomes :

VAlln=U] =m0 O+ ymlla—U]

. . (2.13)
= vm[U7, — Un] +05(1) = G7, + 0p(1).
Hence, from (2.10), we have that (2.12) becomes
1
i e =/ (G ]2dU + 0p(1), (2.14)
0

which along with (2.10) implies that under Hp),
" 1
P{Ty <t|lO0,} — P{/ [GrJ?dU < t}, as n — oQ.
-Jo

Therefore, the m out of n bootstrap is consistent under Hy. Based on this, we
propose the m out of n bootstrap tests for the test (2.1) in the next section.

3 The m out of n Bootstrap

For the test (2.1) with a doubly censored sample (2.3), we propose that one uses

m = o(n) as the bootstrap sample size, and use C7, as the critical value of the

test, where for 0 < a < 1 and O, = {(W;,8); 1 <1< n}, C} is given by
P » 0=, : -(3.1)

This is called the m out of n bootstrap method. In the following, we investigate
the asymptotic properties of this test procedure
Let the limiting null distribution of T} be distributed as

: :
T:] G2, dU (3.2)
0
and let C? be the true critical value given by
P> Cl = (3.3)

Proposition 3.1 Let || - || denote the uniform norm and let m = o(n) with
m— o0 as n — oo. Then, when Proposition 2.1 holds,

(1) if ||F — Fo|| = O(1/+/n), we have

.C:, 3 CY% asn—oo; (3.4)
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(i3) if F = Fy # Fp, we have
Ca o4 o, asn— co; (3.5)
with .
O T 2.0, asn— oo ' (3.6)

The proof of Proposition 3.1 is given in Section 5.
From (3.4), (2.7) and (3.3), we have

P{T, > Ci|Ho} — «a, asn—oo. (3.7)

Consider the contiguous alternatives

-

Hn:F=Fo# R, (3.8)

where for a bounded function A, \/n[F, — F) = A, — A, as n — 0.
Denoting U, = F,, 0 Fy . , we have :

V[Un=Ul=Vn[Us— Un+ Ano Fy L.
Note that under the condition of Corollary 1 of Gu and Zhang (1993) and under
Hy, +/n[U, — U] is, in probability, equivalent to a continuous operator of the

empirical processes /n [Qg") —Qj], 7=1,2,3 (see the proof of Theorem 2 by
Gu and Zhang, 1993). Hence, by contiguity, we have that for Ag = Ao Fy*,

1 oo
i Bl =f Gro+ AdPdU =3 XZ3;, asn—oo  (39)
8 0

=1

where );’s are given by (2.8) and Za; are independent normal r.v.’s with non-
zero mean and variance 1. Hence, from (3.4) we have

P{T, > C3|Hn} — P{Ta, 2C3}, asn—oo (3.10)

where P{Tp, > C3} is the true asymptotic power of the test (2.1) under the
contiguous alternatives (3.8). Moreover, under the fixed alternative

Hy:F=F (£ F) (3.11)

we know that (3.6) implies

P{T,>Cx|H} —1, asn—oo. (3.12)

To summarize, (3.7), (3.10) and (3.12) give the following theorem on the asymp-
totic properties of the proposed m out of n bootstrap test procedure.

Theorem 3.2 Let m = otn) with m — co as n — oo, In the test (2.1) with
data (2.3), if T,, given by (2.6) is used as the test statistic and if C7, given by
(3.1) is used as the critical value of the test, then, when Proposition 2.1 holds,
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(2) fOT‘ O<a< l, ]jmn—_voo P{Tn > C;iHU} =y

(1) for contiguous alternatives Hy, in (8.8), l-imnﬁm PIT. > 2] =
Pl 2 Gl

(iii) for the fized alternative Hi in (8.11), liMpoo P{Tn > CglH1} = 1.

