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Overview for this Talk
● In line with this reading group, we will discuss a TQFT for spin and pin- 

structures on 2D manifolds. The TQFT is known as the Arf-Brown-Kervaire 
(ABK), and gives values in ℤ8 = {exp(2πi k /8) | k=0,...,7}

○ Physically, the ABK invariant is thought to be equivalent to the low-energy effective TQFT for 
the Kitaev chain protected by a time reversal symmetry T2 =1. (More on this later)

● But, we’ll discuss it through the lens of a combinatorics problem, known as 
the ‘dimer model’, where it arises naturally. We’ll get a neat perspective on 
spinors and fermions in (2+0)-D: a (discrete) Dirac operator, Grassmann 
integration, spin and pin- structures, ABK invariants, all have a natural role to 
play.

● We’ll start by describing the dimer model, on the plane, then on more general 
surface, and build up more language as we progress.

○ We’ll sprinkle in some words about SPT phases, and 

● The second half of the talk will describe some other relationships of the dimer 
model to 2D fermions (and 2D bosons!)



PART 1:

(Double)-Dimers



The (double-) Dimer model
● Consider some finite, simply connected subset U of  ℤ2, considered as a 

graph. Our question is: “how many perfect matchings are there on U?” 
[Kasteleyn, Temperley, Fisher (at UMD!), ~1961]

○ A perfect matching (dimer matching) is a subset of the edges of the graph such 
that every vertex is part of exactly one edge.

○ Denote by Zd[U] = # of perfect matchings on U.
A perfect matching

A pair of perfect matchings 
gives a loop configuration

● Note that U is bipartite.
○ Call the vertices {(x,y) | x+y is even} black, and {(x,y) | x+y is odd} white. 
○ To any pair of matchings, we can superimpose them. For the first one, draw 

arrows going towards the black vertices (the blue matching on the right). For the 
other matching, draw an arrow pointing to the white vertex (the red on the right).

○ So, any pair of matches gives a loop configuration on the graph, a collection of 
directed edges such that every vertex has exactly one ingoing/outgoing edge.

○ Denote by Zdd[U] = # of loop configurations on U. (dd = double-dimer)

● We’ll have that Zdd[U] = (Zd[U])2: since U is bipartite, there’s a bijection 
between loop configurations and pairs of perfect matchings.

○ We’ll focus on the double-dimer model on bipartite graphs, but the dimer story 
generalizes to more kinds of graphs. We’ll indicate when this is the case.



● So,                                       , almost what we want! Except for that (-1)σ 

factor
○ Note that (-1)σ = (-1)# of even-length loops, and every loop here is even-length, since it’s 

bipartite

Solving the Double-Dimer model
● This directed loop configuration picture for Zdd[U] smells like a determinant.

○ For any matrix A: 
■ D

■ A permutation σ of {1,...,n} can be viewed as a collection of 
directed edges on the complete graph on n vertices, with loops 
giving the cycle decomposition of σ. The factor ∏
(AC(1)C(2)...AC(Lc)C(1)) gives a weight to each permutation.

A collection of loops gives the 
cycle decomposition of a 
permutation on the set of 
vertices

● Suppose we choose A to be the adjacency matrix of the grid.
○ A(v,w) = 1 if v~w is an edge, A(v,w) = 0 otherwise.
○ Then ∏(AC(1)C(2)...AC(Lc)C(1)) = 1 if σ is a loop configuration of the graph, is zero 

otherwise.



Solving the Double-Dimer model (cont.) 

● Lemma: Any two loop configurations of a simply-connected squared grid can be connected by 
such flip moves. (‘flip connectivity’)

○ Proof: Fun exercise. (HINT: consider nested loops, induct on size of outermost loop in nesting: or c.f. 
[4] for more general statements)

● Given the lemma, we have a strategy to solve the model. We need to find a matrix K for whom 
the product of weights changes by -1 wrt a flip move, the ‘flip condition’. 

○ Then, changes in ∏(KC(1)C(2)...KC(Lc)C(1)) cancel out the changes in (-1)σ.

