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ABSTRACT 

If G is a compact connected Lie group with ?r1(G) torsion-free, 
and if A and B are suitable C -algebras equipped with continuous 
G-actions, then we construct a Kunneth spectral sequence of the 
form 

E* . = Tor*(G)(K^(A),KG(B)) =* KG(A0B), 

where A$B is given the diagonal G-action. This generalizes the 
Kunneth spectral sequence for equivariant K-theory of spaces, as 
constructed by Hodgkin, Snaith, and McLeod. Then we construct a 
Universal Coefficient spectral sequence 

EP'* = ExtP(G)(K^(A),K^(B)) =* KKG(A,B) 

for the equivariant Kasparov bivariant K-functor. We discuss 
several applications, for instance to the question of determining 
when G-algebras with K*(A) 3 K*(B) (as R(G)-modules) are 
KK -equivalent. 

1980 Mathematics Subject Classification (1985 Revision) 
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Key words and phrases 
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of compact groups on C -algebras. 
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SECTION 1: INTRODUCTION 

Suppose that G is a compact Lie group and that A and B are 
C -algebras upon which G acts (referred to here as G-algebras). 
With modest hypotheses on A and B, G.G. Kasparov [Ka2] has 
defined groups KK.(A,B), j € Z2, which are equivariant 
generalizations of the renowned Kasparov groups KK^fA^) which 
play a fundamental role in the modern theory of C -algebras. The 
groups KK.(A,B) seem destined for a similar role. For example, if 
n M is a compact smooth manifold on which G acts by 
diffeomorphisms, then the G-algebra of pseudo-differential 
operators of order 0 on M determines an index element of 
G * KK^CfS M) ,K) , where K = K(H) is the algebra of compact operators 

on a Hilbert space with some G-action and S M is the cosphere 
bundle. Determination of this element gives a strong form of the 
Atiyah-Singer equivariant index theorem for families. Note that 
the usual equivariant K-theory groups arise via the 
identification 

K^(B) 2 KKj(<C,B), 

and, in particular, 

K~j(X) * KKj(C,C(X)) 

for X a compact G-space. 

This paper is concerned, first of all, with effective 
methods of computation for equivariant K-theory and KK-theory. 

Received by the editors July 3, 1985. 

Research partially supported by NSF grants 81-20790 (JR,CS), DMS 
84-00900 (JR) and DMS 84-01367 (CS). 
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2 JONATHAN ROSENBERG AND CLAUDE SCHOCHET 

To this end, we henceforth assume that the compact Lie group G 
is connected and has torsion-free fundamental group; we call this 
the Hodgkin condition, to recognize the pioneering work of L. 
Hodgkin [Ho]. Suppose that one knows KLfA) and K (B) . Does this 
determine K^tA^B)? If G is the trivial group and A is suitably 
restricted then we have shown [Sc2] that there is a Kunneth short 
exact sequence 

0 • K ^ A ^ K ^ B ) — + K#(A0B) • Tor*(K# (A) ,K* (B) ) • 0 

which splits unnaturally. Here is the equivariant analogue. The 
category BQ is defined at the beginning of Section 2. It 
contains, in particular, all commutative G-algebras. We also 
define a somewhat larger category CG, containing all Type I 
G-algebras. For G = T or SU(2), BQ

 = CG-

THEOREM 5.1. (Kunneth Spectral Sequence). Let G be a compact Lie 
group satisfying the Hodgkin condition. For A € BQ and B a 
G-algebra, there is a spectral sequence of R(G)-modules strongly 
converging to K#(A®B) with 

Kj#„ = TorJ<G)(K°(A)/K°(B)). 

The spectral sequence has the canonical grading, so that 
Tor*(G)(K?(A),KG(B)) has total degree p+s+t (mod 2). The spectral p s w 
sequence is natural with respect to pairs (A,B) in the category. 

2 r-f 2 oo 
If G has rank r then E = 0 for p>r+l and E = E . 

COROLLARY. Let G be a compact Lie group satisfying the Hodgkin 
~ G G 

condition. Suppose that A € BQ and that K^fA) or K^B) is 
R(G)-free (or more generally R(G)-flat). Then there is a natural 
isomorphism 

ct(A,B): KG(A)SR(G)KG(B) > K^(A®B) . 

The spectral sequence (5.1) was known to 
Hodgkin-Snaith-McLeod [Ho,Mc,Sn] for A and B commutative (with 
minor restrictions on the spaces involved which we have removed). 
Localized versions of the spectral sequence also hold. For 
instance, if G is a compact Lie group satisfying the Hodgkin 
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EQUIVARIANT K-THEORY AND KK-THEORY 3 

condition, p is a prime ideal with R(G) a principal ideal 
domain, then there is a natural short exact sequence which 
determines KG(A$B) in terms of K*(A) and KG(B) . 

The following special case deserves special attention. 

THEOREM 6.1. (Hodgkin spectral sequence) . Let G be a compact Lie 
group satisfying the Hodgkin condition, let H be a closed 
subgroup, and let B be a G-algebra. Then there is a spectral 

u 

sequence of R(G)-modules which strongly converges to K#(B) with 

E* S Tor*(G)(R(H),K*(B)). 

In particular, there is a strongly convergent spectral sequence 

E* „ = Tor*(G,(Z,KG(B)) ==> K ^ B ) . 

This reduces to Kasparov's generalization [Ka3, 17] of the 
Pimsner-Voiculescu sequence [PV] by taking 

G = Tr, 

B = ZrixA. 

The Pimsner-Voiculescu sequence is recovered by setting r = 1. 

Our other basic theorem is a generalization of the Universal 
Coefficient Theorem of [RSI, RS2] which determined K K ^ A ^ ) in 
terms of K^A) and K^fB). More precisely, we proved that there 
was a natural short exact sequence of the form 

0 •Ext*(K#(A),K#(B)) •KKj^B) Y • Hom2(K* (A) fK# (B) ) — » 0 

which splits unnaturally. The map Y is the natural Kasparov 
pairing. It generalizes to the equivariant setting to yield a 
natural map 

Y: KKG(A,B) • HomR(G)(KG(A),KG(B)). 
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4 JONATHAN ROSENBERG AND CLAUDE SCHOCHET 

THEOREM 9.2. (Universal Coefficient Spectral Sequence) Let G be a 
compact Lie group which satisfies the Hodgkin condition. For A € 
BG and B a G-algebra, there is a spectral sequence of 
R(G)-modules which strongly converges to KK^AjB) with 

E^'* * Extg(G)(K^(A),K^(B)). 

The spectral sequence has the canonical grading, so that 
Ext*?/«v(K (A),K.(B)) has homological degree p and total degree 

K\u) S t 
p+s+t (mod 2). The edge homomorphism 

KK^(A,B) • E°'* = HomR(G)(K*(A),K*(B)) 

is the map Y. The spectral sequence is natural with respect to 
pairs (A,B) in the category. If G has rank r then E^ = 0 for 
p>r+l and E ,„ = E . 
^ r+2 oo 

COROLLARY. Let G be a compact Lie group which satisfies the 
~ G 

Hodgkin condition. Suppose that A € BQ and that either K^fA) is 
R(G)-projective or that K#(B) is R(G)-injective. Then there is a 
natural isomorphism 

Y(A,B): KK^(A,B) • HomR(G}(K^(A),K^(B)). 

We apply the Universal Coefficient spectral sequence (9.2) 
in several ways. First we consider KK -equivalence. In our 
previous work we showed that if A and B are C -algebras in C with 
K^fA) = K^fB), then A is KK-equivalent to B. The equivariant 
version of this is false in general: in Example 10.6 we construct 
commutative ¥-algebras A and B such that K^fA) s K#(B) as 
R(T) -modules but K^fA) * K ^ B ) , so that A and B can't be 
K-equivalent, much less KK -equivalent. 

On the positive side, we are able to offer some results. 
Here is a theorem whose hypotheses are frequently satisfied in 
practice. 

THEOREM 10.3. Suppose that G is a Hodgkin group, A and B are 
~ G G G-algebras in BQ with K^(A) £ K#(B) £ M, and suppose that M has 

homological or injective dimension ^ 1. Then A and B are 
KK -equivalent (and the equivalence covers the given 
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EQUIVARIANT K-THEORY AND KK-THEORY 5 

isomorphism). 

In the same vein, we prove the following theorem. 

THEOREM 10.8. Let G be a compact Lie group satisfying the Hodgkin 
~ G 

condition, and let A € B Q with K^fA) having homological or 
injective dimension <1 (as an R(G)-module). Then 

G ~ 0 1 
a) A is KK -equivalent to a G-algebra in Bn of the form C eC , 
where K.(CJ) = 0 unless i=j. 

b) If B is any G-algebra with K1(B) = 0, then there are split 
exact sequences of the form 

0 — K^(A)SR(G)K^(B) >KJ(A8B) — - T o r J ^ f K j ^ A K K J j f B ) ) >0 

and 

0 _•ExtJ(Q)(Kj_1(A),Kj(B)) — K K ^ ( A , B ) — * — 

- H o m R ( G ) ( K J ( A ) , K Q ( B ) ) >0. 

c) In particular, there are split exact sequences 

0 — K°(A)0 R ( G )Z — K0(A) — TorJ{G)(K°( 

and 

0 — ExtR(G)(K^(A),R(G)) — KJj(A) —• Hom R { Q ) (KJ( A) ,R(G) ) — 0. 

The splittings of these sequences are not natural. 