4 A Small Simulation Study

In this section, we consider the goodness of fit test (2.1) with. Fo = Exp(1)
against the exponential distributions Exp(u), where Exp(u) denotes the expo-
nential distribution with mean u. We denote the power functions of the test
with the true critical value C2 given by (3.3) and the m out of n bootstrap
critical value CJ, given by (3.1) as

Po(p) = P{Tn 2 Cq|Exp(n)} (4.1)

and
Py(u) = P{Tn > C5|Exp(p)}, (4.2)

respectively, where T, is given by (2.6). For the Fredholm Integral Equation
(FIE) method proposed by Ren (1993), we denote the power function as

Pf(lu) = P{Tn > CéIE}m(#)}, (43)

where C is the critical value estimated by FIE such that P{T > C{} = .
The deta.ﬂs on the unplementatlon of the FIE method may be found in Ren and
Ledder (1995).

In Figure 1, we compare the curves of Py, Py and Py, which are obtained
by the simulation with sample size n =200, m =+/n and a = 0.05. Because
the use of the EM algorithm in (2.4) is very time consuming to conduct the
simulation study for doubly censored data, in Figure 1 we consider the right
censored case with the right censoring variable Y from Exp(3). One may note
that for the right censored case, we have Sz = 0 and the solution S, of (2.4)
is the Kaplan—Meier estimator (Chang and Yang (1987)). In our study, the true
critical value CC is obtained from the Monte Carlo method. All simulation
results are based on 300 runs, and for each run, the percentiles of Py, Py, Py,
C%, C% and CZ are obtained from 400 replications of the procedures.

From Figure 1, we easily see that the simulation results are consistent with -
our asymptotic results in Section 3. As u gets further away from 1, the power
of the test using the m out of n bootstrap critical value C,, although smaller
than the true one by C2, goes to 1. As p gets closer to 1, the power of the test
using C% goes to a. We also note that the curve Py by FIE is closer to Py than
P, by bootstrap tests. However, the FIE method method is constructed through
solving the Fredholm integral equation of the second kind, and the programming
of FIE is no trivial matter. Also, FIE does not easily extend to other hypothesis
testing problems. '
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A better choice of m and extrapolation as discussed in Bickel, Gotze and
van Zwet (1994) should also improve the power behatior of the m out of n
bootstrap. ' '

5 Proofs

ProOOF OF PROPOSITION 2.1 The proposition may be shown under weaker con-
ditions. For simplicity, in this paper we will sketch the proof under the assump-
tions Al through A6 outlined in Chang (1990).

Under these assumptions, Chang (1990) showed that for any T' > 0,

Vn[S, — S] weakly converges to Z, asn — oo (5.1)
where Z is a Gaussian process on [0,T7,
Sa= (55,50, 85"), §=(5x,5¢.%2), S =5, (52

_and .S'l(:' ), S'g‘) are the estimators of Sy, Sz, respectively, given by Chang and
Yang (1987). Let

Qn = (an): gn}, an)) and Q = (le Q2! Q3) (53)
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Chang (1990, (14) of page 395) showed that there exist a continuous _oﬁerator
Ly and a linear operator L, such that

Vn[Sn— §]=LioLa(vn[Qn — Q]+ L1(6n), (5.4)

where 6, is given by (9) of Chang (1990, page 394). Noting that Q,, is
the empirical process and that /n[Q,, — Q] weakly converges to a Gaussian
process Z g, Chang (1990) established (5.1) by showing that

9, = 0, as n — 0o (5.5)

uniformly on [0,T]. _
Let S*, QX and 6% be S,, Q,. and 6, based on the bootstrap sample
from (W;,6;), i=1,...,n, respectively. Since with probability 1,

S, — S, - as n—ox (5.6)

uniformly on [0,T] (Chang and Yang (1987)), the conditions required for (5.4)
hold with probability 1, as n — co. Hence, we have that with probability 1,

Vm([S;, — Sal=Lie La(vVm[Q;, — Q,]) + L1(6},). (5.7)
From Giné and Zinn (1990), we know that with probability 1, '
\/?'_"[Q:n — Q,] weakly converges to Z g, as n — co. (5.8)

Since L; is a continuous operator and Ly is a linear operator, by Theorem 5.1
of Billingsley (1968), (5.8) implies that, as n — oo , with probability 1,
Ly o Ly(v/m[Q), — Q,.]) weakly converges to the Gaussian process Z =
Ly o Ly(Z q) . Therefore, by (5.7), it suffices to show that,

6, — 0, as n — oo . (5.9)

uniformly on [0, T
The key to (5.9) is that one needs to show that with probability 1,

a.s.

