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ON HADAMARD DIFFERENTIABILITY
AND ITS APPLICATION TO R-ESTIMATION IN LINEAR MODELS
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Abstract. We show that the remainder term of a form of the Taylor expansion,
involving the Hadamard derivative, of the functional defined on the space D[0,1]xD[0,1]
is uniformly asymptotically negligible over a compact set with respect to weighted
empirical processes. We also show that the functional induced by the estimating
equation of R-estimators of regression is defined on the space D[0,1]xD[0,1] and that
this functional is Hadamard differentiable. Such differentiability property of the
estimating equations directly reveals the equivalence relation between the estimating
equations of R- and M-estimatiors of regression. Thereby, the equivalence of R- and M-
estimators of regression and the asymptotic properties of R-estimators are derived under

less stringent conditions in the literature.

1. Introduction.

In nonparametric models, a parameter ¢ (= T(F)).is regarded 45 a functional T(-)
on a space § of distribution functions (d.f.) F. Thus, the same functional of the sample
d.f. (i.e., T(Fp)) is regarded as a natural estimator of ¢. Using a form of the Taylor
expansion involving the derivatives of the functional, Von Mises (1947) expressed T(Fp)
as £
(1) T(Fg) = T(F) + Tg(Fa—F) + Rem(Fq—F; T()
where Tp is the derivative of the functional at F and Rem(Fp—F; T(.)) is the
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remainder term in this first order expansion. Note that Fp(x) = n™* f=lI(Xi5x) is

based on n independent and identically distributed random variables (i.i.d.r.v.) X, .-,

Xn, each having the d.f. F, and that Tp, is a linear functional. Hence, Tp(Fp—F) is an
average of n i.i.d.r.v.’s. For drawing statistical conclusions (in large samples), T plays
the basic role, and in this context, it remains to show that Rem(Fp-F; T(.)) is
asymptotically negligible to the desired extent. Since a statistical functional induces a
functional on the space D[0,1] (of right continuous functions having left hand limits) by:
7(G) = T(GoF), where GeD[0,1], we can equivalently write (1.1) as

(1.2) 7(Upn) = r(U) + r,(Up—-U) + Rem(Up-U; 7)

where Uy is the empirical d.f. of the F(Xi), 1<i<n, and U is the classical uniform d.f.
on [0,1] (i.e., U(t) = t, 0<t<1). Hence, it is equivalent to show that Rem(Up~U;r(.)) is
asymptotically negligible. The appropriate differentiability conditions are usually
incorporated in this verification. The condition of Fréchet differentiability (viz.,
Kallianpur and Rao, 1955; Boos and Serfling, 1981, among others), Hadamard (or
Compact) differentiability (viz., Reeds, 1976; Fernholz, 1983; Gill, 1989, 1991; Ren and
Sen, 1991; among others) and Gateaux differentiability (viz., Kallianpur, 1963; among
others) have been considered by various people. Particularly, using Hadamard
differentiability (along with some other regularity conditions), Reeds (1976) showed that
(13) 8 Rem(Up-U; r) £0,  asn—oco.

This Von Mises method has been used by Fernholz (1983) and others to study the
asymptotic properties of estimators based on i.i.d.r.v.’s.

Here, we consider a different application of Hadamard differentiability. Some
statistics, such as (robust) M- and R-estimators in linear models (which are not based
on i.i.d.r.v.’s), are defined through some estimating equations. Specifically, consider the
simple linear model:

(1.4) X,=¢/8+e, ix1

where the ¢ = (cil, ey cip)T a.me1 known p-vectors of regression constants, g is the p-
vector of unknown (regression) parameters, p > 1, and e, are iid.r.v.’s with df. F.
Then an M-estimator j,, suggested by Huber (1973), is defined as a solution (with
respect to §) of the equations

(15) T ¢ p(X;~cTe) = 0,

where ‘‘= 0’ means “‘as near ( as possible” and ¢ is the score function. An R-estimator
,@R, suggested respectively by Jureckova (1971) and by Jaeckel (1972), is defined as a

solution of the equations

(16) 2 alR(X;~c2)] (¢-2) = 0,



where R(X;—¢["¢) is the rank of Xi-—gff_? among {X;—c78, -+, Xp—cad}, a(i) = an(i)
Wb(-n-j_—l) for a proper score-generating function ¢, € = (T4, -, EP)T is a column of Dy =
01518 Dy for Dy = (¢4, -+, ¢n)T. We will see later on that these estimating equations

induces a functional defined on a space of distribution functions, and that frequently
this statistical functional possesses differentiability properties which provide information

about the asymptotic behavior of the estimating equations.

We denote ||-|| for Euclidean norm. Let Y. = Xi—-gir{_i (ii.d.r.v's with d.f. F), and

let Bn = Z?_l i* 1 = DﬂDns Cn = in=1(gl_§)(§1_§).r = {DE—DD)T(DI]._DD): Bg s

Diag(lld,ll, -+, lidpll) for d; to be the column vector of Dy, Ca = Diag(|id4ll, -, lIdpll)

for d to be the column vector of (Dp—Dp), b_. = (BR) ¢ = (b1 bmp)T’ €y =
(G™M(5;=2) = (egips ~ Caip) > ¥ = Bﬁ(e—g) and v = C3(8—), then (L5) is

equivalent to the normalized equations

(17) (u) 1~m§p(Y ) =0,

and with the assumption Ei:la[i) = 0, R-estimators are defined by the solutions of

(1.8) En(y) = E?:lgni a[R(Yi—‘};iY)] = 0.