When G is the trivial group, R(G) = Z and the Universal 
Coefficient spectral sequence collapses to the short exact 
sequence of [RSI, Theorem 4.2]. Specializing still further gives 
the Universal Coefficient Theorem of Brown [Bl] for the 
Brown-Douglas-Fillmore functor K (A). If one takes A = C (X) , X a 
locally compact G-space, and B = C, then one obtains a spectral 
sequence of the form 
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6 JONATHAN ROSENBERG AND CLAUDE SCHOCHET 

Ext*(Q)(K*(X),R(G)) -» K<jj(X), 

which seems to be new even when X is a smooth manifold with a 
differentiate G-action. This could be important in understanding 
the index theory of G-equivariant elliptic operators on X, since 
(at least "roughly") KQ(X) classifies G-vector bundles over X and 
K^fX) classifies elliptic G-operators over X. For instance, the 
fact that 

K*(X) S HomR(Q)(K*(X),R(G)) 

when KQ(X) is R(G)-free generalizes [Pe, Part II, Proposition 3.9 
and Theorem 5.2]. In fact, several geometric applications of this 
spectral sequence were given in [IP], although they dealt only 
with the simplest possible case: G = T and R(G) localized to make 
it a principal ideal domain. Presumably the general Universal 
Coefficient spectral sequence could be used for similar 
applications with other compact groups, or for analyzing 

2 phenomena even in the case of T that can be traced to ExtR,G*. 

In order to make the discussion somewhat more concrete, we 
pause to discuss some interesting cases where we can control 
Kr(X), X a (locally) compact G-space, and hence get some 

a c* 
information about K^JX) and the KK -equivalence class of C(X). 

Suppose that V is a finite-dimensional complex vector space 
with a linear G-action, and let X = P(V), the projective space of 

* 
V. By the equivariant Bott periodicity theorem, Kp(V) 2 R(G) 
(concentrated in degree 0) and KQ(X) is a free R(G)-module 
(concentrated in degree 0), so all spectral sequences collapse. 
Similarly, if S is the unit sphere in V and G acts by isometries, 
so that S is a G-space, then the equivariant short exact 
sequence 

0 >Co((0,oo)xS) — CQ(V) — > C({0}) • 0 

implies that there is an exact sequence 

0 > KJ(S) — • H(G) — 2 — • R(G) — K°(S) — 0. 
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EQUIVARIANT K-THEORY AND KK-THEORY 7 

Most of the time a is injective and then K*(S) • 0 and K°(S) has 
homological dimension 1. Otherwise a = 0 and KQ(S) is R(G)-free. 

Here is another type of example. Let T be a torus, and let 
us suppose that T is embedded as a maximal torus in a simply 
connected compact Lie group G. Let H be any closed subgroup of G. 
Then G/H is a T~space (one can get circle actions on 
3-dimensional lens spaces, for instance), and 

K*(G/H) 2 R(T)®R(G)K*(G/H) 2 R(T)*R(Q)R(H), 

concentrated in degree 0 (though possibly with big homological 
dimension). 

We briefly mention one other consequence of our results: for 
groups G satisfying Hodgkin's condition one obtains a fairly 
definitive answer to a question raised in [Pa]. By a theorem of 
Green [Gr2] and Julg [Jul], one knows that for any compact group 
G and any G-algebra A, there is a natural isomorphism 

K*(A) 2 K #(GKA) 

* 
where GKA denotes the C -crossed product. (The case A = C(X) and 
G finite had actually been treated much earlier by Atiyah.) 
Paulsen points out (and in fact this is done much more generally 
in [Ka3]) that the analogous result for the dual theory holds if 
G is finite, but not in general, and he raises the question of 

* * 
determining the precise relationship between KQ(A) and K (GKA). 
We see in fact that for good connected groups, the relationship 

is given by a spectral sequence 

ExtjJ(Q)(K,,(GKA),R(G)) —» K*(A), 

while we have a short exact sequence 

0 —*Ext2(K#(Gr><A),2) • K*(GKA) • Hom2(K# (GKA) ,Z) —+ 0. 

which splits, unnaturally. It's no wonder one sees no obvious 
connection between K (GKA) and K_(A). 
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8 JONATHAN ROSENBERG AND CLAUDE SCHOCHET 

We proceed next to the study of K^(-;Z ), equivariant 
K-theory mod n. We show that the ring of R(G)-linear homology 
operations is the exterior algebra over R(G) on the Bockstein 
element. Finally, we classify admissible multiplications; these 
correspond to elements of R(G)$Z and (if n is odd) exactly one 
of them is (graded) commutative. 

We note that if G is a finite group of odd order then M. 
Bokstedt (unpublished thesis [Bo]) has obtained a short exact UCT 
sequence for KQ(X), where X is a finite G-CW-complex. These 
results would seem to be orthogonal to our own, as R(G) is always 
of infinite homological dimension if G is of finite order. 
According to I. Madsen and M. Rothenberg [Mad], Bokstedt also has 
results in the compact Lie case which are along the same lines as 
our own. We have not seen these results. 

We wish to thank the Mathematical Sciences Research 
Institute for supporting us in 1984-5, during which time this 
paper was completed. We are grateful to A. Wassermann for telling 
us about Theorem 3.7 (ii). 
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SECTION 2: FUNDAMENTAL FAMILIES 

Let G be a compact Lie group. We will be interested in 
certain full subcategories of the category of separable nuclear 
* 

C -algebras equipped with a continuous action of G by 
•-automorphisms. For simplicity, we'll call such an object a 
G-algebra. The morphisms in this category are G-equivariant 
•-homomorphisms. A certain G-algebra which plays a vital role is 
K, the algebra of compact operators on the representation space 
of an infinite-dimensional unitary representation of G, which we 
will generally take to be an infinite direct sum of copies of the 
regular representation of G. The spectrum A of a G-algebra has 
the structure of a G-space in a natural manner. When we regard 
the spectrum as a G-space with its canonical structure, we use 
the term G-spectrum of A. Open G-invariant subsets correspond to 
G-invariant ideals, and closed G-invariant subsets correspond to 
G-lnvariant quotients. We remind the reader that the G-structure 
on A does not determine the G-action on A in general. This is a 
difficult point which enormously complicates the study of 
G-algebras. We shall return to this matter later in this 
section. 

Occasionally we shall wish to vary the group G. Therefore 
it's useful to record for future reference that if A is a 
G-algebra and H is a closed subgroup of G, then A may also be 
viewed by restriction as an H-algebra. In the other direction, if 
B is an H-algebra, we may define the induced G-algebra (cf. 
[RR,%3]) to be 

IndHTGA = C(GXHA) = {f€C(G,A):f(gh) = h"1-f(g), for g€G, h€H> . 

Here G operates by left translation. 

Unless stated otherwise, spaces are to be locally compact, 
second countable, and equipped with continuous G-actions. (If X 
is such a space, then C (X) is a typical abelian G-algebra.) AQ 
denotes the category of abelian G-algebras. CQ denotes the 
smallest subcategory of G-algebras containing the separable Type 
I G-algebras, and closed under G-kernels, G-quotients, 

9 
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10 JONATHAN ROSENBERG AND CLAUDE SCHOCHET 

G-extensions, inductive limits, crossed products by IR- or 
Z-actions commuting with the G-action, exterior equivalence, and 
G-stable isomorphism. BQ denotes the "bootstrap category", the 
smallest subcategory of CQ which contains AQ and is closed under 
the same operations as Cr. Since we are dealing with nuclear 
C -algebras, all tensor products may be taken to be spatial. Then 
if A and B are G-algebras, G acts on A#B by the diagonal action. 
A and B are said to be G-stably isomorphic if A$K s B$K, where s 
means "G-equivariant *-isomorphism". By Kasparov's stabilization 
theorem [Kal] (see also (3.1) below), the question of which 
unitary representation of G is used in constructing the G-action 
on K is irrelevant, and we may take the action to be an infinite 

2 number of copies of the regular representation on L (G). 
We say that the group G satisfies the Hodgkin condition if G 

is connected and if ^-(G) is torsion-free. As pointed out by 
Hodgkin [Ho, p. 68], this condition implies but is strictly 
stronger than assuming that R(G) has finite global homological 
dimension. The global dimension of R(G) is then rank(G)+l. 
Groups satisfying the Hodgkin condition have another very 
important property. If T is a maximal torus of G, then R(T) is a 
free R(G)-module of finite rank (by [Pi] and [St]), and hence the 
ring extension R(G) *• R(T) is faithfully flat. We shall use this 
fact (cf. Theorem 3.7) to reduce many questions about K-theory of 
G-algebras to questions about T-algebras. Accordingly, it is 
useful to introduce the category BQ of G-algebras in CQ which, 
when viewed as T-algebras, lie in B_. Note that 

AG C BG C 5G S CG-

The Hodgkin condition on G might seem a little mysterious. 
However, from our point of view, it has a very natural 
explanation given in the following proposition. 

PROPOSITION 2.1. Let G be a compact connected Lie group. Then G 
has no non-trivial projective representations if and only if 
Kj(G) is torsion-free. 

PROOF: By [Mo] and [Wi], G has no non-trivial projective 
2 representations iff HM(G,T) = 0, (where M indicates* Moore's 

Purchased from American Mathematical Society for the exclusive use of Claude Schochet (sccll)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



EQUIVARIANT K-THEORY AND KK-THEORY n 

"Borel cochain" cohomology theory) iff H2(G,Z) = 0 iff 
3 H (BG,Z) = 0 (where top denotes usual topological (singular) top ^ 

cohomology). However, H (BG;Z) vanishes modulo torsion in odd 
degrees, since if T is a maximal torus in G and W is the 
corresponding Weyl group, then 

H*(BG,<D) S H*(BT,<D)W 

and H (BT,G) is a polynomial algebra on generators in degree 2. 
Therefore, by the classical universal coefficient theorem, 

H3(BG,Z) 2 Tors H2(BG,Z) 

where Tors denotes the torsion subgroup. Since G is connected, BG 
is simply-connected and, by the Hurewicz theorem, 

Tors H2(BG,Z) S Tors *2(BG) 2 Tors ^ ( G ) . a 

DEFINITION 2.2. A collection of G-algebras F is a 
CG~fundamental family if every Type I G-algebra may be 
constructed from elements of F by taking extensions, kernels, 
quotients, inductive limits, tensor product with the trivial 
G-algebra C (IR), by changing the G-action up to exterior 
equivalence, and G-stable isomorphism. (The operations may be 
applied any countable number of times in any order.) Similarly, F 
is called an AG-fundamental family if every abelian G-algebra may 
be constructed out of F. 