○ So, the flip-connectivity lemma tells us that det K = ±Zdd[U]
● So, now we need to find such an operator K…

○ Turns out that a discrete version of the Dirac operator works!
○ We’ll construct it explicitly on the next slide

● How to fix the (-1)# of loops? Consider “local flips”: flipping pairs of edges on opposite ends of a 
square.

○ This will change # of loops by exactly ±1.
○ It will leave ∏(AC(1)C(2)...AC(Lc)C(1)) the same. 
○ So, two loop configurations separated by one ‘flip move’ will have different (-1)σ.



● Step 2: Let K’ = σ1⊗∂1 + σ2⊗∂2 = “    ”
○ σ1,2  are any two distinct choices of the Pauli matrices below. They 

are internal to the doubled grid.
○ ∂1,2 are discretized derivative operators. 

■ ∂1(va,vb) = ±1 iff (va=vb±(1,0))  && ∂2(va,vb) = ±1 iff (va=vb±(0,1))

Solving the Double-Dimer model (cont.) 
● Step 1: double the grid (replace every vertex with a pair at the same 

location)

Doubled Dirac operator and 
its reduced version, 
choosing σ1,2 as σx,y 

● Step 3: Note that K’ decouples as two operators on two disjoint copies 
lattices (see figure to the right). Pick one and call it K.

○ K’s product of weights changes by -1 under a flip move.
○ One can verify this for each case. But there is a nice proof using just 

the Pauli matrix (Clifford) algebra σiσj +σjσi = 2 𝛿ij
○ So det(K) = Zdd[U]!

● There are many different choices of K that compute Z
○ E.g. ∂1 + i ∂2 works as well.
○ Matrices giving same weights are “gauge equivalent”



● NOTE: This determinant can be expressed in more familiar terms as the Grassmann Integral.

○ Where the quotations means the discretized version of the integral and Dirac operator.
○ So, it seems that the dimer model is a discrete version of a 2D Dirac fermionic path integral

● For a square grid, size m x n, we can explicitly evaluate the determinants using Fourier 
analysis. This is easier to do for ∂1+i∂2.

○ Basis of eigenfunctions (j=1,...,m, k=1,...,n):                                          
○ Eigenvalues: 
○ Zdd[U] = det(∂1 + i ∂2) = ∏ λjk

○ Zd[U] = det1/2(∂1 + i ∂2) = ∏ λ1/2
jk

The solved Double-dimer model (see lectures [3])

● It turns out that any planar graph can have its dimer matchings computed as the determinant 
of some matrix K. Such a matrix is known as a ‘Kasteleyn’ matrix. Non-planar graphs (more 
specifically ones that don’t have K3,3 as a minor) can’t have a Kasteleyn matrix.

● Now, let’s consider the dimer model on higher genus surfaces, where the ABK invariants and 
(s)pin structures will come into play.



PART 2:

Dimers and 2D spin topology



The Double-dimer model on a Torus
● Now, let’s consider a square grid on a torus (for ease, let’s focus on m x n torus 

where m,n are even, so that the graph remains bipartite) and try to count its loop 
configurations. 

● The same kind of matrix that satisfies the flip condition can be defined on a 
torus. 

○ BUT, there’s an issue. Loop configurations on a torus aren’t flip connected. 
○ A flip move cannot change the total homology class of the loops (i.e. sums of 

homology classes of loops), since a flip move changes the total homology class by a 
trivial cycle! A loop configuration on a 

square grid on a torus 
(fundamental domain in 
gray) with one nontrivial 
loop. A possible flip move 
in blue, changes the total 
homology class by a 
trivial cycle (red circle).

● From [4], for any square gridded 2D manifold, possibly with holes, higher genus, 
or a non-orientable surface, any two loop configurations that share the same 
total homology class in H1(M,ℤ) are flip connected.

○ So, this implies that if K satisfies the flip condition, any loop configurations in the same 
homology class give the same weight in det(K)

○ The flip condition isn’t true for general graphs, but a morally similar statement is [1,2]: 
■ There exist matrices K s.t. any two dimer matchings whose difference is trivial in 

H1(M,ℤ2) (mod ℤ2, since graph may not be bipartite, and general edges aren’t 
directed) giving the same weight in det(K). 