Here (1.8) is a normalized version of the estimating equations suggested by Jureckova

(1971) or Hettmansperger (1984). We notice that Mp(u) is a linear functional of 3 (t,u)
= ¥R b I(Y,<F(t)+bTu), te[B,l], ueRP, viz.,
Mn(u) = {{ (F(t)) dgh(t,u) = o($4(-n))

and Ep(v) is (equivalent to) a functional of (S§(-,v), Fa(-,v)) (see Theorem 4.3), viz
1 %

where for te[0,1], YGRP,

(1.9) Fa(t,y) = T =4 T 1Y <F t)+9;i*f},

and Fq *(t,v) = inf{y; Fﬁ(y,y}zt}_. Smce for any fixed u, nk(-,g) (the component of
$3) is an element of D[0,1] and (S;k(-,g}, Fa(-u)) (the component of (Sg, F;)) is an
element of D[0,1]xD[0,1], My and Ep correspond to a functional defined on the space
D[0,1] and D[0,1]xD[0,1], respectively. We show, in Lemma 4.1 that functional ¥,
induced by the estimating equations Ep(v) of R-estimators of regression, is Hadamard

differentiable. Such differentiability property of ¥ suggests its asymptotic equivalence



relation with a linear functional ¥', provided a general form of (1.3) holds with respect
to (Sz, Fa).

The essential difficulty in the study of the asymptotic properties of M- and R-
estimators is the nonlinearity of the estimators, and often it is the case that the uniform
asymptotic linear approximation of the estimators (Jure¢kova, 1971, 1977) may provide
an easy access to the study. To establish the follwoing Jure¢kova-uniform asymptotic

linearity of M-estimators:

(111) sup  |Ma(2)-Ma(@)+@nurp| 20,  asn—co,
ul<
where K is any fixed positive real number, |-| stands for uniform norm, @ =

T2 b DT = (BR)'Ba(BY)? and v, = IF'(x)dp(x) > 0, Ren and Sen (1991), using

Hadamard differentiability, extend the result (1.3) to a more general form with respect
to the weighted empirical process f5; for p = 1, which show that Rem(?;k(‘,g)—U; ) is
uniformly asymptotically negligible for |u|] < K. A further generalization regarding a
functional defined on the space D[0,1]xD[0,1] with respect to the weighted empirical
processes (S, Fp) is established in Theorem 3.1. We would like to point out that our
Theorem 3.1 is a general result on Hadamard differentiability. It includes (1.3) as a
special case, and it allow us to directly investigate the asymptotic behavior of any
statistic which induces a Hadamard differentiable functional of weighted empirical
processes. In fact, the L-estimators of regression of Welsh (1987) or Ren (1992) and
above estimating equations of R-estimators of regression all induce some Hadamard
differentiable functional of (S, Fpn) (see Ren, 1991 and 1992, on L-estimators of
regression).

To illustrate the use of our Theorem 3.1, we show, in Theorem 4.3 and Theorem
4.4, that the estimating equations of M- and R-estimators of regression, Mp(u) and
Ep(u), are asymptotically and uniformly equivalent for proper score functions, because
the functional induced by Mp(u) is linear and because ¥, the functional induced by
En(u), is Hadamard differentiable. By this equivalence of the estimating equations,
easily the uniform asymptotic linearity of R-estimators is followed from (1.11) and the
asymptotic properties of R-estimators are derived.

Jureckova (1977) studied the relation between M- and R-estimators. In her proof,
she required more technical assumptions on the structure of the design matrix and
assumed that F has finite Fisher’s information. These assumptions are weakened in
Theorem 4.4 without requiring any essentially stronger conditions on 4 for the
asymptotic equivalence of M- and R-estimators of regression.

The asymptotic normality of R-estimators was studied by Juretkova (1971) for



general scores with technical assumptions on the structure of the design matrix Dy and
by Aubuchon (1982) (a proof can be found in Hettmansperger’s (1984)) for a specific
score. Applying an analogue of the Convexity Lemma (Pollard, 1991), which was
established to derive the limit distribution using a technique analogous to the method
by Jureckova (1977), Heiler and Willers (1988) relaxed Jureckova’s (1971) assumptions
on Dy. All these people require that the error distribution function F has finite Fisher’s

information. In Theorem 4.3, we weaken these conditions for the same study.

2. Notation and Assumptions.

Consider the D[0,1] space endowed with uniform topology and the o-field of .
subsets of D[0,1], D, generated by the open balls. The space C[0,1] of real valued
" continuous functions, endowed with the uniform topology, is a subspace of D[0,1]. For
convenience sake, we list most notations used through this paper as below. For 1 < j <

p,te[01,uce Rp, we denote
T
Enj(u) 1--1 nij {R(Yi—gnig)]’
as the components of Ey(u), and

S3i(tw) = T

1—1 nij m u},

as the components of S3(t,u). We also let

(t u) = ]_1 m] Y. ‘CF'l(t)—t—cmu)}

S*‘(t Tie 1S HGSF (O+egu)),
and
Fn(tu) = E{F(tu)} = g5 T FE(t)+epu) )
Snj(t u)=E{S*.(t )} = 21 16 m] F(F(t)+¢;u)
Spy(tw) = E{S**(tu}— Ti 1 F(F(t)+¢l; u))
Spiltw) = B{SG(tw)} =T Tie 1 FE (B+eqw),
where cf;e = max{0, ¢} and ¢y = —min{0, ¢ ;;}. Then,
Coij = °zij ~ pij'  Sni = ni ~ Soi
Spi(t:u u) = S;¥(tu)-Sy; (t
Spitsu) = Sg;(tu)=Sy;(t.u
We denote, for n>1, Qn = coathy = (gg)‘lgn(gg)'l, then some