For instance, if the group G is trivial, then the family 
{C (IR )QK) is a fundamental family, by the well-known structure 
theory of Type I algebras (cf. [Sc2, 12]). In fact, we may be 
even more frugal and use the one-element family {£}, since we are 
allowed to tei 
tensor with K, 
allowed to tensor with C (IR) , hence with C (lRn) , and since we may 

We recall some basic information on the C -algebra 
associated to a group and a cocycle. Suppose that G is a locally 

2 
compact abelian group, and suppose that w € Z (G,I) is a 
normalized cocycle. Then we form L (G,w) which is just L (G) as a 
Banach space, but with a convolution product twisted by w. It is 
the universal object for maps *:G • U(H) with the property 
that 
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12 JONATHAN ROSENBERG AND CLAUDE SCHOCHET 

7r(s)*(t) = w(s,t)7c(s+t) . 

Then C (G,w) is the usual completion. Its isomorphism class only 
2 depends upon the cohomology class of a> in H (G,T). Note that 

C (G,u>) is unital if and only if G is a discrete group. 

The cocycle w is called totally skew if u>(x,y) = w(y,x) for 
all y € G implies x = 0. Changing w within its cohomology class 
if necessary, we may always assume w is lifted from a totally 
skew multiplier on a quotient group G/K, where K is uniquely 
determined by the cohomology class of w [BK, Theorem 3.1]. Then w 
determines a continuous injection h : G/K • (G/K) with dense 
range, and w is Type I if and only if h is bicontinuous [BK, 
Theorem 3.2]. We record here the following general result due to 
Baggett and Kleppner [BK], Kleppner (unpublished), and Pukanszky 
[Pu, Ch. I, Proposition 2.1]; see also Green [Grl, Prop. 33]. 

THEOREM 2.3. Let G be a locally compact abelian group and let u> 
be a totally skew cocycle on G. The C -algebra C (G,w) is simple, 
and it is Type I if and only if it is isomorphic to K(H) for some 
Hilbert space H. If so, and if G is a discrete abelian group then 
K(H) is unital, hence H has finite dimension and G is finite. 

Our interest lies in the Type I setting. So suppose that F 
is a free abelian group of finite rank with cocycle u>. Let K 
denote the radical of the associated skew form. Then C (F/K,w) is 
a unital algebra. If it is Type I then Theorem 2.3 implies that 
F/K is a finite group, so that K is of finite index in F. We 
record this as a corollary. 

COROLLARY 2.4. Suppose that F is a free abelian group of finite 
rank with a Type I cocycle w. Then the radical K of the 
associated skew form has finite index in F, and F/K 2 CXC for 
some finite group C with w the dual pairing CXC • T. D 

If G = Tn is a torus with n>l and if H is a closed subgroup, 
2 

then it is not necessarily true that the group HW(G,C(G/H,T)), in 
M 

which obstructions to exterior equivalence of two G-actions on an 
algebra with G-spectrum G/H live [RR, Corollary 0.13], must 
vanish. (See [Ro3].) Nevertheless, we can prove the following: 
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EQUIVARIANT K-THEORY AND KK-THEORY 13 

THEOREM 2.5. Let G be a torus (of any dimension) and let 

a:G >Aut(A) 

be an action of G on a continuous-trace algebra A such that 
A 2 G/H as a G-space for some closed subgroup H of G. Then the 
Dixmier-Douady class of A is trivial, i.e., A is stably 
isomorphic (as an algebra) to C(G/H)$lf. Further, the action a$id 
is exterior equivalent to £#id, where B is the natural action of 

* 1 G on C (K ,a) and KSH is an appropriate subgroup. Thus, up to 
stable isomorphism and exterior equivalence, A is G-isomorphic to 
C{G/H,w)®lf. Here C(G/H,u>) denotes IndHtQEnd(V) , where V is an 
irreducible ^-representation of H. 

PROOF: Since G acts transitively on A with isotropy group H, the 
Mackey machine implies that 

(AxaG)~ a (H,u>r, 

2 where u> € H (H,T) is the Mackey obstruction. Regardless of H and 
<•» 

w, (H,u>) is a countable set. Thus, replacing (A, a) by (A®K,a$id) 
if necessary, we have AxG isomorphic to a countable direct sum of 
copies of K. Since we have stabilized A, Takai duality implies 
that 

A 2 (AxaG)xQG. 

Here G is a free abelian group. By the Mackey machine again, A 
may be computed in terms of the G-orbits on the countable set 
(A^G)". 

Since A 2 (G/H) is connected, there can be only one G-orbit, 
for otherwise Ax G would split as a direct sum of two G-invariant 
ideals, which would give a non-trivial decomposition of A as a 
disjoint union of two connected components. Let K be the common 
stability group in G of the points in (Ax G) . (By Pontrjagin 
duality, each subgroup of G is the annihilator of a unique closed 

2 x subgroup of G.) Then if or € H (K ,T) is the Mackey obstruction 
for the action of K on Ax G, we have 

Purchased from American Mathematical Society for the exclusive use of Claude Schochet (sccll)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



14 JONATHAN ROSENBERG AND CLAUDE SCHOCHET 

A S (K1,*)". 

Since A is type I, a is also Type I. Let L be the radical of the 
* 1 associated form. Then C (K /L,a) is Type I and unital. By 

i * » 

Corollary 2.4, L has finite index in K . Thus (since A = G/H) 

dim (G/H) = dim (K1)" = dim (G/K) 

and dim H = dim K. In fact, as the G-action on A must be dual to 
*»» 

the action of G on (Ax G), we see that H = K if a is trivial and, 
more generally, H = L. Since (Ax G) is discrete, each 
spectrum-fixing automorphism of Ax G is inner [RR, Theorem 
0.5(b)], and by [RR, Theorem 0.11] the only obstruction to 
exterior equivalence of the action of G on Ax G with the standard 
action of G on C(G/KL,K) is a class in H2(G,C{(AxaG)~,I)). Now 

H2(G,C((AxaGT,T)) = H2(G,C(G/K1,T)) = H2(G,U(G/KX,T)) 

(in the notation of Moore [Mo], this being true since G/K is 
discrete) 

* H2(K1,T)) 

by [Mo, Theorem 6] (Moore's version of Shapiro's Lemma), and our 
obstruction class corresponds to a. Thus A is stably isomorphic 

* l to C (K ,a). Now this is a continuous-trace algebra with spectrum 
G/H and fibres isomorphic to End(V) , where V is the unique (by 
the Stone-von Neumann theorem) irreducible ^-representation of 
the finite group K V H 1 S (H/K)". Since End(V) is 

* 1 finite-dimensional, the Dixmier-Douady class of C (K ,o) must be 
3 

a torsion class in H (G/H,Z) (by an observation of Serre [Gr3]). 
However, G/H is a torus, so its cohomology is torsion-free. Thus 
the Dixmier-Douady class of A vanishes. 

In fact, we have proved somewhat more. By Takai duality, not 
only is 

AQK ss C (K 1,^)^ 

but also the action ct$id must be exterior equivalent to B$id, 
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EQUIVARIANT K-THEORY AND KK-THEORY 15 

where B is the natural action of G on C*(K-L,a). D 

REMARK 2.6. We note that C (K1,*) may be identified with the 
induced algebra 

IndHTGC*(KX/HX,a) * IndHtGEnd(V). 

Since (H/K) carries a non-degenerate cocycle, it is canonically 
self-dual, and V may also be viewed as the space of an 
irreducible projective representation of (H/K). 

Next we attempt to mimic the classical [Di, Ch. 4] argument 
to produce a small fundamental family for G-algebras. 

The following result is a necessary prerequisite to 
understanding the structure of Type I G-algebras. For simplicity, 
we restrict to the case of compact Lie groups, since this is the 
only case we are interested in. The same result when G is any 
compact, metrizable group could be deduced from [Ph, $8.1], which 
gives a very different argument using only general topology. 
However, our proof has the advantage of giving a more concrete 
description of a G-invariant continuous-trace ideal in A, at 
least when G = T. 

THEOREM 2.7. Let G be a compact Lie group (not necessarily 
connected) and let A be any Type I (separable) G-algebra. Then A 
contains a non-zero G-invariant ideal of continuous-trace. 

PROOF: We assume initially that G is a compact connected Lie 
group. Without loss of generality, we may assume that A is 
liminary, since the largest liminary ideal of A [Di, 4.2.6] is 
invariant under all automorphisms of A, and in particular under 
G. We now try as much as possible to imitate the proof of [Di, 
Lemmes 4.4.2 and 4.4.4] in a G-eguivariant way. Using [Di, Lemme 
4.4.3], choose a non-zero element y" of A+, say with ||y"|| ̂  1, 
with Tr(*(y"))<oo for all *€A. Let 

y« = g*y"dg. 

JG 

Then y' has all the same properties as y" and it is also 

Purchased from American Mathematical Society for the exclusive use of Claude Schochet (sccll)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



16 JONATHAN ROSENBERG AND CLAUDE SCHOCHET 

G-invariant. Define f:A >[R by f(?r) = Tr(*(Y')). Then f is 
everywhere finite, lower semicontinuous, and not identically 
zero. Let U = {*€A : Tr(*(y' ) )£a>0) . Then U is a Baire space, so 
the function f has a point of continuity in U for suitable a, say 
at K € A. So f is continuous and non-zero at K . o o 

Let X be the largest eigenvalue of K (y'), and let 
<*:IR •[CI] be a weakly increasing continuous function with 
0(t) = 1 for X^t and with 0(t) = 0 for t^w, where u>0 is greater 
than or equal to the second-largest eigenvalue of * Q(y')• Using 
the functional calculus, set y = 0(y')- Then ||y|| = 1, y is still 
G-invariant, and K (y) is a finite-rank projection. Furthermore, 
*(y) is of finite rank for all *€A (since Tr(y') can have only 
finitely many eigenvalues greater than u, and each occurs with 
finite multiplicity), and the map K ~ Tr(ir(y)) is also continuous 
at *Q, by [Di, 4.4.2(i)]. 

