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Classifying vector bundles

K-theory is one of the most natural cohomology theories: we study
a space X (for us, always locally compact Hausdorff) by studying
vector bundles over X . Fix a field F = C, R, or H. If X is a
compact space, let VectF(X )n = isomorphism classes of rank-n
F-vector bundles over X . Then VectF(X ) =

⋃
n VectF(X ) is an

abelian monoid (semigroup with unit element 0) under vector
bundle direct sum, also known as Whitney sum. This semigroup is
hard to deal with. It never has inverses since there are no vector
bundles of negative rank, and it usually doesn’t have cancellation
either. However, by the basic classification theorem for vector
bundles, it is a homotopy functor of X :

VectF(X )n =


[X ,BU(n)], F = C,
[X ,BO(n)], F = R,
[X ,BSp(n)], F = H.
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Basic notions of K-theory

We get something better by passing to the Grothendieck group

KF(X ) =


[X ,Z× BU], F = C,
[X ,Z× BO], F = R,
[X ,Z× BSp], F = H.

We extend to non-compact X by taking K -theory with compact
supports (basically, requiring everything to be trivialized off a
compact set), and defining K−n

F (X ) = KF(X ×Rn). This turns out
to be a cohomology theory. Furthermore, it’s periodic in n by Bott
periodicity, with period 2 if F = C, period 8 if F = R or H.
Traditionally we write K for KC, KO for KR, KSp for KH. There
are also cup-product pairings K ⊗ K → K , KO ⊗ KO → KO,
KO ⊗KSp → KSp, and KSp⊗KSp → KO coming from the tensor
product of vector bundles. Note that we can’t tensor two
H-bundles and get another one!
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Bott periodicity and the coefficient groups

The Bott periodicity theorem computes all the coefficient groups
for these theories, that is, the reduced cohomology groups of
spheres, or equivalently, the cohomology groups of points. The
table is as follows:

Theory j = 0 1 2 3 4 5 6 7

K−j Z 0 Z 0 Z 0 Z 0
KO−j Z Z/2 Z/2 0 Z 0 0 0
KSp−j Z 0 0 0 Z Z/2 Z/2 0

In fact the symmetry between KO and KSp is not an accident;
there are natural isomorphisms KSp−j ∼= KO−j−4 and
KO−j ∼= KSp−j−4 coming from the cup-product with the generator
of KSp−4.
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The KSC-theory of Anderson and Green

Another variant of K-theory, called KSC or self-conjugate K-theory,
was invented by Don Anderson and Paul Green in 1964. (They
worked independently.)

A self-conjugate vector bundle over X is a pair (E , χ), where
E → X is a complex vector bundle over X and χ : E → E is a
conjugate-linear bundle automorphism. We identify two pairs
(E1, χ1) and (E2, χ2) is there is a (complex linear) bundle
isomorphism µ : E1 → E2 with χ1 homotopic to µ−1χ2µ (among
all self-conjugacies of E1). For X compact, KSC (X ) is defined to
the the Grothendieck group of isomorphism classes of pairs (E , χ),
with group operation coming from the direct sum.
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KSC-theory (cont’d)

As with the theories K , KO, and KSp, we extend KSC to a theory
with compact supports on locally compact spaces, and then take
KSC−n(X ) = KSC (X × Rn). As before, this is a cohomology
theory.

The coefficient groups for KSC turn out to be:

j 0 1 2 3 4 5 6 7

KSC−j Z Z/2 0 Z Z Z/2 0 Z

with a periodicity of period 4. We will see an explanation for this
shortly. The torsion generator of KSC−1 comes from the trivial
bundle S1 × C → S1 with χ(t, z) = (t, tz̄). It is of order 2 since
conjugating by µ(t, z) = (t, tnz) we can change tz̄ to t1+2nz̄ for
any n ∈ Z.
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Atiyah’s KR-theory

Still another version of K-theory, called KR or Real K-theory (with
a capital R!) was introduced by Atiyah in the famous paper
“K-theory and reality” in 1968. This is a theory defined on the
category of Real spaces, locally compact spaces X with an
involution ι (a self-homeomorphism of X with ι2 = 1). Think of
the complex points of an algebraic variety defined over R, with ι
the action of Gal(C/R).