1—~1~n1~m

assumptions, which may be required for our results, are given below:



(A1) hm max |lc

—00  1<i<n “ni

|I? = 0
(A2) There exists a positive definite pxp matrix Q such that Illiangn = Q.
(B) F has a positive and uniformly oont;nuous derivative F'.
(C1) The scores ay(i), i =1, 2, ---, n, are generated by a function ¥(u), 0 < u < 1 by
either of the following two ways: b
an(i) = E{¢(UQ)}
an(i) = ¥(i/(n+1)),

where Ug} denotes the ith order statistic in a sample of size n from uniform

distribution on (0,1).
(C2) The score-generating function ¥ is a finite sum of right continuous and monotone

functions on [0,1] with

A2=J:[w(t)]2dt>0, and Ew(t)dt =0.

(D) ¢ is bounded, nondecreasing and right or left continuous with Igde = 0.

Remark 1. It can be shown that (Al) and (A2) are implied by the conditions on
the design matrix required by Jureckova (1971, 1977) and Aubuchon (1982). (Al) is a
special case of (V') of Heiler and Willers (1988). Hence, (Al) is weaker and easier to
check than (V) of Heiler and Willers (1988). However, Heiler and Willers (1988) do not

require any limiting condition on (Dp—Dy), i.e., (A2) in our case. This is because they

consider the asymptotic normality of (equivalently) QEXZQS(,@R—,S), instead of our
Cg(,@R—ﬁ‘) (see Theorem 4.3). Note that Cf is a diagonal matrix with d;agoua.l

elements to be the norm of the column vector of (Dp—Dp). Hence, our CR(Br—g) is

more general than Vi(#gr—p) considered by Juretkova (1971) and Aubuchon (1982),
and the advantage of considering Qg(,@ﬂ— B) is that its asymptotic normality clearly
implies the convergence rate in probability for each component of g is just the norm of
the column vector of (Dp—Dp), respectively.

Remark 2. Jureckova (1971, 1977), Aubuchon (1982) and Heiler and Willers
(1988) all require F has finite Fisher’s information for the study of the equivalence of
M- and R-estimators of regression or the asymptotic normality of R-estimators of
regression. Note that, by Theorem 4.2 of Huber (1981, page 77), finite Fisher’s
information implies that the density function F' = f has to be absolutely continuous. In
comparison, our condition (B) on F is weaker. The condition of finite Fisher’s
information usually comes along with the study of the efficiency of the estimator.

However, the efficiency of R-estimator (even for location model) cannot be achieved



when F is not symmetric (Huber, 1981, page 70). Hence, just for the study of
asymptotic normality of R-estimators and its equivalence relation with M-estimators,
the condition of finite Fisher’s information does not seem necessary. In fact, Bickel
(1973) and Welsh (1987) do not require such condition on F for L-estimators of
regression. In practice, weaker conditions on F increases the usability of the estimators,
since F is usually unknown and not necessarily symmetric. The examples of F with
infinite Fisher’s information can be easily found. For instance, if the error distribution is
the mixture of double gamma distribution, say, F(x) = AF,(x) + (1-A)F5(x), where
0<)<1 and F, is the double gamma d.f. with p.d.f: £(x) = ﬁ?i[QI‘(ai)]'l]xlai_le_ﬁiIX|,
a; > 0, B8; >0, i =1, 2, then I(f) = oo for certain o and B, (for example: when g8, = g,
=1,a; =1,1 < &; < 3/2). Note that our condition (B) holds though for such F.
Remark 3. (C2) implies that ¢ is square integrable and is essentially the same as
those conditions required by Jureckova (1971, 1977) and by Heiler and Willers (1988).

The standardization condition of ¥, jl‘w(t)dt = 0, implies Ei“__la.n{i) = 0.
] =
To prove our results in this paper, the definition of Hadamard differentiability is

given as below.

DEFINITION. Let V and W be the topological vector spaces and L(V,W) be the set of
continuous linear transformation from V to W. Let A be an open set of V, a functional
7: A=W is Hadamard Differentiable (or Compact Differentiable) at Se A if there exists

rs € L(V,W) such that for any compact set T' of V,

i 7(S+tH)—r(S)—r5(tH) =
t— t
uniformly for any HeT. The linear function r§ is called the Hadamard Derivative of r at

S od

For our current study, we consider the functional r defined on the space
D[0,1]xD[0,1], and denote
Rem(tH; ) = r(S+tH)—7(S)—r5(tH),
where S = (U, U) and HeD[0,1]xD[0,1].

3. On Hadamard Differentiability

THEOREM 3.1. Suppose 7: D[0,1]xD[0,1] — R is a functional and is Hadamard



differentiable at (U,U). Assume (Al) and (B). Then, for any K>0,1 < k < p, as n—c

k() P
(3.1) Sup E Cm Rﬂm Fn( U.)-—U( ) ﬂk I .__U(‘), T — 0,
[u|<K I i=1 X ( El*lcmk ) '
(3.2) sup | E ka Rem(Fn( u)=U(-), —%lL U(-); = ) I Eo
[u|l<K i=1 Xi=1%nik

Therefore, we have as n—oo

k(u

su c -1 - #(U(), U

4 ﬁ_K'E sk {7(FaC-0), El_lcm) (U6, UO)} -
Sr(-w)

~ue)| Bo,
El lcmh )I

(3.3) - >:  Caik T u(Fa(-8)-U(),

and
owp | £ o (PG D) — (0, U0} -
lu[<K i= X 1%hik

( ) ) P
(3.4) —):c ool Fa(-u)— U(),_&ﬁ_. u))| &o.
i oo > Fal

The proof of Theorem 3.1 will be given later. We first notice that the following
corollary follows immediately from Theorem 3.1 because E] =1k = 2?=1c;ik -

Ei=1 ik = 0 for 1<k<p.

