MATH 601: Abstract Algebra II 3rd Homework Solutions Hungerford, Exercise V.3.6

Jonathan Rosenberg

assignment due Monday, February 19, 2001

(a) We are given $f(x), g(x)$ relatively prime in $K[x]$, such that $\frac{f(x)}{g(x)} \notin K$. In particular, $f(x)$ and $g(x)$ each have degree at least 1 . Now x is a root of the polynomial $\varphi(y)=\left(\frac{f(x)}{g(x)}\right) g(y)-f(y) \in K\left(\frac{f(x)}{g(x)}\right)[y]$, since $\varphi(x)=\left(\frac{f(x)}{g(x)}\right) g(x)-f(x)=0$, so x is algebraic over $\frac{f(x)}{g(x)}$. Furthermore, as a polynomial in y, φ has as its degree $\max (\operatorname{deg} f, \operatorname{deg} g)$.

Now $\left(\frac{f(x)}{g(x)}\right)$ is transcendental over K, since if it were a root of a polynomial $h(z)=z^{n}+a_{n-1} z^{n-1}+$ $\cdots+a_{0} \in K[z]$, we could clear denominators in

$$
\left(\frac{f(x)}{g(x)}\right)^{n}+a_{n-1}\left(\frac{f(x)}{g(x)}\right)^{n-1}+\cdots+a_{0}=0
$$

by multiplying by $g(x)^{n}$ to get a polynomial equation with coefficients in K,

$$
f(x)^{n}+a_{n-1} f(x)^{n-1} g(x)+\cdots+a_{0} g(x)^{n}=0,
$$

satisfied by x, contradicting the fact that x is transcendental over K. So let $z=\frac{f(x)}{g(x)}$; we have $K\left(\frac{f(x)}{g(x)}\right)=$ $K(z)$, the field of rational functions in the transcendental element z. We want to show $\varphi(y)=z g(y)-f(y)$ is irreducible in $K(z)[y]$. Note that in fact $\varphi(y) \in K[z][y]$, and it's primitive as a polynomial over $K[z]$, since its coefficients are the coefficients of g, multiplied by z, and the coefficients of f, so the only common factors of all the coefficients are non-zero elements of the ground field K, which are units in $K[z]$. So by Gauss's Lemma, φ can have a nontrivial factorization only if it factors in $K[z][y]=K[y, z]$. Since φ has degree 1 in z, if it had such a factorization $\varphi(y)=\varphi_{1}(y) \varphi_{2}(y)$, then one could assume φ_{1} had degree 1 in z and φ_{2} had degree 0 in z, i.e., were an element of $K[y]$. But then we'd have $\varphi_{2}(y)$ dividing $z g(y)-f(y)$, hence dividing both $g(y)$ and $f(y)$, which is impossible unless φ_{2} is a constant, since f and g were assumed relatively prime. Thus φ is irreducible and x has degree precisely $\max (\operatorname{deg} f, \operatorname{deg} g)$ over $K(z)$.
(b) Assume $K \subset \neq E \subseteq K(x)$ with E a field. Then E contains some element $\frac{f(x)}{g(x)}$ of $K(x)$ not in K. Hence we can apply part (a) to conclude that $\left[K(x): K\left(\frac{f(x)}{g(x)}\right)\right]<\infty$, and so $[K(x): E]<\infty$, since $K\left(\frac{f(x)}{g(x)}\right) \subseteq E$.
(c) We saw above that any element $z=\frac{f(x)}{g(x)}$ of $K(x)$ which is not in K is transcendental over K. So $K(z) \cong K(x)$ and there is a monomorphism $\sigma: K(x) \rightarrow K(z) \subseteq K(x)$ which is the identity on K and sends $x \mapsto z$. For any rational function h, this monomorphism sends $h(x) \mapsto h(y)$. Note that σ is a $K-$ automorphism of $K(x)$ if and only if it is surjective. In this case, we have $K(z)=K(x)$. Since, by part (b), $[K(x): K(z)]=\max (\operatorname{deg} f, \operatorname{deg} g)$, we see σ is an automorphism of $K(x)$ if and only of $\max (\operatorname{deg} f, \operatorname{deg} g)=1$.
(d) By part (c), $\operatorname{Aut}_{K} K(x)$ can be identified precisely with the maps $x \mapsto \frac{f(x)}{g(x)}$, where $\max (\operatorname{deg} f, \operatorname{deg} g)=$ 1. Thus these are the maps

$$
x \mapsto \frac{a x+b}{c x+d}
$$

where $a, b, c, d \in K, a$ and c are not both $0, b \neq 0$ if $a=0$ and $d \neq 0$ is $c=0$, and $a x+b$ and $c x+d$ are not multiples of each other. The criteria on a, b, c, d translate into saying that the vectors (a, b) and (c, d) in K^{2} are linearly independent, or that

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c \neq 0
$$