For (X , ι) a compact Real space, we define KR(X ) (usually the ι
will be implicit) to be the Grothendieck group of the Real vector
bundles over X , pairs (E , χ), with E a complex vector bundle over
X and χ : E → E a involutive conjugate-linear isomorphism
compatible with ι. Note that when ι is trivial, this is equivalent to
giving a real vector bundle over X , and E is just its
complexification.
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KR periodicity

We extend KR to a theory with compact supports on locally
compact spaces. As usual it comes with a cup-product coming
from the tensor product of vector bundles. Let Rp,q be Rp ⊕ Rq

with the involution ι that is the identity on the first summand and
−1 on the second summand. (Caution: Atiyah calls this Rq,p with
p and q reversed. People seem to be divided 50/50 on the
notation.) Let Sp,q denote the unit sphere in Rq,p; topologically
this is Sp+q−1, but the involution depends on p and q. For
instance it is the antipodal map in the case of S0,q. Let
KRp,q(X ) = KR(X × Rp,q). The Bott element β lives in
KR1,1(pt).

Theorem (Atiyah)

Cup-product with β is an isomorphism KRp,q(X ) → KRp+1,q+1(X )
for any X and any p, q. Thus KRp,q(X ) only depends on p − q,
and it’s periodic with period 8 in this index.
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Special cases of KR-theory

Recall that if the involution on X is trivial, then
KRp,q(X ) ∼= KOq−p(X ).

Theorem (Atiyah)

There are natural isomorphisms KR(X × S0,1) ∼= K (X ) and
KR(X × S0,2) ∼= KSC (X ). KR(X × S0,4) is 8-periodic. For p ≥ 3
there are short exact sequences

0 → KR−q(X ) → KR−q(X × S0,p) → KRp+1−q(X ) → 0.

Theorem (Karoubi-Weibel (Topology 2003))

If the involution ι on X is free, then KR−q(X ) is 4-periodic.

This “explains” the 4-periodicity of KSC . But the theorem is false
/ in general; it contradicts the 8-periodicity of KR−q(S0,4).
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KR for free involutions

In the case X compact and ι free, what happens more precisely is
this. Locally, X ∼= Y × S0,1 (where S0,1 is two points,
interchanged by the involution), and KR∗(X ) ∼= K ∗(Y ). However,
this is not true globally. However, there is a spectral sequence, the
analogue of the Atiyah-Hirzebruch spectral sequence,
Hp(X/ι,KRq(S0,1)

::::::::::
) ⇒ KRp+q(X ). Here KRq(S0,1)

::::::::::
is a sheaf

locally isomorphic to Z for q even, and is 0 for q odd.

However,
more detailed examination shows that the sheaf is trivial (just Z)
for q ≡ 0 (mod 4) and is the non-trivial local coefficient system Z

:

determined by the 2-to-1 covering X → X/ι for q ≡ 2 (mod 4).
Thus E2 of the spectral sequence is 4-periodic. But in general, the
differentials and extensions associated with the spectral sequence
are not 4-periodic. This is what happens for S0,4 → RP3.
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An example of the spectral sequence for KR

Recall that KSC∗ = KR∗(S0,2). So take X = S0,2, X → X/ι a 2-to-1

covering map. We have E p,q
2 = 0 unless p = 0 or 1 and q is even. For

q ≡ 0 (mod 4), we have E p,q
2 = Hp(S1,Z) = Z for p = 0, 1. For q ≡ 2

(mod 4), we have E p,q
2 = Hp(S1,Z

:
). This cohomology with local

coefficients is the same as Hp
group(Z,Z), where Z is the Z-module

isomorphic to Z as an abelian group, but on which 1 (the generator of

the group) acts by −1. The spectral sequence looks like:

q p = 0 p = 1

4

OO

Z Z
3 0 0

2 0 Z/2
1 0 0
0

periodicity ∼=

::

Z Z // p.

We see that KSC∗ is 4-periodic with groups as shown before.
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Connection with noncommutative geometry

All the variants of K -theory that we have discussed: K , KO, KSp,
KSC , and KR can be unified by thinking of them as topological
K -theory for various Banach algebras (in fact, C ∗-algebras) over
R. For X locally compact, we have

K−q(X ) = Kq(C0(X )),

KO−q(X ) = KOq(C
R
0 (X )),

KSp−q(X ) = KOq(C
H
0 (X )),

KSC−q(A) = KOq(C
R
0 (X )⊗ T ),

where T = {f ∈ C ([0, 1]) | f (0) = f (1)}. In addition, if (X , ι) is a
Real space, then KR−q(X ) = KOq({f ∈ C0(X ) | f (x) = f (ιx)}).
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Twistings from noncommutative geometry

All of the K -groups K , KO, KSp, KSC , and KR have twisted
versions that are special cases of the K -theory of real
continuous-trace (CT) algebras. I originally studied these back in
the 1980’s for purely operator-algebraic reasons, but in the next
lecture we will see how they arise in modern physics.