The Double-dimer model on a Torus (cont.)
● An additional condition we want our matrices K to satisfy is loop-reversal invariance, i.e. that 

a directed loop and its reversed partner must have the same weight. If we can arrange for 
this (we can [1,2]), then only the total mod 2 homology classes, in H1(M,ℤ2), can have 
different weights in det(K)

(0,0) (0,1) (1,0) (1,1)

Representatives of 
the possible total 
Mod 2 homology 
classes of loops.

● So, on a torus have four different possible homology classes of loops that may have 
different weights.

○ We’ll end up needing four different Kasteleyn matrices K to compute Zdd
■ (Spoiler: the four matrices correspond to the Dirac operators on the four spin 

structures on a torus)



The Double-dimer model on a Torus (cont.)
● For the original matrix K constructed from σ1⊗∂1+σ2⊗∂2, let’s figure out the weights in det K for 

each class in H1(M,ℤ2). (m,n are even)

(0,0)
This class has weights all equal 
to 1. This is because it can be 
embedded on the plane, where 
all weights were equal 1

(0,1) (1,0) (1,1)

For nontrivial configs, replace 
every nontrivial loop with 
doubled edges along the 
nontrivial cycle, length L.
- Total signs of matrix 
weights of edges changes by 
(-1)L/2 (easy check)
- Number of total loops goes 
from 1 to (L/2), so (-1)# of loops 
changes by (-1)L/2-1

- So, total sign differs for all 
trivial configurations by -1

1 -1 -1 -1

In total, 
- (1,0), (0,1), (1,1) all have 
weights -1 in det(K)



The Double-dimer model on a Torus (cont.)
● So, we have det(K) = N00 - N10 - N01 - N11, not enough to find total number of matchings.

○ Nij = # of loop configs in a homology class.
○ (actually det(K) = 0 due to zero eigenvalue, ‘constant spinor’)

Blue lines mean 
that an edge on a 
blue line differs in 
weight from K00 by 
factor of -1.

K00
(Original K)

K01 K10 K11

● But, we have 3 more choices of K that we can choose. Start with a given matrix K, and change 
matrix signs of edges along the cycles (1,0), (0,1), (1,1)
○ Will not change total signs of trivial loops, since every trivial loop will cross them twice:  just signs of 

nontrivial ones change, i.e. flip condition holds.
○ (Analogous to changing between ground states of toric code)

● It turns out that any matrix satisfying the flip condition is equivalent to one of these four matrices 
[1,2].

● This is the Dirac operator σ1⊗∂1+σ2⊗∂2, just with periodic or antiperiodic boundary conditions on 
each cycle, i.e. the Dirac operators with respect to the different spin structures on a torus!



● A loop configuration Kαβ will have an additional sign, (-1)# of blue edges hit, as compared to its 
value in K00. I.e. for every blue edge a loop configuration hits, its value shifts by -1

● Let’s write for some η in {0,1}x{0,1}, det(Kη) = Σξ in {0,1}x{0,1}(-1)qη(ξ)Nξ
○ ξ  is in H1(M,ℤ2), represented by a pair in {0,1}x{0,1}
○ η is a spin structure, also represented by a pair in {0,1}x{0,1}
○ Not hard to see that (-1)qη(ξ) = (-1)q00(ξ)(-1)η.ξ

The double-dimer model on a Torus (cont.)

 η\ξ (0,0) (1,0) (0,1) (1,1)

(0,0) 1 -1 -1 -1

(1,0) 1 1 -1 1

(0,1) 1 -1 1 1

(1,1) 1 1 1 -1

Table of (-1)qη(ξ) ● (-1)qη(ξ) is twice an orthogonal matrix, so its inverse is 
half its transpose

● So we can write Zdd= N00 + N10 + N01 + N11 as:

Zdd = ½ (- Z00 + Z01 + Z10 + Z11)

Where Zαβ=det(Kαβ)

● Here is our friend Arf/ABK. (explanation soon): 

Zdd = ½ Ση(-1)Arf(η)Zη



● The Arf invariant of η is defined as:

○ I.e. proportional to sum of rows of matrix on the previous slide

Spin structures, quadratic refinements, and Arf
● (Low-brow) “definition” of a spin structure η on genus g surface: take the Dirac operator, considered 

on the space all functions with periodic or antiperiodic boundary conditions on each nontrivial cycle. 
○ To each spin structure is a “quadratic form” qη:H1(M,ℤ2) →ℤ2 defined as follows
○ For basis of cycles {ai, bi}, qη(ai/bi) = 1 if periodic around ai/bi, 0 if antiperiodic around ai/bi (Atiyah 1971, [5])

■ Set qη(0) = 0
■ Extend to rest of H1(M,ℤ2) by linearity
■ More ‘invariant’ definitions in Johnson [8]. Explained well in [17].

○ qη(ξ) satisfies “quadratic refinement” (compare to previous slides)
■ qη(ξ1+ξ2) = qη(ξ1)+qη(ξ2) + ξ1⋂ ξ2, or (-1)qη(ξ1+ξ2) = (-1)ξ1⋂ ξ2(-1)qη(ξ1)(-1)qη(ξ2)

●  “⋂” is the intersection number on H1(M,ℤ2) (i.e. number of times mod 2 that ξ1⋂ ξ2 intersect each 
other)

● Given a spin structure, can act on it by an element α in H1(M,ℤ2), by making a cycle ξ differ in 
periodicity by factor of α(ξ) (flipping signs on a cycle), creating a new spin structure α.η

○ Spin structures are a ‘H1(M,ℤ2) torsor’ (i.e. there’s a free and transitive action of H1(M,ℤ2) on spin structures. So 
spin structures are in 1-1 correspondence with H1(M,ℤ2))

○ qα.η(ξ) := qη(ξ) + α(ξ), satisfies the quadratic refinement property iff qη(ξ) does



Arf is a (spin) Cobordism Invariant 
Proof sketch

● Need to check that for spin manifolds (M1,η1) (M2,η2)
○ Arf[(M1#M2,η1#η2)] = Arf[(M1,η1)] + Arf[(M2,η2)]
○ “#” = connected sum
○ η1#η2 has same periodicity conditions as η1,2 on the respective parts of M1,2

● It’s a fact that H1(M1#M2,ℤ2) = H1(M1,ℤ2)⊕H1(M2,ℤ2)
○  Mayer-Vietoris sequence. In 2D, not true mod ℤ because of torsion, need to modify argument.
○ The ξ1,2 in M1,2 map (ξ1,ξ2) to the corresponding homology class in M1#M2.
○ Since periodicity/antiperiodicity around loops are preserved in the cobordism,

■  qη1#η2(ξ1,ξ2) = qη1(ξ1) + qη2(ξ2), from ‘definitions’ based on periodicity and extending by linearity
●



A bit more on Arf
● Thm: ΩSpin

2=ℤ2 (c.f. Kirby, Taylor [6])
● The Arf invariant is a ℤ2, invariant, only takes values in ±1.

○ Turns out to completely characterize the bordism class of a spin structure.

● Arf[η] = (# of zero modes of Dirac operator on η) mod 2 [5,18]
● Also, it is thought that ΩSpin

2  gives the group of interacting fermionic gapped 
states in 1+1-D, with the only symmetry being (-1)F [13]

○ It’s thought to correspond to the TQFT of the Kitaev chain, which is also ℤ2.

In Turkey, Arf = $$



(Double)-dimers on higher genus surfaces
● Given any Kasteleyn matrix K, we can construct 22g

 others by flipping signs along 
cycles as we did before, giving matrices Kη indexed by the 22g

 spin structures, with 
determinants det(Kη)

● The quadratic refinement property is the main thing that holds on higher genus 
surface: qη(ξ1+ξ2) = qη(ξ1)+qη(ξ2) + ξ1⋂ ξ2.

● Intuitively, if there’s two configurations with nontrivial loop classes ξ1,ξ2, with 
matrix weights w(ξ1),w(ξ2) then the total matrix weights of a configuration with loop 
class ξ1+ξ2 will be w(ξ1)w(ξ2).