COROLLARY 3.2. Suppose r: D[0,1]xD[0,1]—R is a functional and is Hadamard
differentiable at (U,U). Assume (Al) and (B). Then, for any 1<k<p and K>0, as n—oco

( ] 'Ll) 1 ('a 'Q.)
su; ct Fa(-u), _ﬂ____ Fa _ﬁ"'__'k =
jul<K i Ii s () i1 mk) é i (50 )Zi:ﬁik)

(3.5) = TEu,u)(Os S;k(‘:l}))l E 0.
Before we start proving Theorem 3.1, we need to notice that

(BT 1%k = b Timi%uk = Dieinik~Tie Gk =0 frls<ksp
and a few facts implied by assumption (Al) and (B). Since



_wn 2 n = n _+
1= Eicsqik < {(mar legplt Tizylengl = 2{max lenulb Tt e
(Al) implies
(3.7 E?:lczzik = E?:lchik — oo, asn — co.
(B) implies that F' is bounded and uniformly continuous. We can also easily see that it
suffices to establish (3.1) for the proof of Theorem 3.1.

Since [U,l]x{——K,k]p is divided into finite pieces by smooth curves Ik t =
F(Yi—g;ig), 1 < i < n, and the values of S;f{{t,g) and F3(t,u) are simply constants in
each piece, we can smooth S:i'((t,g] and F3(t,u) through those pieces, respectively. Let
S;L(t,g) and F(t,u) be the continuous version in (t,u) of S;i’{(t,g) and Ff(t,u) for 1 <

k < p, respectively, and let Eq denotes the space [0,l]q for a positive integer q, we have
the following lemma.

LEMMA 33. Foranyk =1,2, .-, p, we have,as n —

(38) - ;up[ KK}pISEIC(t}g)—S;L(t,u)I < (p+l) max_cry,  as
s € 1X|—5h, et
and .
(3.9) sup Fa(to)-Fatw)l < BH) as
(t,0) €Eyx[-K KIP :

Proof. The proof is just the general form of the one of Lemma 4.1 by Ren and Sen
(1991). More specifically, with probability one, there are no more than (p+1) smooth
curves b t = F(Yi—g;ig), 1 <i < n, intersect at one point for each n > 1. Therefore,
with probability one, the largest jump of S;i”{ ind Fj are no larger than

{p+1)tf12.1;< c;.ik and (p+1)/(n+1), respectively. o
<i<n

Foru = (uy, -+, up)”, v = (vq, -+, vp)" € RP, we denote

iff ui < Vi, for 1= l, 2, wevy Pa

We also denote Ry = [0,00), and wp(6) = sup  |h(x)—h(y)| for a function b defined
lx—yl<é )

u

1A
e

on Rp‘

LEMMA 3.4. Assume (B) and assume for any n > 1 and 1 <i < n, ay € R., B €
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RY and Tni € RY satisfy
1<1<n{a .} max_ {18l%} ; Tgisn{”jmn } -
and

= b : n
L ag <1, 2 18,1% < 1, .lef:rm-llz
1= : i=

1=1
Then,
(3.10) {}30 Jm P( wy_ (6)2¢ )=0,
and

(3.11)  sup{|Va(tw,v)-Va(t,0,0)l; te[0,1], lu|<K, |v|<K} £ 0, asn—oo,
where for K > 0, t € [0,1], u and v € RP with |u|<K, |v|<K, Va(tu,y) = Ji(t,u,v) —
Jn(tu,v) and J;(t,:.;,y):ﬂil:lanil{‘{i5§;ig—:y;iy+F'l(t)}, Jn(t,y) = E{Ja(t,u,v)}.

Therefore, for any 1<k<p and any K>0, assume (Al) and (B), then, for any >0

(3.12) m Jm P w “w_ (6)2:):0,

where W k(t'!u) ( 1= 1 nlk[Fﬂ u) Fn(ta“)] [S;L(tvg)_sgk(tag)])s !QISK

Proof. Without loss of the generality, we may assume that K = 1. For any §>0, we
choose positive integers m; and mp such that mgz[é'l/(ap)] and mn=[.l;11/2], where

An*ma.x{m 185115 liﬂgil': llyg;lls mg.Xqua i}' Foranyy,vx,y € RP there exist u’;

‘(
1.1"; v’ 1 Y X x .Y Y € Lp(m5) {m§ (Jl! S JP)Tl jl = D; il\ i'21 SR imé; i =11 2:.