IS —Sa|l — 0, as n — oo, (5.10)

The rest of the proof just follows line by line of Lemma 3.1 through Lemma 3.3
~in Chang (1990).

Denoting the equation (2.7) of Chang and Yang (1987) as E(Q,,, ﬂ) =0,
S, is the solution of E(Q},, S;.) =0. Since Q,, is the empirical process,
from (5.6) we know that with probability 1, E(Q,,, S,) has limit E(Q, S)
as n — oo. Since each component of S, is uniformly bounded and nonincreas-
ing, by Helly’s Theorem, for each fixed ¢, S has a convergent subsequence,
say with limit S. This limit S should satisfy the equation E(Q, S)=0.
From the identifiability for the solution of E(Q, S) = 0 studied by Chang
and Yang (1987), we know that S§ must be the solution of E(Q, S) =0,
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ie, St = 5. Since each component of S, is uniformly bounded and non-
increasing and since each component of S is continuous, we have that with

proba.blhty 1
IS — S| = o, as n — 0o. (5.11)

Hence, (5.10) follows from (5.6) and (5.11). /i
PROOF OF PROPOSITION 3.1 (i) Note that
VU= Ul = vm[Un = Unl + vm[Un - Uo) + vm[Uo = U] (5.12)

Hence, by (2.7) and the assumptions: ||F — Fo|| = O(l/\/_) and m = o(n)
with m — co as n — oo, we have

VAl; ~U)= VAl -l + o), ssn—eo (519

where op(1) uniformly converges to 0 in probability as n — co. From (2.10)
and (3.2), we know that with probability 1,

sup_ |P{T* <z|0,}—P{T <z} —0, asn-—oo (5.14)
where .
I* =m fo [0 — Ua)2dU. | (5.15)
Hence, from (6.13) and (6.14), we have that |
_sw  |P{T; < 2|0} — P{T<z} £40, asn— oo (5.16)

For CJ given by (3.1) and C% by (3.3), we know that (5.16) implies
|P{T;, > C3| Op} — P{T > O3} = la = P{T > G }|

=|P{T>C%-P{T>C:} £ 0, asn— oo

Therefore, (3.4) follows from the continuity of the d.f. of T'.
(i) When F = Fy # Fp, from (5.12), (2.7), (2.10) and the assumption that
m = o(n), we have
m[U% —UPR = m[U% — U2 +m[Us — U+
A o (5.17)
+ 2m{03, - Un][Uo = U] 4 0,(1)

and thus by (5.15) and (2.10),

1 1
T,:,:T,;Jr-m/ [Uo—U}sz-i-?mf [U% — Un)[Uo— U 1dU +0p,(1) (5.18)
: 0 0 .
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=0,(1) +mf:[U0 — UdU + Op(v/m)

Noting that (3.1) implies
P{T% <C O} =10, (5.19)

hence, (3.5) follows from (5.18) and
1 oo
m/ [UD—U]sz:m/ [Fi — FoJ?dFy — o0, as n — oo. (5.20)
0 0

To show (3.6), one just needs to notice that by (2.7),
Ty = 0,(1) + O, (V) + n/ [Uo — U2,
. Jo

where Op(1) is bounded in probability, and that by (3.1),
a = P{T; > C3| On} = P{T5/Tn 2 Co/Tn| On}-

Therefore, (3.6) follows from (5.18), (5.20) and Tpy,/T, — 0 as n — 0. w
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