To proceed further, note that since G is compact and A is 
1* , the orbit Gx is closed in A by [MR, Lemma 4.1], hence 
corresponds to a G-quotient B of A with G-spectrum homeomorphic 
to G/H, where H is the stabilizer group of ^ in G, via the 
implication (1)=>(6) in [Gl, Theorem 1]. Since *0(Y) *S a 
finite-rank projection and y is G-invariant, y maps to a 
G-invariant projection y in B. 

To continue in this fashion for arbitrary G is difficult, so 
assume now that G = T is a one-dimensional torus. Then by Theorem 
2.5, B$K is isomorphic to C(G/H)$/f, and the action a of G on BQK 
is exterior equivalent to the translation action B, where £.f(g) 

fft"1^), for f€C(G/H,Jf). We claim that y dominates a 
G-invariant rank-one projection p in B. To see this is trivial if 
G = H, so we may assume H is finite cyclic. We may as well assume 
that A (hence B) is stable, so that the action a of G on 
B S C(G/H,K) is given by 

atf(g) = vt(g)f(t"1g)vt(g)* (t€G, g€G/H) 

for some cocycle 

V:G >C(G/Hf!/) , 

where V is the infinite-dimensional unitary group with the strong 
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EQUIVARIANT K-THEORY AND KK-THEORY 17 

topology. The fact that y is G-invariant implies that 7(g) 
commutes with v.(g) for h€H. Since H is a finite cyclic group, it 
is easy to choose p(l) to be a rank-one subprojection of y(l) 
commuting with {v.(l):h€H}. Then 

p(t) = v _ (l)_1p(l)v _ (1) t€G 
t t 

gives a well-defined rank-one projection p € C(G/H,JT), since 
given t€G/H, v (1) is well-defined modulo unitaries commuting 

t 

with p(l). From the cocycle identity for v we compute that 

v.(g)p(t-1g) = v.{g)v (l)_1p(l)v (1) 
9 t g 1t 

" <v _i(l)" l v 1 (1)>V 1 (l)_1P(l)v _ (1) 
g g" t g xt g 1t 

= v (i) 1pCi)v (i) 
g g t 

v _1(l) Ap(l)v ^ ( D l v ^(1) v _1 (1)) 
g g g g t 

- P(t)vt(g), 

which shows that p is G-invariant. 

Having produced a G-invariant rank-one projection p in B, we 
let x € A be any element projecting to p. Averaging x under G, 
we may assume that x is G-invariant, and also we may assume that 

1/2 1/2 ||x|| = 1. Then y xy is G-invariant and dominated by y, so the 
function 

1/2 1/2 K ~ Tr(*(?'' xy>") ) 

is continuous at K , by [Di, 4.4.2(1)], and of course 
G-invariant. Since 

*0<Y1/2xy1/2) = *0(YPY) = *Q(P) 

1/2 1/2 is of rank one, we conclude as in [Di, 4.4.2(H)] that y xy 
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18 JONATHAN ROSENBERG AND CLAUDE SCHOCHET 

may be modified by spectral calculus to obtain an element z € A 
with rf(z) a rank-one projection for K near K . As in [Di,4.4.4], 
z defines a non-trivial continuous-trace ideal of A, and since z 
is G-invariant, so is this ideal. This proves the theorem in the 
case G = T. 

Next we consider the case G a compact Lie group. Let G 
denote the connected component of the identity, and consider its 
action on A. We may assume that A is liminary, as before. By the 
previous case, and reasoning as in [Di, 4.4.5], we see that for 
every closed subgroup H of G with HST, A contains a dense open 
H-invariant Hausdorff subset. But G contains a finite number of 

o 
one-parameter subgroups H1,...,H , each isomorphic to T, which 
generate G algebraically (no closures needed). So choosing such 
a dense open H.-invariant Hausdorff subset U. of A for each i and 
letting U = U„A. . . flU , we obtain a dense G -invariant open 1 x o 
Hausdorff subset of A. (Density of U follows from the fact that 
A is a Baire space.) 

Choose representatives g. for the (finitely many) cosets of 
G in G, and let Y = Ag.U. Again by the Baire property, Y is a 
dense open G-invariant Hausdorff subset of A and corresponds to 
some non-trivial G-invariant ideal J. Let C be some 
continuous-trace ideal in J and let D be its G-saturation. Then D 
is a non-trivial G-invariant ideal with Hausdorff spectrum and D 
has local rank-one projections, thus D is continuous-trace. This 
completes the proof of the theorem when G is a compact Lie group. 
• 

THEOREM 2.8. Let G be a compact Lie group, not necessarily 
connected. If F is a collection of G-algebras and if each 
continuous-trace G-algebra A with A = G/H (H running over closed 
subgroups of G, G acting by translation) may be constructed from 
F as described above, then F is a CQ-fundamental family. 
Similarly, if F is the collection of commutative G-algebras of 
the form C(G/H), then F is an AG-fundamental family. 

PROOF: We shall prove only the statement about C -fundamental 
families. The corresponding statement about Ap-fundamental 
families is much easier, and uses (a proper subset of) exactly 
the same arguments. 
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EQUIVARIANT K-THEORY AND KK-THEORY 19 

Let A be a Type I G-algebra. By repeated use of Theorem 2.8, 
we see that A has a composition series {A } where A = 0, 
AwJ./Aw is a non-zero G-invariant ideal of A/A with a+l a a 
continuous-trace, and 

A„ = lim {A,:*<a} 
CI •* JB 

for a a limit ordinal. Since we are assuming that A is separable, 
we have Aw * A for some countable ordinal a. So it suffices to a 
show that any continuous-trace G-algebra is generated by F. 

The next step is the reduction to the case of one orbit 
type. Suppose that A is a continuous-trace G-algebra with 
spectrum X. Then X contains an open subset with one orbit type, 
by [MZ, p. 222]. We divide by the corresponding G-invariant ideal 
and repeat the argument on the quotient algebra. By a limit 
argument we can reduce to the case of a finite number of orbit 
types. By iterated extensions, we can reduce to the case of a 
single orbit type. So suppose that X has a single orbit type- say 

ti 

all stability groups are conjugate to H. Then X is a free 
NQ(H)/H -space and 

X a G XN r(H) x H-
G 

JJ 

By Gleason's cross-section theorem [MZ, pp. 219-221], X has a 
covering by open sets U , NQ(H)-isomorphic to (NQ(H)/H)XS for 
certain locally compact S . Taking the induced cover of X, then 
extracting a countable subcovering, we see from passage to limits 
that we may assume that X = (G/H)XS, S locally compact. Taking 
one-point compactifications, we may assume without loss of 
generality that S is compact. Then S is a projective limit of 
finite simplicial complexes, and so X is a limit of finite 
G-complexes (e.g., in the sense of [May]) built out of G-cells of 
the form (G/H)xfRn. So we have reduced to the case where A is a 
continuous-trace algebra with A = (G/H)XIR , where G acts 
transitively on G/H and trivially on IRn. 

Now the problem is to classify continuous-trace G-algebras 
with G-spectrum (G/H)xiRn. Taking the algebra to be G-stable and 
using the fact that lRn is contract ible (and hence that all 
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20 JONATHAN ROSENBERG AND CLAUDE SCHOCHET 

continuous-trace algebras with spectrum IRn are stably 
commutative), we may assume 

A * W®Co(f*n) (*) 

where W is a stable continuous-trace algebra with spectrum G/H. 
Our difficulty is that we don't know yet that the isomorphism (*) 
can be made equivariant. For that we need the following 
proposition. 

PROPOSITION 2.9. Let G be a compact Lie group, not necessarily 
connected, and let (A,a) be a stable continuous-trace G-algebra 
with G-spectrum (G/H)XfR . Then there is a stable continuous-trace 
G-algebra (W,o>) with G-spectrum G/H and an exterior equivalence 

(A,a) * (W®Co(fRn) ,a>®id) . 

PROOF: Let W be the quotient of A corresponding to the closed 
G-invariant subset (G/H)X{0) C (G/H)XlRn. Then W is a G-algebra 
and A =W$C (fR ) , though not necessarily equivariantly. Let u be 
the G-action on W. We want to compare a with u>#id. The cocycle 

g " ag ( w
g® i d ) 

takes values in the inner automorphisms of A, by [RR, Theorem 
0.8] if G is connected, but actually in general via [RR, Theorem 
0.5(b)] since the map 

H2((G/H)X{0},Z) • H2((G/H)XfRn,Z) 

is always an isomorphism. 

By [RR, Theorem 0.4], there is only one obstruction to 
exterior equivalence of a with a>$id, and it lies in the Moore 
cohomology group HM(G,C( (G/H)XIR , T)). Now we argue as in [Ro3, 
Theorem 3.9]. Let C(X,T) denote the connected component of the 
identity in C(X,T). The commuting diagram 
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EQUIVARIANT K-THEORY AND KK-THEORY 21 

C((G/H)X(R ,T), C((G/H)X(R ,T) ^((G/HJXIR^Z) 

res. res 

C((G/H)X{0},T)o • C((G/H)X{0},T) > H*((G/H)X{0},Z) >0 

and the five-lemma applied to the corresponding long exact 
cohomology sequence imply that res induces an isomorphism on 
2 

HM(G,-) if resQ does. Consider the commuting diagram 

H°({G/H)XIRn,Z) >C((G/H)XIRn,IR) C((G/H)XIR ,T) 

res. res. 

0 — IT((G/H)X{0},Z) —>C((G/H)X{0},[K) —> C( (G/H)X{0} , T ) Q — 0. 