○ BUT, the (-1)# of loops factor will differ by how many intersections are between ξ1,ξ2.
○ Gives (-1)qη(ξ1+ξ2)=(-1)qη(ξ1)(-1)qη(ξ2)(-1)ξ1⋂ ξ2

 

● Zdd= 1/2g  Ση(-1)Arf(η)det(Kη)
● This kind of intuition literally holds for certain classes of graphs, but generally 

there are some hairy combinatorics to confirm the picture (see [1,2]). It’s more 
hairy for dimers than double-dimers: we need some extra minus signs.
○ [1,2] also give a more explicit relationship with spin structures.

■ “Kasteleyn Orientations” are a way to encode the Kη



Double-Dimers on the Möbius band (or RP2) (originally in [7,2])

● For now, take m x n fundamental domain. Take m 
even & n odd (so that the graph remains bipartite).

○ In [4], they show that loop configs are connected by flips and 
loop reversals iff they have the same class in H1(M,ℤ2)=ℤ2

● For the (simply connected) fundamental domain, we 
use a K’ = σ1⊗∂1 + σ2⊗∂2 as before.

○ Use this weight in the gray region

● Now we need to figure out how to patch the 
connecting edges together to make a weighting 
invariant under flips AND under reversing the loop 
going exactly once around the strip.

○ i.e. need the flip condition to hold on squares in the 
connecting region



● Prescription:
○ Given K’ =σ1⊗∂1 + σ2⊗∂2 on the interior region, add 

±iσ1∂1 on the boundary.
■ ∂1 doesn’t strictly make sense on bdy due to 

orientation reversal, but the ± gives both 
choices

○ The matrix will decompose into two disjoint matrices:
■ Pick one of them and call it K±.

○ NOTE: The two choices, ±, are different Kasteleyn 
matrices. (more on this later)

Double-Dimers on the Möbius band (or RP2) (cont.)

Weights on the 
connecting region 
if we choose σ1,2 
as σx,y 

 

● One can check that the flip condition holds on 
the connecting squares. And that there is 
loop reversal invariance for the non-trivial 
loops.

○ These are two Kasteleyn weightings!
○ We can use them to find the number of loop configs



Double-Dimers on the Möbius band (or RP2) (cont.)
● A loop config with a nontrivial loop in H1(M,ℤ2)=ℤ2 will 

receive a weight ±i in det(K±). 
○ det(K±) = Ntrivial ± i Nnontrivial

● So, Zdd = Ntrivial + Nnontrivial = ½ (1-i) det(K+) + ½ (1+i) det(K-)

● Zdd = 1/√2 [e-2πi/8det(K+) + e2πi/8det(K-)]

● What does this have to do with ABK?
○ e±2πi/8 are the ABK invariants of the pin- structures on the Möbius 

strip and RP2!



Pin structures
● A spin± structure is “An equivariant lift of the principal SO(n) orthonormal 

frame bundle to a principal Spin±(n) bundle”. 
○ Spin(n) is a double-cover of SO(n) [spin structs only make sense if manifold is oriented]
○ Pin±(n) are two different double-covers of O(n), each with different ways of lifting of the 

orientation-reversing elements of O(n)
○ They may not exist: w2 is obstruction for spin or pin+ structure, w2+w1

2 is obstruction for 
Pin-

● In local coordinates, we can define Pin structures them in terms of the Dirac 
operator associated to them (see e.g. Appendix of [22]):

○ Boundary conditions around the ‘orientation reversing wall’ are to multiply the spinor by:
■ For Pin- : ± i γn, where γn is the Clifford algebra element associated to the normal vector 

‘n’ of the wall
■ For Pin+ : ± γn, where γn is the Clifford algebra element associated to the normal vector 

‘n’ of the wall
○ Boundary conditions are ±1 on the other cycles. 
○ Structures (if they exist) are in bijection with H1(M,ℤ2), by flipping signs around cycles.