A complex
C ∗-algebra A is said to have continuous trace if Â is Hausdorff and
if the continuous-trace elements

{a ∈ A+ | Tr π(a) <∞∀π ∈ Â, and π 7→ Tr π(a) continuous on Â}

are dense in A+. A real C ∗-algebra A is said to have continuous
trace if its complexification does. Note that commutative real
C ∗-algebras automatically have continuous trace.
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{a ∈ A+ | Tr π(a) <∞∀π ∈ Â, and π 7→ Tr π(a) continuous on Â}
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Structure theory of CT algebras

A structure theory for (complex) continuous-trace algebras was
developed by Dixmier and Douady in the 1960’s. They showed
that if X is locally compact and second countable, and if A is a
separable (complex) CT algebra with spectrum X , then A is
determined up to stable isomorphism (or Morita equivalence) by a
Dixmier-Douady class δ ∈ H3(X ,Z). This class classifies a
principal PU-bundle over X , and since PU(H) = AutK(H), there
is an associated bundle of algebras A over X with fibers K, and
A⊗K ∼= Γ0(X ,A).

The real case is more complicated. A real CT algebra is built out
of three pieces of real, quaternionic, and complex type,
respectively. These are locally isomorphic to CR

0 (X )⊗K(HR),
CR

0 (X )⊗K(HH), and C0(X )⊗K(HC), respectively.
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Twisted K-theory

Twisted (complex) K -theory of X with twisting δ ∈ H3(X ,Z) can
be defined simply to be K∗(A), where A is a CT algebra with
spectrum X and Dixmier-Douady class δ. When δ = 0, A is Morita
equivalent to C0(X ), and we get back K−∗(X ).

In a similar
fashion, since AutK(HR) = PO, which is a K (Z/2, 1) space,
algebras locally Morita equivalent to CR

0 (X ) are classified by an
invariant w ∈ H2(X ,Z/2), which one can think of as a
Stiefel-Whitney class or the real analogue of the Dixmier-Douady
class, and one gets twisted KO-groups KO−j(X ,w) =
KOj(CTR(X ,w)), which appear, for example, in the Poincaré
duality theorem for KO of non-spin manifolds. And since
AutK(HH) = PSp, which is also a K (Z/2, 1) space, we also get
groups KSp−j(X ,w) for w ∈ H2(X ,Z/2).
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Basics of String Theory
KR with a sign choice

Basic Ideas of String Theory

The basic idea of string theory is to replace point particles (in
conventional physics) by one-dimensional “strings.” At ordinary
(low) energies these strings are extremely short, on the order of the
Planck length,

lP =

√
~G

c3
≈ 1.616× 10−35 m .

A string moving in time traces out a two-dimensional surface called
a worldsheet. The most basic fields in string theory are thus maps
ϕ : Σ → X , where Σ is a 2-manifold (the worldsheet) and X is
spacetime.
String theory offers [some] hope for combining gravity with the
other forces of physics and quantum mechanics.
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Basics of String Theory
KR with a sign choice

Strings and Sigma-Models

Let Σ be a string worldsheet and X the spacetime manifold. String
theory is based on the nonlinear sigma-model, where ϕ : Σ → X
and the leading terms in the action are

S(ϕ) =
1

4πα′

∫
Σ
‖∇ϕ‖2 dvol +

∫
Σ
ϕ∗(B), (1)

the energy of the map ϕ (in Euclidean signature) plus the
Wess-Zumino term based on the B-field B. 1/(2πα′) is the string
tension. B is a locally defined 2-form on X (really associated to a
gerbe) but H = dB is a globally defined integral form, whose
cohomology class h we will call the H-flux.
We have to add to this various gauge fields (giving rise to the
fundamental particles) and a “gravity term” involving the scalar
curvature of the metric on X . Usually we also require
supersymmetry; this means the theory involves both bosons and
fermions and there are symmetries interchanging the two.
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D-Brane Charges and K -Theory

Physicists talk about both closed and open strings. Both kinds of
strings are given by compact manifolds, but in the “open” case
there is a boundary. So to get a reasonable theory one has to
impose Dirichlet or Neumann boundary conditions on some
submanifold Y of X where the boundary of Σ must map. These
submanifolds are traditionally called D-branes, “D” for Dirichlet
and brane from membrane.