By "averaging" of cocycles, Hr,(G,V) = 0 for j>0 and V any Frechet 
space with linear G-action (such as C( (G/H)xM,IR) for M a trivial 
G-space) so that res0 is an isomorphism on H^(G,-) for j>0. By 

2 the five-lemma, res. is an isomorphism on H M(G #-). Thus we deduce 
that the restriction map res induces an isomorphism 

Hj(G,C((G/H)XIRn,T)) - H^(G/C((G/H)X{0}/T)) 

Since W with action w is constructed as the quotient of A with 
action a, the image of the obstruction is zero. This completes 
the proof of Proposition 2.9 and thus of Theorem 2.8. • 

For arbitrary compact groups G (even satisfying the Hodgkin 
condition), identifying explicitly all the G-algebras in a 
G-fundamental family requires being able to list all the closed 

o 
subgroups H of G and being able to compute HM(H,T) for each. For 
G simply connected (e.g., SU(N), Spin(N), Sp(N)), the algebras 
C(GX„End(V)) (V a finite-dimensional projective representation of 

H, H a closed subgroup of G) form a G-fundamental family. This is 
conceptually satisfactory and perhaps it is the best possible 
result at this level of generality. However, further progress is 
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22 JONATHAN ROSENBERG AND CLAUDE SCHOCHET 

possible in the case of G = Tn and, in particular, if G = T. 

COROLLARY 2.10. Suppose that G is a torus (of any dimension). Let 
F be the collection of G-algebras of the form C(G/H,w), where H 
is a closed subgroup of G and w is a G/H cocycle. Then F is a 
CQ-fundamental family. 

PROOF: This follows from Theorems 2.5 and 2.8. • 

COROLLARY 2.11. If G = T, the G-algebras of the form C(G/H) , 
where H = {1}, Z , or G, are a CQ-fundamental family. 

2 PROOF: For any closed subgroup H o f T , HM(H,T) = 0 . a 

COROLLARY 2.12. If G = T, then BQ = CQ/ and if G = S0(2), then 

^G - CG-

PROOF; This is a restatement of (2.11). D 
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SECTION 3j. THE KUNNETH SPECTRAL SEQUENCE- SPECIAL CASES 

This section is devoted to the examination of the Kunneth 
map 

a(A,B): K®(A)8R(Q)K*(B) > K^(A$B). 

We concentrate upon the special case when K#(B) is R(G)-flat. In 
that case the Kunneth spectral sequence (if it were to exist) 
would predict that ct(A,B) is an isomorphism. We show that this is 
indeed the case for appropriate G and for A€ BQ. 

On the category of G-algebras the bifunctor KK# ( , ) is 
defined and satisfies homotopy and exactness axioms in both 
variables [Ka2]. Since it's easy to see how it behaves with 
respect to c -direct sums, the argument of Milnor [Sc3, §5] shows 
that KK* commutes with countable inductive limits in the second 
variable and satisfies a lim sequence with respect to inductive 
limits in the first variable. The proof is exactly the same as in 
the non-equivariant case; see [RS2], Theorems 1.12 and 1.14. We 
write KK*(C,B) = K*(B) ; K* is equivariant K-theory in the usual 
sense of the term. We also write K*(X) for K*(C (X)). This is 

G * O 
equivariant K-theory with compact supports as defined in [Se2]. 

* G 
Caution; Kasparov writes KQ(B) for K K ^ C B ) , even though the 
functor is covariant in B. We choose to adhere to the usual 
convention of writing covariant functors with indices down. 

The groups KK^fAjB) depend upon A and B as G-algebras, so 
that if one changes the G-structure, one would expect the 
Kasparov groups to change. However, it is only the exterior 
equivalence classes of the G-actions that matter (see 3.1 
below). 

As usual, we denote the (complex) representation ring of G 
by R(G). This coincides with KKQ(C,C). For any G-algebras A and 
B, KK^(A,B) is an R(G)-module via the intersection pairing. This 
module action on KQ(X) is the same as Segal's. As explained in 
the introduction, we will be interested in a Kunneth theorem for 

23 
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24 JONATHAN ROSENBERG AND CLAUDE SCHOCHET 
c c 
K# and in a universal coefficient theorem for KK^ ( , ) . In both 
cases, these are to be interpreted in the sense of [Adl] and 
[Ad2, Section 13]- that is, we want spectral sequences involving 
Ext and Tor of the coefficiant ring R(G). 

PROPOSITION 3.1. Let a,B : G >Aut(A) be two actions of a 
* 

compact (metrizable) group G on a separable C -algebra A which 
are exterior equivalent. Then (A,a) and (A,£) are 
KK -equivalent. 

PROOF: By assumption, there is a cocycle u:G • U(M(A) ) (the 
unitary group of the multiplier algebra of A) such that JB = 
(Ad u )ct . We construct X € KK ( (A, a) , (A, B) ) to be the class of 
the Kasparov triple (EeO,0), where E is the right Hilbert 
A-module A with A-valued inner product 

<x,y> = x y 

and G-action 

t-x = utat(x) 

and where A acts on the left and right in the obvious way. Note 
that as required, 

ts*x = utsats(x) 

= utat(us)at(as(x)) 

=t-(usas(x)) 

= t•(s*x). 

The G-actions on A and on E are compatible since 

(t»x)at(Y) = utat(x)at(y) 

= t-(xy) 

and 
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St(x)(t*y) = utat(x)ut*utat(y) 

=utat(xy) 

=t-(xy). 

Similarly we construct M € KK { (A,a) , (A, B)) to be the class of 
(F$0,0) where F is the A-bimodule A with the G-action 

t*x = ut*^t(x) = at(x)ut*. 

We claim that X and a are inverses of each other. Indeed, 
M0/A s ) \ is the class in KKG((A,a),(A,a)) of (F$AEeO,0), which is 
clearly just l ( A # a ), and similarly X*(A#a)M - l(Afj>- ° 

LEMMA 3.2. Suppose that G satisfies the Hodgkin condition. Then 
for any G-algebras A,B and for any action of G on M (C) , there 
are natural isomorphisms 

KK*(A,B) * KK^(A8Mn,B) 

KK*(A,B) 2 KK^(A,B0Mn). 

The same holds for actions on K other than the standard one. 

PROOF: An action of G on M is given by a continuous homomorphism 
G »Aut(M ) = PU(n) , and an action on K is given by a 
homomorphism G >PU(H). The Hodgkin condition guarantees that 
such actions come from ordinary unitary representations. Thus one 
can apply [Ka2, § 5, Theorem 1], • 

It's worth pointing out one other fact we'll use many 
times. 

REMARK 3.3. If H is a closed subgroup of G and A is any 
G-algebra, then there's a G-equivariant isomorphism of C(G/H)$A 
(with the diagonal action) with C(Gx„A) (with action by left 
translation), where as in $2, 

C(GXHA) = (f € C(G,A) : f(gh) = h"*1f (g) , g€ G, h€ H} , 
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26 JONATHAN ROSENBERG AND CLAUDE SCHOCHET 

namely: 
0(f®a)(g) = tWlg'1*). 

It follows that 
K*(C(G/H)®A) * K^(C(G0HA)). 

By [Gr2] and [Jul], this group is isomorphic to K^(GKC(GX„A)), 
which by [Grl] is just K #(HKA) == K*(A), since GKC(GK RA) and HKA 
are stably isomorphic and the R(G)-module structures are easily 
seen to be compatible. Thus, 

K*(A) * K^(C(G/H)®A) 

with G acting diagonally on C(G/H)#A, for any G-algebra A and any 
closed subgroup H of G. Compare also [RR], S3. 

PROPOSITION 3.4. Assume that K*(B) is a flat R(G)-module. Then 
c* c c 

K*(~)8R/G\ K*( B) a n d K*("~$B) are additive homology theories (on 
the category of G-algebras), and a(-,B) is a natural 
transformation of theories 

a(-,B): K*(-)SR(Q)K*(B) > K*(-®B). 

PROOF: Each theory is clearly homotopy invariant. Since 
G-algebras are nuclear, the functor (~)0B preserves exact 
sequences and countable direct sums. Thus K^f-^B) is a homology 
theory (with no use of flatness). If K^B) is a flat R(G)-module 
then the functor (-)$„._*K*(B) is exact, and hence the functor 
K*("*)®R/Q\K* (B) satisfies the exactness and additivity axioms. 
Finally, the naturality of a follows from the naturality of the 
Kasparov product. • 

PROPOSITION 3.5. Suppose that K*(B) is R(G)-flat. 

a) If J is an invariant ideal of the G-algebra A and if two of 
the maps a(J,B), a(A,B), a(A/J,B) are isomorphisms, then so is 
the third map. 
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b) If A • A »A • ... is a countable direct system of 
G-algebras with limit A and a(A.,B) is an isomorphism for each i, 
then a(A,B) is an isomorphism. 

c) If a(A,B) is an isomorphism, then so is cc(A#C (IR ),B). 

d) If a(A,B) is an isomorphism and if A is G-stably equivalent to 
A1, then a(A',B) is an isomorphism. 

e) If a(A,B) is an isomorphism and if A is exterior equivalent to 
A, then a(A,B) is an isomorphism. 

f) If ct(A,B) is an isomorphism and if Axr denotes the crossed 
product by the group r = (R or 2 whose action commutes with the 
G-action, then a(A*r,B) is an isomorphism. 