● Pin- is the group that shows up in the Dimer model



Quadratic refinements, ABK 
● Quadratic forms work in basically the same way as with pin, with modification 

due to orientation reversing wall, EXCEPT they take values in ℤ4
○ qη: H1(M,ℤ2) →ℤ4
○ qη(ai) = 2 if periodic around ai, 0 if antiperiodic around ai, ±1 if goes around orientation reversing 

wall: ai is a basis of generating cycles
○ Quadratic refinement: qη(ξ1+ξ2) = qη(ξ1)+qη(ξ2) + 2 ξ1⋂ ξ2 OR iqη(ξ1+ξ2) = (-1)ξ1⋂ ξ2 iqη(ξ1)iqη(ξ2)

○ qα.η(ξ) := qη(ξ) + 2 α(ξ) is the H1(M,ℤ2) torsor’s action, for α in H1(M,ℤ2)

●                                                     is the dimer count on a general 2D manifold.

● Thm: ΩPin-
2=ℤ8 (c.f. Kirby, Taylor [6])

● The ABK is a Pin- cobordism invariant and completely characterizes the Pin- 
bordism classes, which is needed on nonorientable manifolds

○ The generator of 1 in ℤ8 is given by a pin- structure on RP2

● It is thought that ΩPin-
2  gives the group of interacting fermionic gapped states in 

1+1-D, with an additional time-reversal symmetry with T2=1.
○ The Kitaev chain with interactions with such time-reversal symmetry imposed does in fact have a 

ℤ8 classification



More on Dimers and Fermions
● Turns out the 2D Ising model in zero magnetic field can be written as a dimer model.

○ I.e. its partition function on the plane is the determinant of a dimer model’s Kasteleyn matrix. 
○ On surfaces of higher genus, can use the same Arf techniques for Ising [19]

● Bosonization
○ The formula Z = (-Z00 + Z01 + Z10 + Z11)/2 is one that occurs in Conformal Field theory when 

‘bosonizing’ a fermionic theory on a torus, e.g. the Dirac/Boson correspondence or the 
Majorana/Ising correspondence. (Chapters 10,12 of [11])

○ In fact the formula Z= 1/2g  Ση(-1)Arf(η) Zη was proposed by string theorists in the 80’s as a way 
to bosonize on higher genus surfaces [8], and was used in [1] as inspiration to figure out how 
to count dimers on more general surfaces

■ Although even in the 60’s the torus formula for dimers was known.
● The “bosonic dual” is a so-called height function on the graph obtained from a dimer 

matching. [9,10]. 
○ Let’s explore this more.
○ We’ll see the dimer model’s height function correlations (not the double-dimer!) match exactly 

with those of a bosonized fermion. And the partition functions in a background gauge field 
match exactly with the single dimer model. [10]



PART 3:

Dimers and Bosons



Height functions on Double-dimers (planar case)
● The loop configuration can be thought of as a bunch of 

contour lines defining a ‘height function’ on the plane.
○ The “height” on a plaquette is defined by:

■ Defining the height at the boundary as zero (‘Dirichlet conditions’)
■ The height on a neighboring plaquette would change by -1 or 1 

every time one crosses a clockwise or counterclockwise loop
○ h(p) := ‘height’ at a plaquette p 

■ h(p) = (# CCW loops around p) - (# CW loops around p)

● Natural questions...
○ What are the ‘correlation functions’ or ‘expectation values’ of the height 

field? (averaged over the loop ensemble), e.g. <h(p1) h(p2)>
○ What about in the continuum limit? 

■ i.e. when the lattice spacing goes to zero, for plaquettes a fixed 
distance apart

○ NOTE: <h(p)> will be zero: reversing all loops sends h → -h, and is an 
involution

Height field of a loop configuration 



Height functions on Double-dimers: Gauge fields
● Main Tool: introduce a “gauge field” on the graph! 

○ Known as the ‘moment method’: from e.g. [10,20]
○ Let’s think of this idea on its own at first, then apply it to the height field.

● A “U(1) gauge field” on the graph is a matrix constructed from our original Kasteleyn 
matrix: call the (discrete) gauge field U (or A)

○ U is a function, U: {directed edges} → U(1) with some conditions...
○ For a directed edge e := v→w and its reverse -e := w→v:

■ IMPOSE: U(e) = 1/U(-e). If U(e) = exp(i A(e)), then U(-e) = exp(-i A(e))
■ Means: “parallel transport in a direction=inverse of the opposite direction’s”
■ “Pexp(i∫CA) = Pexp(i∫-CA)-1 ”

○ For a closed curve C,  Hol(C) := ∏v→w in C U(v→w) is ‘holonomy’ around C
○ A1,A2 are gauge equivalent iff Hol1(C) = Hol2(C) for all C. 
○ Define e(i F(p)) := Hol(Cp), Cp is the CCW curve going around plaquette p.