The D-branes are even-dimensional in Type

IIB and odd-dimensional in Type IIA. They carry Chan-Paton bundles

and must satisfy the Freed-Witten anomaly cancellation condition, that

W3(Y ) = ψ∗h, the pullback of the H-flux under ψ : Y ↪→ X . The

D-branes carry topological charges associated to the nontriviality of the

Chan-Paton bundles. The classes of these bundles push forward under

the Gysin map for ψ to charges in the h-twisted K -theory of spacetime,

in even degree for Type IIB and odd degree for Type IIA. There are

Ramond-Ramond charges in the K -group of opposite parity.
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Orientifolds

One can construct many more string theories out of the basic Type
II theories by considering orientifold theories. In these theories, the
spacetime manifold X is equipped with an involution ι. The
inclusion ϕ : Σ → X of a string worldsheet into X is required to be
equivariant for the involution Ω on Σ given by the worldsheet
parity operator. The Chan-Paton bundle on a D-brane then has to
have a conjugate-linear involution compatible with ι, and so
D-brane charges live in (a variant of) KR∗(X , ι).

The involution ι does not have to be free. In general, its fixed set
will have several components, called O-planes (“O” for orientifold).
On a given O-plane, the restriction of the Chan-Paton bundle must
have a real or symplectic structure, giving a class in KO∗ or KSp∗

of the O-plane. We refer to O+ and O− planes in these two cases.
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KR with a sign choice

Ordinary KR-theory restricts to KO-theory on the fixed set of the
involution ι. So if we have both O+ and O− planes, a variant is
needed that keeps track of the signs of the O-plane. We call this
KR-theory with a sign choice.

KR-theory with a sign choice
includes as special cases all of the K -theories K , KO, KSp, KSC ,
and KR which we discussed in the first lecture, plus more. And we
will see that all of these theories, again plus more, occur in the
analysis of string theories on circles and elliptic curves. For
example, the orientifold theory where X = Y q Y , the disjoint
union of two copies of a manifold Y , with involution interchanging
the two copies, recovers ordinary Type II string theory, and
KR∗(X ) ∼= K ∗(Y ).
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Orientifold and KR theories on a circle

First consider the case of X = S1 with one of its “standard”
orientifold structures, S2,0 (the case of trivial involution), S1,1 (the
unit circle in C with complex conjugation), and S0,2 (the circle
with the antipodal map). Since superstring theory is always
10-dimensional, one should really cross with R9 to get the
associated string theory spacetime.

We have
KR−j(S2,0) = KO−j(S1) = KO−j ⊕ KO−j−1. This is 8-periodic.
We also have
KR−j(S1,1) ∼= KO−j ⊕ KR−j(R0,1) ∼= KO−j ⊕ KO−j+1. So the
KR-theories of S2,0 and S1,1 are the same except for a degree
shift. We will discuss a physical explanation for this later. Finally,
KR−j(S0,2) ∼= KSC−j , which is 4-periodic.
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KR with a sign choice (cont’d)

Now the string background S1,1 × R9 has two O-planes, each of
the form {pt} × R9 for one of the two fixed points of the
involution on S1. What if we require the Chan-Paton bundles to
be of symplectic type on one O-plane, and of orthogonal type on
the other? D-brane charge for this theory would live in
KR−j−9

(+,−)(S
1,1), KR-theory with sign choice (+,−). How do we

even define this group?

We can do this by constructing a real CT
algebra with complex type over the free part of the circle, real type
over one fixed point, and symplectic type over the other fixed
point. Such algebras exist and they all have the same topological
K -theory. To show that such an algebra exists, start with the
(commutative) algebra A1 defining KR on the complement of the
O+ plane, and with the (commutative) algebra A2 defining KR on
the complement of the O− plane. Then A2 ⊗R H has the right
K -theory near the O− plane. Stabilize both algebras by tensoring
with K(HR) and “clutch together.”
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Computing KR with a sign choice

Note that KR−j
(+,−)(S

1,1) maps to KO−j ⊕ KSp−j via restriction to
the fixed set. And we have a map
K−j−1 ∼= K−j(R) → KR−j

(+,−)(S
1,1) coming from inclusion of the

open set where ι is free.