PROOF: Parts a) and b) depend upon Proposition 3.4. For part d) , 
we note that both sides are invariant under G-stable isomorphism. 
Part c) holds by Bott periodicity. For part f) in the case of the 
group (R, one uses Connesf Thorn isomorphism and the fact that 

K*(AxlR) = K^UAxIRjxG) S K* ( (AxG)xlR) 

* K#+1(AxG) 3 K^+1(A) 

(using [Gr2] or [Jul] plus the fact that the G and IR actions 
commute.) Crossed products by Z follow from the case of crossed 
products by (R (as pointed out by Connes), or else using a similar 
argument with the Pimsner-Voiculescu sequence and the 5-lemma 
(cf. [RS2, 2.7]). Part e) follows from Proposition 3.1. a 

PROPOSITION 3.6. Suppose that K^(D) is R(G)-flat and that a(A,B) 
is an isomorphism for all A in some (^-fundamental family F. Then 
a(A,B) is an isomorphism for all A € CQ. If a(A,B) is an 
isomorphism for all A in some AQ-fundamental family, then ct(A,B) 
is an isomorphism for all A € BQ. 

PROOF: This is an immediate consequence of Proposition 3.5. a 

Proposition 3.6 is the key to our strategy: we focus upon 
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28 JONATHAN ROSENBERG AND CLAUDE SCHOCHET 
/-» 

showing that ct(A,B) is an isomorphism for K:|e(B) R(G)-flat and for 

A in one of the fundamental families constructed in $2. 

Furthermore, things are greatly simplified if we restrict 

attention to the case where G is a torus. This turns out to be no 
restriction because of the following theorem, due in the full 

generality of (ii) to A. Wassermann [Wa] , and discovered in the 
form (i) by one of us (J.R.) in 1982. 

THEOREM 3.7. Let G be a compact Lie group in the Hodgkin class 

and let T be a maximal torus in G. Then for all G-algebras A, 

(i) K*(A) 2 R(T)® R ( G )K*(A), 

and more generally, for all G-algebras A and B, 

(ii) KK^(A,B) 2 R(T)®R(G)KK^(A,B). 

PROOF: Statement (ii) is due to A. Wassermann, and we understand 
he intends to publish the proof in the near future [Wa] . 
Therefore we content ourselves here with sketching an argument 
for (i), which is what we shall need later in this section. There 
are three major ingredients: 

a) the theorem of Pittie and Steinberg (see [St]) that for G 
a Hodgkin group, R(T) is a free R(G)-module of finite rank, and 

b) the theorem of McLeod [Mc], which relies on (a), that for 

G a Hodgkin group, the Kiinneth pairing 

R(T)$R(6)R(T) • K*(G/T X G/T) S K*(G/T) 

is an isomorphism (a key case of our Theorem 3.10 below), and 

c) the use of elliptic operators on G/T, where G is any 
connected compact Lie group, to show that the restriction map 

r: K®(A) > KJ(A) 

is split injective. 

Note that (c) does not require the Hodgkin condition, and 
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that by [St], R(T) is also free over R(G) when G = SO(2n+l). 
However, (b) works only for Hodgkin groups. 

Part (c) was proved by Atiyah [At, Proposition 4.9] in the 
case where A is commutative, and generalized to the case of 
arbitrary G-algebras by Julg [Ju2]. However, since Julg does not 
use the machinery of equivariant Kasparov groups, it seems more 
in keeping with the spirit of this article to proceed as 
follows. 

Since G/T may be given the structure of a smooth complex 
projective variety, with G-invariant complex structure 
corresponding to a choice of positive roots for (G,T), we may 
form the corresponding d-operator (the Dirac operator would do 
just as well), and on the Dolbeault complex, 

D = b+h*: Q°'eVen(G/T) — 0°'Odd(G/T) 

is elliptic and G-invariant if we use a G-invariant metric. Then 
2 -1/2 2 

(1+D ) D is bounded on L forms and Fredholm, and defines a 

class 

[D] e KKQ(C(G/T),(E) . 

For any G-algebra A, the Kasparov product map 

K*(A) * K^(C(G/T)®A) S 

=2 KK^(<C,C(G/T)0A) C ( G / T ) • KK*((E,A) 2 K*(A) 

is the "holomorphic induction map" of [Ju2] which Julg shows is a 
left inverse to r (without assuming G is a Hodgkin group). 

The fact that G/T has a G-invariant complex structure and a 
G-invariant (Kahler) metric implies by [CS] and by [Ka3,$8] that 
there is a Poincare duality isomorphism 

8: KKG(C(G/T),C) > KK°(C,C(G/T)) 

taking [D] to the class of the trivial line bundle, which 
corresponds to the identity element 1 € R(T) under the usual 
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isomorphism 

KKG(C,C(G/T)) = K°(G/T) 2 R(T). 

In fact, 5 is given by Kasparov product with a certain canonical 
class in the group 

KKG(C,C(G/T)0C(G/T)) * K°(G/T X G/T), 

and so we have a similar Poincare duality isomorphism 

5B: KKG(C(G/T),B) > KKG(C,C(G/T)®B) 

for any G-algebra B. Note by associativity properties of the 
Kasparov product that for any 

x € KG(C(G/T)) * KKG(C,C(G/T)) 

and for any 

y € KG(B) S KKG(C,B), 

we have 

5"1(x)«cy - »B"1(x8cY) ir> KKG(C(G/T),B). 

We apply all this in the case where B = C(G/T). Thus we have 
an R(G)-module isomorphism 

5Q/T: KKG(C(G/T),C(G/T)) • KKG(C,C(G/T)®C(G/T)), 

and by McLeod's Theorem, the right-hand side is identified with 

KJ(G/T) S R(T)0R(G)R(T). 

Let W = NQ(T)/T be the Weyl group of (G,T). The Pittie-Steinberg 
Theorem provides a free basis (e

w)w^w
 f o r R(T) over R(G), with 

e1 = 1. Thus there must be unique elements {b } of R(T) = 
lp W WcW 

KK (C,C(G/T)) such that 
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5G/T(1C(G/T) ) Sw€W bw^Cew' 

(The notation here is ambiguous, but # denotes Kasparov product 
over the G-algebra (E, which corresponds to ®D/«X for the 
corresponding modules.) 

Letting (for w € W) 

aw = 5"1(bw» € Ko(G/T>< 

we deduce that we have a unique decomposition of L/r,_. as 

1C(G/T) Sw€W aw®Cew' 

Note also that (aw> and {e } must be dual to each other with 
respect to the Kasparov product, since for u£W, 

eu = eu^C(G/T)1C(G/T) 

= eu^C(G/T)(SwGWaw0Cew) 

= ^wGW^^CfG/T^w'V^w 

by associativity of the product, and thus (since the e 's are a 
free basis for R(T) over R(G)) that 

eu®C(G/T)aw 
VG) if u " w 
0 otherwise. 

Now consider any G-algebra A and some 

x G K^(A) 2 K^(A0C(G/T)) (by Remark 3.3) 

We have 

X X®C(G/T)1C(G/T) Sw€W(X^C(G/T)aw)8Cew' 

and furthermore, for any x € K^CA) such that 
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32 JONATHAN ROSENBERG AND CLAUDE SCHOCHET 

x = 2 ,-r7x ft e , 

we must have 

X®C(G/T)aw " (Iu€WXu0(Eeu)0C(G/T)aw 

= 2u6W^u^C(eu0C(G/T)aw) 

= x , w 

which shows that the x fs are uniquely determined. Thus 
w 

KJ(A) S K*(A)®R(Q)R(T), 

at least as R(G)-modules. 

T To check that the R(T)-module structures on KJ|C(A) and on 

'""*R(G)J 
restriction map 
K^(A)$D/nxR(T) coincide, it is enough to observe that the 

r: K°(A) • K*(A) 

sends Kasparov products for G-algebras to Kasparov products for 
T-algebras, and is also given on the level of R(G)-modules by 
Kasparov product over the G-algebra C with 

el 1R(T)* 

Thus if we use a raised dot to denote the module action of R(T) , 
we have for x £ K#(A) and u,w € W, 

e 'r(x) = x$^e , w V(C w 

e •(x0^e ) = (e e )»r(x) = x®_(e e ). u l ^C w' x u w' v ' ^C u w' 

T Since K*(A) is spanned as an R(G)-module by elements of the form 
x0 e , and since the e 's span R(T) as an R(G)-module, we see 

C W U T 
that the module action of R(T) on K^fA) coincides with the 
R(T)-module structure on 
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R(T)eR(G)K®(A). 

(Since R(G) and R(T) are commutative, we use right and left 
modules interchangeably.) This completes the proof, D 

Note, incidentally, that as indicated in [Sel], p. 127, 

R(G) 2 R(T)W 

even for G connected but not Hodgkin. This suggests that one 
ought to have 

K®(A) 2 K^(A)W 

for any G-algebra A. As pointed out in [Mc, Remark 4.5], this 
fails even for G = SU(2) if K#(A) has torsion, but this follows 
immediately from Theorem 3.7 if G is Hodgkin and if K^fA) is 
R(G)-free (equivalently, if K*(A) is R(T)-free). 

We shall see in Theorem 3.10 below how to pass from Theorem 
3.7 and results for tori to results for general Hodgkin groups. 

THEOREM 3.8. Suppose that G is a torus, H is a closed subgroup of 
* G 

G, and B is a C -algebra with Ks|c(B) R(G)-free. Then the natural 

map 

a: R(H)®R(G)K^(B) • K*(B) 

is an isomorphism. 

Note that we are using the identification 

K*(C(G/H)®B) 2 K*(B) 

mentioned in Remark 3.3 and that a corresponds to a(C(G/H),B) 
under this identification, so that this theorem is a special case 
of the Kiinneth Theorem for the group G. 

We begin the proof of Theorem 3.8. 
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PROPOSITION 3.9. Suppose that T is a torus and that K*(B) = 0. 
Then K^JB) = 0 for any closed subgroup H of T. 