-, p} such that

and
[u__ur|<m'l Euu ! ' =1 " -1
=T 1= = _glgmé 3 |Y-Y |£m§ 1 IY _Ylgm‘s H
[x—x'|<mg!, |x"-x|<mj}, ly-y'|<mgt, ly”-yl<mj.
Also, for any se[0,1], there exists k € {0, 1, 2, -, (mp—1)} such that g <s < (ﬁnl)‘

Since Ji(t,u,v) is nondecreasing and nonincreasing in u and v, respectively, we have
Vn(t!g!Y) - VI}(S!).{'Z} = {Ja(t’!gsy)_‘}n(trg:“:)}_{JE(S:KaE)_JH{SaKr}_’)}
< {Jﬁ(t,g",g’)—.}n(t‘g,y)}—{JE(S,:S',)_(”)-—JB(S,QCQ')}



= {Va(t.u",v)=Val(s.x'y")} + {Ja(tu",v)-Jn(tu,0)}—{In(sx"y") ~In(s,x.y)}
= {Va(tu"y)=Vals,u"x)} + {Valsn",v)-Va(d u"y)}) +
+ {(Va(dsu",v) - Va(dsx'y)} + (Vald x'y") -Valsx'y™)} +
=+ {Jn(tu"¥")=JIn(tu,y)} = {Jn(s:x"y") - In(s,x.y)}
and similarly
Va(tu,y) — Va(sxy) 2 {Valty'v)-Valsu'v")} + {Vals.u'v) - Valgsu' v} +
+ (Vg u',v) - Va(ds 5"y} + {Va(de x".y) - Valsx".y)} +
+ {In(tn’,¥")=In(t,u,v)} - {In(s,x",y) = Jn(s:x.y)}.

Therefore,
w 3 V u v i
SRy —1
+Osf{n§fcmn_1){s P{]Vn ) Vn(iﬁ—: :Y)l I(LT.V (x‘y)|<(5+2ma)

L:,E,ac,yeLp(ma)}} +

+ 2 sup{|Jn(t,u,v)=In(tx,y); te[0,1], I(w,v)—(x.y)l<my'}.

For any ¢ > 0,

P{uvn(a) > c} < sup IVn(t,u v)=Vpu(s,u v)l 5}

r o
u, velp(mg) \ [s-t|<6

(mg-1) i
+ £ {(Vatden -Vl I(t.l,\:)—(x,z)ls(6+2m§s‘)}2§}+
k=0 lu,v,x,yeLp(my) e

(3.13) 4+ P{Sup{lJn tu,y)=Ja(tx.y)l; tel01], 1(e,y)-(xy)l<m3'} > §

By the proof of Corollary 2 of Shorack and Wellner (page 112, 1986), we have

}

sz ¥ m NaGwn-Vaean] 2 g
[mg]

u, velp ls-t| <mj>

¥ P{ sup 'Vn(t,u ,v)=Vn(s,u,v) |
u, veLlp(m,) {[s-t|<s

=il

2
" (2m;+1) p( 2

(/9 \1<i<n ™
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+M max { sup |F(§Tu—7 v+F(t) Aru—yT.v+F(s) |})
l(l‘cﬂ F(Q,YNSI, [5—t|$m;$3p Hl ni~ ) ( ni~  Ini- )
(2m5+l)2p 2 -3p
SO G M{mg "+ 2M1p(r1ugaic£n|m l+mas gl N}
2 1 3
(3.14) Y s _3 Mm;”®,  asn—c,
(¢/9)
where M and M, are constants, and
(mp-1)
P{ sup {IVa(asu0) - Valds xy)l; I(I.J,Y)—(J.c,z)l5(5+2m3‘)}2§}
k=0 1,v,X,y€Lp(my

(mn-l) 2p k k £
= 5% g‘yeﬁ(ma) Fglp{ s Vol )= Valdip ) o) 2 65}

OﬁP,uSN:gl

< 2pM2mn{2m5+1)2p { M,

< An + m 2
(c/6p)* N, ™ 1i<if<n°m}

2PM2(2ID5+1) M, ,1/2 3/2
A A

where N5=[m6/3], ey denotes the p-the unit vector and M, is a constant. Therefore,

(3.15) = 0, as n— oo,

(3.10) follows from (3.13) through (3.15), laimom6=oo, and the fact:
S“P{Un(tagxl’)—Jn(t>¥,¥)|; tE[U,l], |(9$Y)—(¥1¥)|Sm:ﬁx} Tk 0! as n—oo.

Similarly, (3.11) can be easily shown.

Note that the upper-bound 1 for 21_1 Chy Zin=1!|gni[| and ):1_1]|1rm| may
be replaced by any finite positive constant. Therefore, (3.12) follows from (3.10) because
fDI (Qnia gnia 'l'm} - (Elecglk/(n'i'l)! g;l’ 9;11)1 Z?_lcgik[F;(ta‘\})‘Fn(t}l})} =
Vot and for (agg, B 709)=(Ehiger S5 €29 (555 (1) =S ()]=Vyy (b). O

LEMMA 3.5. For any 1<k<p, assume (Al) and (B). Let
T (tu) = (T ot Fat(2u-DK)-t), (531 (t,(2u-DK) -t T ¢ty ),
(tu)eEyy, and let {P_,; n>1} be the sequence of probability measures
corresponding to Tnk‘ n>1. Then, {P nk} is relatively compact.