● Start with original matrix, K, construct a new matrix K[A]
○ For a directed edge v→w 

■ K[A](v,w) := K(v,w)A(v,w)
■ Analog of ‘coupling to a gauge field’, ∂→(∂-iA)

Discrete gauge field 
and holonomy



Height functions on Double-dimers: Gauge fields (cont)
● Lemma: On the plane, A1, A2 are gauge equivalent iff F1(p) = F2(p) for all p

○ Proof: On the plane, a closed curve C (WLOG counterclockwise) encloses plaquettes {q}. 
■ So, Hol(C) = ∏q inside Cexp(i F(q)) = exp(i Σp in CF(p)) 

● discrete Stokes’ theorem, all internal edges cancel leaving just the outer loop’s holonomy
●  Hol(C) = exp(-i ΣpF(p)) if C is clockwise

■ So, holonomies of closed loops only depend on F(p)

● Now, let’s see what det(K[A]) can tell us.
○ Recall that det(K[A]) = Σloop configs, L ∏C in L(- K[A]C(1)C(2)...K[A]C(Lc)C(1)).

○ For K = K[0], we always had ∏C in L(- K[0]C(1)C(2)...K[0]C(Lc)C(1)) = 1

○ So, since K[A](v,w) := K(v,w)A(v,w), we’ll have
■ det(K[A]) = Σloop configs, L ∏C in LHol(C) = Σloop configs, L ∏C in Lexp(±i Σp in CF(p) ) 

● ± means + if CCW, - if clockwise
■ Σloop configs, L ∏all plaquettes pexp(i F(p) [(# of CCW loops around p) -(# of CW loops around p)])

● So, we’ve found that Lemma: det(K[A]) = Σloop configs, Lexp(i Σplaquettes pF(p) h(p))

○ So, det(K[A])/det(K[0]) = <exp(i Σplaquettes pF(p) h(p))>  

■ Since det(K[0]) = # of loop configs, gives normalization for expectation value



Height functions on Double-dimers: Moment method
● This formula det(K[A])/det(K[0]) = <exp(iΣplaquettes pF(p) h(p))> is 

remarkable, and will help us compute <h(p1)h(p2)>.
○ Use a “singular gauge field”. Arrange gauge field so that F(p1) = a1 and F(p2) = a2 

and F(p)=0 for all other p. 

● Then, we’ll have det(K[A(a1,a2)])/det(K[0]) = <eia1h(p1)eia2h(p2)>
○ Discrete version of vertex operator correlation functions!
○ We have that <h(p1)h(p2)> = -∂a1∂a2 <exp(ia1h(p1))exp(ia2h(p2))>|ai = 0. 
○ In general, we can compute any correlation function in terms of the moments of 

det(K[A]) with some judicious choices of A

● We want to take the ‘continuum limit’ of such a height correlator. It’ll 
end up being that for real space coordinates x1,2 w.r.t. Lattice 
spacing ε, <h(x1)h(x2)> ~ - log(|x1-x2| / ε): diverges with ε.

○ Correlators like <(h(x1)-h(x2))(h(x3)-h(x4))> will be finite (and conformally invariant!)
○ We’ll pick gauge fields such that F(x1) = a1,F(x2)= -a1, F(x3) = a2, F(x4)= -a2.
○ This can be accomplished by picking “zippers” along a path x1→x2 && x3→x4

■ A zipper is a path on the dual lattice on which we put edge weights e±iai

■ Will lead to F(p) being zero everywhere except for the endpoints

Zipper for a path x1→x2: 
U(e) = exp(ia1) in the 
direction of the arrows and 
U(e) = exp(-ia1) in the 
opposite direction of the 
arrows.

Note: F(p)=0 except for 
F(x1)=a1 && F(x2) = -a1



Height functions on Double-dimers: Moment method
● How do we compute <(h(x1)-h(x2))(h(x3)-h(x4))> =  -∂a1∂a2  det(K[a1,a2])/det(K[0])|ai=0 ?