We note that Proposition 3.9 implies Theorem 3.8. Indeed, if 
B is as in Theorem 3.8, we can by Proposition 4.1 and Remark 4.2 
below choose F = C (Y) , with Y a disjoint union of copies of IR 
and of (R , with trivial T-action, and a morphism of T-algebras 

M: F SB®K 

inducing an isomorphism on K^. Consider the mapping cone exact 
sequence 

S2B$K CM - 0, 

and note that by construction, K#(Cji) = 0. Thus, if Proposition 
3.9 holds, K ^ C M ) = 0. Since a is obviously an isomorphism for F, 
application of the five-lemma to the diagram 

0 > R(H)eR(T)K»(F) • R(H)eR(T)K»-1(B) > 0 

K"(CM) - K*(F) - KJL^B) - KJJ(CM) 

shows that 

a: R(H)0R(T)K^(B) • K^(B) 

is an isomorphism. Conversely, 3.9 is clearly a special case of 
3.8, so that the two are equivalent. 

PROOF (of Proposition 3.9): Without loss of generality we may 
assume that B has been T-stabilized. More precisely, we tensor B 
with K(H), where H is the direct sum of infinitely many copies of 
2 L (T), so that each irreducible representation of T and of T/H 

appears with infinite multiplicity. Then B is also H-stable, 
since each irreducible representation of H extends to a 
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u 
representation of T, and the fixed-point algebra B is 
(T/H)-stable. As explained by Bratteli [Bra], if B is J-stable, 
then 

B is stably isomorphic to BxJ (*) 

for J = H, T, or T/H. Thus 

K*(B) = K#(BxT) by [Jul] or [Gr2] 

= K,(BT) by (*) 

a K #((B H) T / H) by definition 

a K,((BH*(T/H)) by (*) 

a K*/H(BH) as above 

and similarly, 

K#(B) S K#(BxH) a K^B11) 

so that it suffices to prove that if K*/H(BH) = 0 then 
K^tB ) = 0. Since T/H is another torus, we have reduced the proof 
of Proposition 3.9 down to the special case H = {1}, in which 

T case we must demonstrate that if K#(B) = 0, then K^fB) = 0. This 
follows from iterations of the Pimsner-Voiculescu exact sequence 
[PV] or, more elegantly, the Kasparov spectral sequence [Ka3, %7] 
which has the form 

E 2 = H„(ir,K#(A)) => K^Ax*) 

for * a free abelian group. Take A = BxT, * = T, and use Takai 
duality and the Julg-Green identification to obtain the spectral 
sequence 

E 2 = H„(ic,K*(B)) * K #(B). 

T 2 
If K^tB) = 0 then E = 0 and so K^fB) = 0, and thus Proposition 
3.9 and Theorem 3.8 are established. a 
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Finally, we summarize the results of this section. 

THEOREM 3.10. Suppose that G is a compact Lie group satisfying 
the Hodgkin condition, and suppose that B is a G-algebra with 
K^CB) R(G)-free. Then a(A,B) is an isomorphism for all 
commutative G-algebras A, and in fact for all A € BQ. If G is of 
rank 1 (i.e., if G = T or SU(2)) then a(A,B) is an isomorphism 
for all A € C„. 

G 

We note that the missing link in the higher rank situation 
* 

is the map a(C (G/H,w),B) where w is a non-trivial cocycle. If 
these maps are isomorphisms then a(A,B) is an isomorphism for all 
A 6 CG. 

PROOF: Proposition 3.6 shows us that we may restrict to 
consideration of G-fundamental families. First suppose that G is 
a torus. Then Theorem 2.8 and Corollary 2.10 show that it 
suffices to consider a(A,B) where A = C (G/H,u), if we are 
interested in all A £ Cp, or to consider a(A,B) with A = C(G/H), 
if we are interested in A € Bp. But ct(C(G/H),B) is an isomorphism 
for any H by Theorem 3.8. This proves the result about BG, and by 
Corollary 2.12, also about CQ when G = T. 

In the general case, we must consider the map 

aG(A,B) : K*(A)®K*(B) >K*(A®B). 

Apply the functor R(T)$0/r>x (-) to the map and one obtains (by 
T ( } G 

Theorem 3.7) the map a (A,B). Now if K*(B) is R(G)-free, then 

K*(B) - R(T)0R(G)K^(B) 

T is R(T)-free, so a (A,B) is an isomorphism by the first part of 
the proof. The fact that R(T)®0/^.(-) is fully faithful (since 

R(G) G 

R(T) is free over R(G)) implies that a (A,B) is an isomorphism. 
D 

REMARK 3.11. In Theorem 3.10, we may replace the requirement that 
K#(B) be R(G)-free by the condition that it be R(G)-projective. 
The reason is that if we let B̂ ^ = c e(c $C (IR) ) with trivial 

Purchased from American Mathematical Society for the exclusive use of Claude Schochet (sccll)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



EQUIVARIANT K-THEORY AND KK-THEORY 37 

G-action, so that each K.JBj) is free of countable rank, then 
K»(BeB1) 2 K^(B)eK^(B1) is also R(G)-free of countably infinite 
rank, by "Eilenberg's Lemma" [Ba] . Hence a(A,B1) and afA^eBj) 
are isomorphisms by Theorem 3.10, so a(A,B) must be an 
Isomorphism as well. 
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SECTION 4: GEOMETRIC PROJECTIVE RESOLUTIONS 

In this section we construct a geometric resolution for an 
arbitrary G-algebra B. This tool is then used to construct the 
Kiinneth spectral sequence in section 5. 

PROPOSITION 4.1. Let B be any unital G-algebra. Then there exists 
a C -algebra F with trivial G-action and with K#(F) Z-free (hence 
with K^fF) R(G)-free) and a map u: F • B®K inducing a 
surjection 

K*(F) >K»(B) > 0. 

Here K = K{H) with H the Hilbert space of of some unitary 
2 representation of G (an infinite direct sum of copies of L (G) 

/»• 
will do). If K#(B) is R(G)-free then the map u may be chosen to 

/•<• 

induce an isomorphism on K^. Moreover, F may be taken to be C (Y) 
with Y a disjoint union of points and lines. 

PROOF: For B a unital G-algebra, K
0^B) consists of formal 

differences [(P-,*-)] - [(P2,&2)], where P. is a finitely 
generated projective B-module and B . is a compatible G-action. By 
the Kasparov stabilization theorem [Kal] each P. can be embedded 

J * 
equivariantly as a summand of H_, the Hilbert C -module of an 
infinite direct sum of copies of B tensored with all 
finite-dimensional representations of G, each appearing 
infinitely often. After tensoring with a finite-dimensional 
representation of G if necessary, we may assume that [P.,£.] is 
represented by a G-fixed projection in B$K. Alternatively, we 
have 

Kj(B) 2 KQ(GkB) = KO(GK(B0I:)) = KQ ( (B0IT) G ) , 

using [Jul], [Gr2], and [Rol] or [Bra]. Thus K (B) is generated 
by (since B is separable) countably many G-fixed projections in 
B$K, which we may make disjoint and commuting by the argument of 
[Sc2]. Taking one copy of (E for each such projection, we get a 
map from an abelian algebra FQ with discrete spectrum and trivial 
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G-action to B$K inducing a surjection on K^. 

Similarly, generators of K (B) may be represented by 
c 

homomorphisms C (fR) >(B%K) , and by making the elements of B$Jf 
involved disjoint from those used to constuct F we obtain an 
algebra F which is a sum of copies of C and of C (IR) with trivial 

c c 
G-action and a map F >B$K inducing a surjection on K# . If K#(B) 
is R(G)-free then we choose a set of generators and hit those by 
generators of K,(P). a 

We note that if A is a G-algebra then CA and SA are 
G-algebras in a natural fashion- with trivial action in the new 
coordinate. There are, of course, other possible G-structures, 
but we understand CA and SA to mean this particular G-structure. 
Similarly, if f:A >B is a G-map, then the mapping cone Cf is a 
G-algebra and the mapping cone sequence is a sequence of G-maps. 

REMARK 4.2. Because of [Ro2, Theorem 4.1], if we replace B by its 
suspension SB = B#C (|R.) we may obtain a map SF •SB0K with the 
properties of Proposition 4.1 without assuming that B is unital. 
This will be convenient since we'll have to iterate uses of this 
Proposition and units will be lost at each stage of the 
construction. Then we obtain the following proposition. 

PROPOSITION 4.3. Let B be a G-algebra. Then there exist 
G-algebras F, W with K*(F) R(G)-free (of finite rank if K*(B) is 
finitely R(G)-generated) and a short exact sequence of 
G-algebras 

0 >S2B®K >W •SF > 0 

such that the associated long exact K# sequence splits into short 
exact sequences 

0 *j.+1(W) — > Kj{P) >Kj(B) > 0 . 

Furthermore, F is a sum of copies of C and of C (IR) with trivial 
G-action. 

PROOF: Choose 0: SF >B$K as explained above and let W be the 
mapping cone C0.D 
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THEOREM 4.4. (Geometric Realization of Projective Resolutions) 
Suppose that G is a compact group whose representation ring R(G) 
has finite global homological dimension (e.g., suppose that it 
satisfies the Hodgkin condition). Let B be a G-algebra. Then 

* 
there exists a C -algebra D with a natural isomorphism 

K*(A®B) = K*(A0D) 

for all A, and a finite filtration 
0 = DQ C Dx C ... C D k + 1 = D 

by G-invariant ideals so that each K*(D ./D..) is 
R(G)-projective. The filtration gives rise to a projective 
R(G)-resolution 

0 - K^(D/Dk) -* K ^ / D ^ ) - ...- K^(D1/DQ) •* K^(B) - 0. 

PROOF: We may assume that B is G-stable and that all algebras 
appearing in the proof have been G-stabilized. Using (4.3), there 
is a map #* :F* >SB where F is as in (4.1) and the associated 

c c 

map K#(F«.) • K^fSB) is surjective. The mapping cone sequence 

0 • S2B > W x >F • 0 

has associated to it the short exact sequence of R(G)-modules 

0 > K » ( W 1 ) > K°(P1) • K*(SB) > 0 

which is the beginning of a projective resolution for K^fB). 
Repeat the process commencing with a K* surjection 0?:F9 •SW1 

to obtain 

0 >S2W >W2 • F2 > 0 

with F- as in (4.1) and associated short exact sequence 
0 > K^(W2) > K^(F2) — K^(SWa) — 0. 