Proof. Using (3.12) of Lemma 3.4, the proof is analogous to the one of Proposition 4.3
by Ren and Sen (1991). More specifically, for 1<k<p, let

_ I +
H , (tu) = zj=1cnjk{zi_1 a7 €ai (2u I)F (F()K},
it suffices to establish (4.8) of Proposition 4.3 by Ren and Sen (1991) for an and Gy,

respectively, i.e.,

(3.16)  sup_ |1S3(t (u-DK)—tTR cta] — Gy (tu)| = 0, asn—eo,

tu)eEpy,
an
(3.17) sup | Y cmk [Fa(t, Qu-I)K)-t] — an(t.,g)] — 0, asn—co.
(t,u)eEy,, i=1
Since
sup | 3 cmk [Fa(t, (2u-1)K)—t] — H_, (t, u)l
(t,u)eEyy, =1
1 + el -1 T
sup — f: cto { 3 [FEYt)+¢T(2u-D)K) -t —4] : |
(t,y)EEHll n+L.= ml{{j:1 nj }

n
<Timthik 4 wp |k E cond £ FO-FE 1 ee-D0}

i=

n _+
< Tzl B2K o R(-FE)),
o nh (t;u)eEpy,
and similarly

sup Shk(t (2u-DK)- tz ] = G_,(tu
(t,g)EEH_lI[ CnJL nk )I

<pK sup |IF'(E)—F’(F-1(t})|s
(t’g)eED‘i‘l

where ¢ is between F7!(t) and F"l(t)-l-g:;-(Zg—l)K, and since
n

Zi=1%ik . 1@
=5t =gl #ene;

(3.16) and (3.17) follow from (Al) and the uniform continuity of F". D

Let T be a set in D[0,1]xD[0,1] and HeD[0,1]xDI[0,1], define
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dist(H, ) =inf |H - G|.
Ger

LEMMA 3.6. Let Q: D[O,l]xD{G?l]xR—v}'{ and suppose that for any compact set T in
D[0,1]xDJ[0,1],
(3.18) %EO Q(H,t)=0
uniformly for Herl. Let ¢>0 and let ap, By be sequences of real numbers such that
an—0, fn—0, as n—oo. Then, for any compact set T in D[0,1)xD[0,1], there exists a
positive integer N such that, if dist(H, I')<ap, then

IQ(H, fn)l < ¢, n2N.

Proof. The proof is similar to the one of Lemma 4.4 of Ren and Sen (1991). O

Proof of Theorem 3.1. By Lemma 3.5, the sequence of probability measures {Pnk} is
relatively compact in  C[0,1°**xC[0,1]°™*, where P, (A)=P(T  €A). Since

C[0,1]°**xC[0,1)°** is complete and separable, by Prohorov’s theorem (Billingsley 1968,

Theorem 6.2), {P,} is tight, ie, for any >0, there exists a compact set T in
C[0,1]9+1XC[0,1]D+1 such that P{Tnk €r}>1-§, n>1. By Lemma 3.3, we have
n - = I *
P{Tnker, I(.E, chnFiCe), SiC)~( £ chaFiC): Sii)ll<

n +
O
(3.19) 5(p+l)max{%, max c;ik}} > 1—¢,  for large n.
<i<n

Let I‘1={Tnk(-,1.1); T, €T, u€Ep}, then I, is a compact set in C[0,1]xC[0,1], and is also
a compact set in D[0,1]xD[0,1] because C[0,1] is a subspace of D[0,1]. Since Lol
implies T ; (-,u)€T; for any u€Ep, i.e., for any ueEp,

(3.20) (SRt (FAC,(2u-DK)-U()), 855 (-2u-DK-U(TR ¢t ]) € T,

1=1"ni

and since
o

a . * *4 \ n . * *4 E': i +
”(iglcnik II.('a“v)ggnk(qé))-(iglcnikf‘n(',-:),Snk(-;&))lls(p'i‘l)max{_l n.:..]_n!k’ ?gsncuik}
implies
II(Elc;jk A(-(2u-DK), é;;;(-,(2g~1)K))—('§1c;ikF;(',(a.z—z)K), Sit(-2u-DK))|
1= 1=

En 1c+'L
i=1"nik +
(3.21) < (p+1)max{n7+1, T;}i(gncnik}’ for any u€Ep,



then, by (3.19) and the fact that (3.20) and (3.21) imply

n +
dxst{(zc lFA(-(20=DK)~ VO, (S35.(+(20-DK)-U(). & egyg]). T4} <
1=
‘ Si=1ik :
< (p+1)ma.x{T, Tgaicgncnik s for any ueEp,

we have, for n>1,
P(dist{(_ﬁlc;ik{r‘;(-,(2g-1)K)—U(-)J, [SEL(-,(29—I)K)—U(')_>%lc;ik]), r}<
1= 1=

n

) Il
(3.22) < (p+1)max{‘;—_’l-_ln$ Tg;:{ﬁcnik , for any ueEp | > 1—ec.

Since r: D[0,1]xD[0,1]—=R is Hadamard differentiable at (U,U), by the definition
of Hadamard differentiability, (3.18) holds for Q(H,t)=Rem(tH)/t. By Lemma 3.6, (3.7)

and (A1), for the above compact set I';, there exists a positive integer N such that, for
n

i ' Tie1%nik '
n>N if dlst(}{,l"l)g(p+1)max{n—_l_1—, Tg}i{gncnik , then

Rem(—g2—; :
|Ecmk em(E1 . ;1}( r)l <€

Hence, taking H=(SR ety [FA(-(28-DK)-UCLSH(+(2a-DK)-UC) T yep)

for n>N and u€Ep, we have that
dist{( Ty 51 [FA(-(20-DK)-UC)L (g (-(2e -DK) -UO)TiL o) T}

1*-1 n1

L.
n

< (p+1)max M;;—’-}—‘ max G . o, for a:nyl-ueE
- o+l ' 1<icn k[ v=oR

implies for ucEp

Sak(+ (2u-DK)

(3.23) [iélcnik Rem([Fn(-,( u-1)K)-U(-)], {mk——U()]s -r)] <€,
Since (3.23) implies
Sk v

sup I§:c + Rem([FA(, 0)-U0), [E—-U() )] <

[u]<K i=1 E1—1le-i

by (3.22) we have, for n>N,
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t—c<P{mp | £ cly Rem(F3( )-U0) [21-(1;:1)\ U 7<)

4. On R-estimators in Linear Models.
We will see in Theorem 4.3 that the estimating equations of R-estimators Ey(v)
induces the following functional ¥: D[0,1]xD[0,1] =R, defined by

(41) %G, H) = | G(E\(t)) dv(t), G, HeD[o,1],

)
where H™*(y)=inf{1, x; H(x)>y}. We show, in the following lemma, that ¥ is Hadamard
differentiable.