○ First Taylor expand K[a1,a2] = K[0] - i a1 M1 - i a2 M2 - a1a2M12+ … 
○ det(K[a1,a2])/det(K[0]) = det(K-1⋅K[a1,a2]) = exp(log det(K-1⋅K[a1,a2]))
○ = exp(tr ln(K-1⋅K[a1,a2])) = exp(tr ln(1 - ia1 K

-1 M1 - i a2 K
-1 M2 - a1a2M12+...))

● We can then find after some calculus that
○ -∂a1∂a2  det(K[a1,a2])/det(K[0])|ai=0 = tr(K-1M12) + tr(K-1

 M1K
-1

 M2) + tr(K-1
 M1)tr(K-1

 M2)
○ K-1 is a subtle object to define, but it can be done
○ It turns out that tr(K-1

 M2) = 0 due to some cancellations from K[a1,a2] coming from a gauge field.
○ And, if we arrange the zippers to not intersect, there can never be any a1a2 cross terms, so 

M12=0.
○ Leads to <(h(x1)-h(x2))(h(x3)-h(x4))>= tr(K-1M1K

-1M2)

● END RESULT: as ε→0, we’ll have the following conformally invariant 
expression. It turns out that h becomes Gaussian: this is all we need to know to 
compute all correlation functions. h satisfies the Wick relation! 



Bosonization
● The fact that the double-dimer model has ‘bosonic’ free-field correlation 

functions built into it is a sign of “bosonization”. 
○ In 2D, Bosons coupled to a background gauge field are the same as fermions in a background 

gauge field!

● The continuum bosonization can be derived by the exact same method. 
○ Consider the Dirac fermion in 2D.
○ The moments of its partition function with respect to background (perhaps singular) gauge 

fields will give bosonic correlation functions!

● More precisely, we’ll have:

● Note the exp(i∫F(x) H(x)). This is the 
same kind of term that came up 
before in the discrete version!

○ ~exp(i Σplaquettes pF(p) h(p))

DIRAC ACTION:

BOSON ACTION:



Bosonization dictionary
● In the continuum case we have an 

operator dictionary (in the sense that all 
of their correlations match exactly) on 
both sides of the duality.

(1) Dirac fermion 
current, jµ  

(2) 90o rotation of 
gradient of boson field, φ

● In QFT, the Dirac current jµ is automatically divergence-free satisfies ∂⋅j = 0 due 
to ‘Ward Identities’. (This divergence is zero as an operator)
○ On the right hand side of this part of the dictionary, note that this is 

automatically true.

● For some φ a function, we’d have that (∂φ)
⊥

 gives a divergence free vector field 
whose integral curves are the contour lines of φ.
○ This is exactly the interpretation we started out with the height field, whose 

contour lines were the double-dimer contour lines!



More on dimers and bosons
● If we do the moment calculation for the continuum Dirac fermion, we end up getting that the analog 

of the bosonic height correlation functions :

● This differs from the double-dimer heights by a factor of 2. (we had 1/π2, not 1/2π2)
● It turns out that the dimer model (i.e. just perfect matchings) have a height function associated to them 

as well (see [9]).
○ Their two-point height correlations are half the double-dimers’ [10,21], intuitively. So the dimer height 

correlations match exactly with the free fermion!
○ Also, on a torus, the total (regularized) partition function of single dimer matchings exactly matches that 

of a Dirac fermion on a torus (see [14] for nice derivation). 
● Natural notion of ‘topological defects’: monomers (= isolated vertices not in a dimer pair)

○ Turns out that monomers make the dimer height function ill-defined: going around the monomer creates 
a monodromy of the height function (see [9]). Related to “magnetic insertions” [12]

○ They’re associated to vertex operators ~eiφ/√2 (of T-dual boson field) in the partition function (see [12]).
● These models are the simplest example of statistical mechanics models with ‘discrete holomorphicity’, 

which is a program/set of ideas: with it, can rigorously establish the conformal invariance of the Ising 
model at criticality. (c.f. [16]) (Smirnov: 2010 Fields Medal)
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