Thus we get an exact sequence

· · · → K−j−1 → KR−j
(+,−)(S

1,1) → KO−j ⊕ KSp−j δ−→ K−j → · · · .

The connecting map δ : KO−j ⊕ KSp−j → K−j kills the torsion
and amounts to complexification of real bundles and restriction of
scalars from H to C for quaternionic bundles. Careful analysis then
shows that KR−j

(+,−)(S
1,1) ∼= KSC−j+1 ∼= KR−j+1(S0,2).
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T-duality

One of the important dualities in string theory is called T-duality
(“T” for “target space” or “torus”). This duality sets up an
equivalence of string theories on two very different spacetime
manifolds X and X ]. The basic idea is that “winding” modes of
the string theory on X are replaced by “momentum” modes on X ],
and vice versa. Tori in X are replaced by their dual tori in X ]. In
the simplest case, that means that X has a circle factor of radius
R and X ] has a circle factor of radius R̃ = α′

R . The duality also
involves changes in the metric and the B-field, known as the
Buscher rules, after Buscher, who derived them in 1987–88.
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Derivation of T-duality, following Buscher

Consider the simplest case. Take Σ a closed Riemannian
2-manifold and consider the action (1) for a map to a circle,
gotten by integrating a 1-form ω on Σ:

S(ω) =
1

4πα′

∫
Σ

R2

α′
ω ∧ ∗ω.

Add a new parameter θ, and consider instead

S(ω, θ) =
1

4πα′

∫
Σ

(
R2

α′
ω ∧ ∗ω + 2θ dω

)
.

For an extremum of S with respect to variations in θ, we need
dω = 0, so we get back the original theory. But instead we can
take the variation in ω.
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Derivation of T-duality (cont’d)

δS =
R2

4πα′2

∫
Σ

(
δω ∧ ∗ω + ω ∧ ∗δω +

2α′

R2
θ dδω

)
=

R2

4πα′2

∫
Σ
δω ∧

(
2 ∗ ω +

2α′

R2
dθ

)
,

so if δS = 0, ∗ω = −α′

R2 dθ and ω = α′

R2 ∗ dθ. If η = dθ,
substituting back into S(ω, θ) gives

S ′(η) =
1

4πα′

∫
Σ

(
R2

α′

(
α′

R2

)2

η ∧ ∗η + 2
α′

R2
θ d ∗ η

)

= − 1

4πα′

∫
Σ

α′

R2
η ∧ ∗η

which is just like the original action (with η replacing ω, R̃ = α′

R
replacing R).
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T-Duality on circle orientifolds

Now suppose the target space is S1, but with an involution. Let’s
suppose (this is the simplest case) that Σ, the string worldsheet, is
S1,1 × R, where R represents time and the involution on S1,1 is
worldsheet parity reversal Ω.

T-duality is supposed to interchange winding and momentum
modes in the sigma-model. The winding number for z 7→ zn (from
S1 to S1) is n; this mode is always equivariant when the involution
is complex conjugation on both circles (the case of S1,1), but when
the target space is S2,0, only the case n = 0 is equivariant, and
when the target space is S0,2, equivariance means
z̄n = z−n = −zn, so there are no equivariant maps.
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T-Duality on circle orientifolds (cont’d)

Let’s look at this in more detail. When the target space is S1,1, if
z ∈ T and t ∈ R are the coordinates on Σ = S1,1 × R1,0 and
x : Σ → S1,1, then quantization forces x to be periodic in t also,
so x descends to the quotient space S1,1 × S2,0. But equivariance
in the S2,0 means the map is trivial in time, i.e., the momentum is
0. So maps Σ → S1,1 have arbitrary winding but vanishing
momentum.

When we perform T-duality, winding and momentum are
interchanged, so we have vanishing winding and arbitrary
momentum. This is precisely the situation for S2,0, so the
orientifold targets S1,1 and S2,0 are T-dual to one another. This is
reflected in the KR-theory: KR∗(S1,1) ∼= KO∗ ⊕ KO∗+1, while
KR∗(S2,0) ∼= KO∗ ⊕ KO∗−1. These are the same up to a shift in
degree by 1!