LEMMA 4.1. Assume (C2), then the functional ¥ defined by (4.1) is Hadamard
differentiable at (U,U) with derivative

¥y, uy(G B) = JIGO-HE)] du()

Proof. The functional ¥ can be expressed as a composition of the following Hadamard
differentiable transformations:
vi: D[0,1]xD[0,1]—D[0,1]xL'[0,1] defined by +,(G,H) = (GH?), is, by
Proposition 6.1.1 of Fernholz (1983), Hadamard differentiable at (S, U) with derivative
Yo yG H) = (G, ~H),
for any SeD[0,1].
72t D[0,1]xL*[0,1]—L*[0,1] defined by 7,(G,H)=G(H), is, by Proposition 6.1.6 of
Fernholz (1983), Hadamard differentiable at (U,S) with Hadamard derivative
T2US(G H) =GoS+H
for a differentiable S with range [0 1) and derivative bounded away from zero and
infinity.
73t Ry, (the range of 7,) — R, defined by v3(H)= JH(t)dg{a t), is Fréchet
differentiable at any S with derivative
7s(H) = ] H(t) du(t),
because it is a linear and continuous functional.
We have
¥(G, H) = 13(72(71(G, H)))
Hence, by chain rule (Fernholz, 1983), ¥ is Hadamard differentiable at (U, U) with

derivative

¥ou,u)(G H) = 15,092, 4,71y, B)



= 75y725,5(C: ~B) = 73,(G-H) = [[G()-H()] dy(t). O

For convenience sake, we give the following theorem for the general uniform

asymptotic linearity of M-estimators.

THEOREM 4.2. Assume (B) and (D). Let

(42) #n(u) = T jop: o(Y;—B8n:u),

where u, » @i ,BmER with
max —-+G, max ‘2_‘0’ as n—oo,
15i<11“gm1 15i5n"§m“ co

and for a constant M>0,
TR lleg <M, TR 18,07 <M.
Then, for any K>0,

(4.3) o | 4n(@)-£a(@)] + T e 8Ture] 20,  asn—e
where y,=[F'dp > 0. Therefore, assume (Al) and (A2) for b . and Qp = Z mb;,
(44) sup _|Mn(s)-Ma(0) + @nurp| £ 0, asn—co,

lu|<K

and furthermore,

(4.5) (,GM—,@) = -W,Q 2Mqn(0) + op(1l), asn—co.

Proof. Let for 1<j<p,
an(t,u) SR e (Y <F ) +Tu) and V -(t,n.n = B{V3(tw)},
an gl = {Y, <F*(t)+4;u}, V;jz(t,t}) = I{Y =FY(t)+8;u},

ni*
then, if ¢ is left continuous,

V;j(t!g) de(F(t) = _]ZJJ nij IodeFie) = ‘PHW)E?:l“nij = Mopi(9)-
iI=1 7 FoY - B

1—1 nij 1 nij

and if ¢ is right continuous,
. o 1
Vi (t) de(F(t) = Tap ] de(F (1) = p(+eo) TiL g apys = Mopi(w)-
1=1 F(Yi"r'_sm"—*)

Since, from Lemma 3.4, we easily have

sup V= (t,u) P 0, as n—oo,
te0,1], jul<K '
hence, as n—oo,
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1 * *® -1 P
. mgKIJ«nj(g) = 24(0) + [{Vai(tis) ~Va(t.0)} de(F ()] = 0.

Therefore, in order to show (4.3), it suffices to show for 1<j<p, as n—co

(4.6) sup{|[Vz;(t,u)-V3(t.0)] - T e s TuF (F(1)]; telo,1], lul<K} £ o

By (3.11), we have .

sup{|[V3;(t0) - V(b [V3(60)) - Vi,(60)]]: telo), jul<K} £ 0, as n—co.

Hence, by the uniform continuity of F', (4.6) follows easily from

sup{[[vm(tu) —Vyi(t0)] - TR a8 BLuF'(F(t))]; te[0,1], [ul<K} — 0, as n—oo.
Assume (Al) and (A2) for b . and Qp, (4.4) is obvious by (4.3) for o .=§ .=b ..

To show (4.5), we consider a function p such that p'=yp, then p is a convex function.

From (4.4) and a similar proof of Lemma 1 by Jaeckel (1972), we have for any K>0,

(4.7 sup |D(Y-Dou)-Q(Y-Dpu)| 20,  asn—co,
lu|<K
where D(Y -Dpu)= zp{ ;—cTu) and Q(Y-Dnu)=D(Y)-u"Mn(0)+2 75u "My (0)u.

Note that, by the theorem of Hajek and Sidak (1967, page 153), in=79Q0Mn(0) is
asymptotically normal: Np(Q, ¢ 2y ¢ Q) for o°=[p’(x)dF(x)>0, and @y uniquely
minimizes Q(Y —Dpu), and that D(Y—-Dpu) is convex in u. Hence, using (4.7), (4.6)
follows from the proof of Theorem 5.2.3 by Hettmansperger (1984), i.e

ip = Bg{é‘m—?) = fig + op(1), as n—oo,

where iy minimizes D(Y —Dpu). ]

THEOREM 4.3. Assume (Al), (A2), (B), (C1) and (C2). Then, for any K>0,

(4.8) sup_[Eq(n) - En(0) + Quury| 20,  asn—o,
lu|<K

where -y‘b:j'F’d(;ch) > 0. Therefore R-estimator fiR is asymptotically normal, i.e.,
(49) CR(hr-8) 2 Mp(0, 724%Q),  asn—ce.

Proof. It is easy to show that
(4.10) Epjw) = - .lfS,’;j_(Fﬁ"(t.t_l)s.i) dw(t),
where S3; (t8) = TE (¥, <F () +cfyu}. Let S5;_(t0) = Sgi(tw) — % (6) =
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}:1—1 m]I{Y =P +§;i1.1}- By Lemma 3.4, we have
(4.11) sup{|Sp;_(tw)l; te(0.1], lul <K} : ) TR
Hence, we have

(412)  .swp |E (u)+_|'5* (F&i(t)u) de(t) | 20, asn—w.
lu|<K _

Note that (4.12) indicates that Ep(yv) is equivalent to the functional ¥ of (Sﬁ('sl’)a
Fﬁ(-,g)). Since

] S3(FE (b)) du(t) = | STHFR(60)9) du) — ] SFE () du(o)
8 g Sa0w) o snj(-,g) .
_iglcnijw( Zlﬁ—l m}! n( )) 1§1cﬂijw( m, n(.’g))‘

by Lemma 4.1, Corollary 3.2 and (4 12) we have
(4.13) sup | E, (u + j' S* (t u) dy(t) | 2 0, as n—oo.
u|<K

Since .
* = b1
Jee = -Bey o
(414) = - jepu(v(1)-w(F(Y -cmu))) Th (P (Y —eqq0)) = Ny(w),
therefore, by (4.11) and (4.13), we have
(4.15) sup  [[Bgs(w)-Egi(0)) - [Nyj(w)-N, (0)]l Fo, asn-w.
lu|<K

By Theorem 4.2, for ¢_.=§ . and p=yoF, we have as n—oo

=0l ni 'Ill

sup_|Nn() - Na(0) + TR cpichary| Bo.
lu]<K

L2

Therefore, (4.8) follows from Qp=% 1 15ni%ni T. and (4.15).

From (4.8) and a similar proof of Lemma 1 by Jaeckel (1972), we have for any
K>0,

(4.16) sup |D(Y-Daw)-Q(Y-Dpu)| £0,  asn—e,
where u/<
D(Y-Dau) = T, a(R(Y,~cru))(Y;—cpiu)

Q(Y-Dgu) = D(Y)-u"Eqn(0)+2v,u"En(0)u.
Note that, by Theorem V.1.5 of Hajek and Sidik (1967), Gn=75QnEn(Q) is
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asymptotically normal: Np(0, A%;.?_;{), and iy uniquely minimizes Q(Y —Dpqu), and
that D(Y —Dpu) is convex in u (Jaeckel, 1972). Hence, using (4.16) and a similar proof
of Theorem 5.2.3 by Hettmansperger (1984), we have

(4.17) ¥n = dp + op(1), as n—oo,
where §n=Qﬁ(§R—-§) minimizes D(Y —Dpu). Therefore, (4.9) follows from (A2) and
(4.17). O '

Remark. From the discussion Remark 1-3 in Section 2, we can see that, in
Theorem 4.3, our assumptions on the design matrix Dy are weaker than Juretkova’s
(1971) and Aubuchon’s (1982). We require essentially the same conditions on the score-
generating function ¢ as Juretkova (1971), Heiler and Willers (1988), which are more
general requirements than Aubuchon’s {1982). But we do not require finite Fisher’s
information condition on F as Jureckova (1971), Aubuchon (1982), Heiler and Willers
(1988). Also, note that, in our proof of (4.8), we do not need (A2). This means that we
can achieve the results by Heiler and Willers (1988) with weaker condtions on F by
using our method if we only require (A1) along with some additional condition.

THEOREM 4.4. In addition to (A1), (A2), (B), (C1), (C2) and (D), assume ¢ = 0.

Then, we have as n—oo
(4.18) CR0w— B) 2 Np(0, 797

where T=:E{7;390(F'1(t)}~7'1¢(t)}2dt If we further assume that gy=yoF, then for K>0,

(4.19) sup |En(u)-Mp(u)] 20, asn—os,
la|<K

therefore,

(4.20) e (ﬁR = .BM)| as n—oo.

Proof. First we notice that €=0 implies B = C§ and Qp = Qn. Therefore, by Theorem

4.2, we have

(4.21) CR(Bm—8) = 7 Qu'Mn(0) + op(1),

and by (4.17), we have

(4.22) CR(Br—8) = 74 QuEn(0) + op(1).

Hence,

(4.23) CR(Bm—Br) = Qu {r¥Mn(0) - 73En(0)} + 0p(1)

By (4.13) and (4.14), we have
(4.24) CR(Bm—2r) = Qu'{7¥Mn(0) — 7y Nn(0)} + op(1).



Therefore (4.18) follows from Theorem V.1.2 of Hajek and Sidak (1967).

To complete our proof, we can easily see that (4.19) follows from (4.13) and
(4.14), and that (4.20) follows from (4.24). O

Remark. In Theorem 4.4, without requiring any essentially stronger conditions on
¢ and ¢ than JureCkova (1977), we have weakened the conditions on the design matrix

and the underlying distribution function F.
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