Jonathan Rosenberg Variants of K-theory



Variants of K-Theory
K-Theory in String Theory

Basics of String Theory
KR with a sign choice

T-Duality on circle orientifolds (cont’d)

Let’s look at this in more detail. When the target space is S1,1, if
z ∈ T and t ∈ R are the coordinates on Σ = S1,1 × R1,0 and
x : Σ → S1,1, then quantization forces x to be periodic in t also,
so x descends to the quotient space S1,1 × S2,0. But equivariance
in the S2,0 means the map is trivial in time, i.e., the momentum is
0. So maps Σ → S1,1 have arbitrary winding but vanishing
momentum.
When we perform T-duality, winding and momentum are
interchanged, so we have vanishing winding and arbitrary
momentum. This is precisely the situation for S2,0, so the
orientifold targets S1,1 and S2,0 are T-dual to one another. This is
reflected in the KR-theory: KR∗(S1,1) ∼= KO∗ ⊕ KO∗+1, while
KR∗(S2,0) ∼= KO∗ ⊕ KO∗−1. These are the same up to a shift in
degree by 1!

Jonathan Rosenberg Variants of K-theory



Variants of K-Theory
K-Theory in String Theory

Basics of String Theory
KR with a sign choice

T-duality for circle orientifolds (cont’d)

Other arguments from physics, which we don’t have time to go
into here, have convinced physicists that the orientifold string
theory with string background S0,2 × R9 is T-dual to a theory with
two O-planes with opposite sign. We see this reflected in our
calculation that KR−j

(+,−)(S
1,1) ∼= KSC−j+1 ∼= KR−j+1(S0,2).

In
joint work with Chuck Doran and Stefan Mendez-Diez from
Alberta, we have extended this type of analysis to the case of
orientifold theories with X = E × R8, E an elliptic curve. Since E
is the simplest Calabi-Yau manifold (albeit of complex dimension 1
rather than 3), this is the first case where complex geometry can
be taken into account. The classification of holomorphic and
antiholomorphic involutions on E is completely understood, and we
match physics understanding of the T-dualities with calculations of
all the KR-theories, including sign choices for the O-planes.
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The types of elliptic curve orientifolds

If one considers all holomorphic (type IIB) and antiholomorphic
(type IIA) involutions on an elliptic curve, only the topological
types are relevant for the KR-theory. We have the six types

Type Fixed Set Real Space KR Groups

IIB T 2 S2,0 × S2,0 KO∗(T 2)

IIB S0 × S0 S1,1 × S1,1 KO∗+2(T 2)

IIB ∅ S2,0 × S0,2 KSC ∗(S1) ∼= KSC ∗ ⊕ KSC ∗−1

IIA S1 q S1 S1,1 × S2,0 KO∗+1(T 2)

IIA S1 not a product complicated

IIA ∅ S1,1 × S0,2 KSC ∗(S1,1) ∼= KSC ∗ ⊕ KSC ∗+1
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IIA S1 q S1 S1,1 × S2,0 KO∗+1(T 2)

IIA S1 not a product complicated

IIA ∅ S1,1 × S0,2 KSC ∗(S1,1) ∼= KSC ∗ ⊕ KSC ∗+1
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T-duality of elliptic curve orientifolds

Now using the T-duality between S1,1 and S2,0, we can see how
the various orientifolds are related through T-duality. We get the
following diagram of T-dualities:

IIB IIA

S2,0 × S2,0 oo // S1,1 × S2,0
44

ttiiiiiiiiiiiiii

S1,1 × S1,1 antiholomorphic, species 1

S0,2 × S0,2 oo // S1,1 × S0,2

Note the compatibility with the table of KR∗ groups.
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Twistings and sign choices

A few string theories where the underlying spacetime manifold is
T 2 × R8 are missing above. The theories have D-brane charges
involving twisted groups, or sign choices forced by the presence of
of O-planes of opposite sign. An example is Witten’s “Toroidal
compactification without vector structure” (JHEP 1998). This
theory is closely related to KO∗(T 2,w) with w 6= 0 in
H2(T 2,Z/2), and is also T-dual to an orientifold theory with 3 O+

planes and one O− plane. So the full power of what we’ve been
discussing is needed to study these cases.
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