Purchased from American Mathematical Society for the exclusive use of Claude Schochet (sccll)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



EQUIVARIANT K-THEORY AND KK-THEORY 41 

Continuing, we obtain a sequence of K^- surjections 
^.:P. *SWi-i a n d e a c n F- a s i n (4.1) with associated mapping 
cone sequence 

0 > S 2W. i • W . • F . >0 
3 - 1 3 3 

The K-theory exact sequences splice together to yield the long 
exact sequence 

° - K U ( v - Kj+k(Fk> - • • • - * Kj+i<F
a) - K > > - o-

Let us fix some k which is greater than the global 
homological dimension of R(G) and carry out the above procedure k 
times. Then there is a sequence of inclusions of ideals 

s2kB c s2k"2w2 c s2k~4w2 c ... c s2wk__a c wk. 

2k 
Let rf:W, *Wk^S B a n d l e t D = Dk+1 = C* b e t n e maPPin9 cone of 
re. Then there is a short exact sequence 

2k 0 >S(Wk/S*KB) • D — * W k > 0 , 

from which we see that D is KK -equivalent to B. Let D. = 
S(s2k-2j /g2kB) f o r 0 < j < k + 1 ( D = 0> T h e n 

DJ/DJ.J = S^^W./sV.^) » S2k-^'+1F. 

'G'"y-^ and so K]|t(D^/D^_1 ) is R(G)-free. The natural maps 

^ ( D J / D ^ J ) * K^SFj) • Ki<s2wj-i) ' 

"S^Vi1 S K S - I ( 8 F 3 - I ) * K?-I< DJ-I / D3-2 } ) 

induce a long exact sequence of R(G)-modules 

° —*Kj+k(D/Dk» — K ? + k - i ( v D k - i > 

• K ^ D J / D Q ) • K°(B) 

Each module K^fD./D. ) is R(G)-projective by construction. The 
G J J * 

module K^fD/D. ) is R(G)-projective since k exceeds the global 
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homologdeal dimension of R(G). So this is the required geometric 
projective resolution of K^fB). • 

We note for future reference that in particular cases some 
module K^fW.) might be R(G)-projective for some smaller value of 
j; at that point the process may be terminated (and certainly 
should be, as the resulting spectral sequence will be simpler). 

If R(G) has infinite global homological dimension (e.g., if 
G is a finite group) then the process described above leads to an 
R(G)-projective resolution of infinite length of the form 

... • K^(Fk) > ... • K^tPj) > K*(B) > 0. 

This could be used to set up the Kunneth spectral sequence. 
However, the spectral sequence would not converge and would be 
useless. Computing equivariant K- and KK-groups for such groups 
seems to be quite difficult, even in the commutative setting. 
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SECTION 5j. CONSTRUCTION OF THE KUNNETH SPECTRAL SEQUENCE 

In this section we use the geometric projective resolutions 
of Section 4 to construct a spectral sequence which strongly 
converges to K#(A$B) under the hypothesis that G satisfies the 
Hodgkin condition. In fact, the spectral sequence will eventually 
collapse: E = E for r = 1 +(gl. dim. R(G)). For example, in 
the case of G = {1}, we have r = 2 and the Kunneth spectral 
sequence reduces down to the usual Kunneth Theorem for K-theory 
of [Sc2]. If G = T, then r = 3. We shall examine this case 
further in Section 10. 

The spectral sequence may be constructed with minimal 
hypotheses. For it to be interesting and effective in 

2 
computation, however, one must be able to identify its E term in 
terms of computable algebraic invariants. To make this 
identification, we must assume that A € BG, the category of 
"bootstrap" G-algebras. (This assumption is analogous to the 
situation in the non-equivariant setting.) The result is the 
following theorem. 

THEOREM 5.1. (Kunneth Theorem, general case). Let G be a compact 
Lie group which satisfies the Hodgkin condition. For A € Bp and B 
a G-algebra there is a spectral sequence of R(G)-modules strongly 
converging to K#(A#B) with 

Ep.q = Tor£(G)(K°(A),K°(B)). 

The spectral sequence has the canonical grading (so that 
Torp(G)(Kg(A),K^(B)) has total degree p+s+t (mod 2)). The edge 
homomorphism 

K* ( A )®R(G) K* ( B ) - E0,* ' E0,* - * K*<A®B> 

is the Kunneth pairing a(A,B). The spectral sequence is natural 
with respect to pairs (A,B) in the category. If G has rank r then 
E2 = 0 for p>r+l and E r + 2 = E°\ 
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If K^(B) is R(G)-projective (e.g., if it is R(G)-free), 
then 

TorR(G)(K*(A),K*(B)) = 0 for p>0 

and so the spectral sequence degenerates to the statement that 
the natural map 

a(A,B): K°(A)3R(G)K^(B) — K^(A0B) 

is an isomorphism. This, of course, was precisely the subject of 
Theorem 3.10 and Remark 3.11. We shall deduce our general results 
here from fairly standard methods in homological algebra and the 
results that we have established. 

PROOF: Let us fix a G-algebra A in the category 8Q. Theorem 4.4 
(Geometric resolutions) applied to the G-algebra B gives us a 
C -algebra D with a natural isomorphism 

K*(A®B) S K*(A$D) 

for all A, and a finite filtration 
0 - D 0 C Dt C ... C D k + 1 = D 

by G-invariant ideals so that each 
R(G)-projective. The filtration gives rise 
R(G)-resolut ion 

... • K ^ D J / D Q ) — » K°(B) .0. 

Tensor the filtration 

0 = DQ C Dx C ... C D k + 1 = D 

with A to obtain the filtration 

0 = A®DQ C A0Dx C ... C A®Dk+1 = A®D. 

K ^ D ^ D ^ ) is 
to a projective 

Apply Section 6 of [Scl]. We obtain a spectral sequence strongly 
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convergent to K*(A®D) £ K*(A®B) and with 

By Theorem 3.10, Remark 3.11, and the fact that K^(D /DD « ) i8 
R(G)-projective, we may identify E1 with K*(A)0R(G)K^(D /D . ) . 
To be more precise about the gradings, we identify 

Ep,q ~ Kp+q(A)®R(G)K0(Dp+l/Dp) ® ^ l l ^ l G I ^ V ^ V ' 

The d- differential in the spectral sequence is easily identified 
as the map 

id®8:K^(A)3K^(Dp+1/Dp) • KJ(A)^(D p/D p - 1) 

where 

5: K°(Dp+1/Dp) • K°-i(VVl ) 

pi 

is the map in the R(G)-projective resolution of K^fB). By the 
definition of Tor*(G), we obtain 

2 E = homology of (id$8) a 
P »H 

TorJ(Q,(K°<A).K°<B)) « Tor«(G)(K°(A),K°+1(B)). 

Often we write the spectral sequence in reverse with 

EP,* = Tor^G)(KG(A),KG(B)); 

this corresponds merely to thinking of D as filtered not by the 
ideals D. but rather by the quotients D/Di-+1 J an<* reindexing 
accordingly. • 
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SECTION 6_i SOME CONSEQUENCES OF THE KUNNETH SPECTRAL SEQUENCE 

Our proof of the Universal Coefficient spectral sequence 
uses our Kunneth spectral sequence in a non-trivial fashion. 
Accordingly, we pause in our development to record some 
consequences of the Kunneth spectral sequence which we require. 
We also insert a simple consequence of the Kunneth spectral 
sequence which builds along the lines suggested by 
Iberkleid-Petrie [IP] in their study of smooth actions of the 
circle group on manifolds. As an added diversion, we indicate how 
the Kunneth spectral sequence implies the theorem of Pimsner and 
Voiculescu [PV]. This is quite similar to the proof of Kasparov 
[Ka3], though his spectral sequence arises in a quite different 
manner. Other applications will be deferred to Sections 10 and 
11. 

THEOREM 6.1. (Hodgkin Spectral Sequence). Let G be a compact Lie 
group satisfying the Hodgkin condition, let H be a closed 
subgroup, and let B be a G-algebra. Then there is a spectral 
sequence which strongly converges to K^tB) with 

E* * Tor*(G)(R(H),K*(B)). 

In particular, there is a strongly convergent spectral sequence 

E* # - Tor*{G)(Z,KG(B)) =* K#(B), 

corresponding to the case H = {1}. 

PROOF: This is just the Kunneth spectral sequence for the pair 
(C(G/H),B). a 

An important consequence of (6.1) is that if K#(B) = 0, then 
K*(B) = 0 for all closed subgroups H of G. 

COROLLARY 6.2. Let H be a closed subgroup of a torus T of any 
dimension, and let B be some T-algebra. Then there is a strongly 
convergent spectral sequence 
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E2 = Tor^<T>(R(H),K^(B)) * KK*(C(T/H),B). 

PROOF: The group T/H is also a torus, and so it is 

parallelizable, in fact in a T-equivariant way. So by Poincare 

duality ([CS] and [Ka3, $8, Theorem 2]), 

KK*(C(T/H),B) 2 KK*((C,C(T/H)8B) * K* (C (T/H)®B) . 

By the equivariant Kiinneth Theorem and the fact that 

K^(C(T/H)) 2 R(H) (as an R(T)-module), we obtain the corollary. 

D 

Suppose that G is a compact Lie group which satisfies the 
Hodgkin condition. Then (unless G is trivial) R(G) is not a 
principal ideal domain. However, if we localize by some suitable 
family P of prime ideals, then R(G) is a pid. Then we have the 
following theorem. 

THEOREM 6.3. Suppose that G is a compact Lie group satisfying the 
Hodgkin condition, P is a collection of prime ideals in R(G), and 
that A and B are G-algebras with A € BQ. Let R = R(G) . Then 
there is a spectral sequence which strongly converges to 
K°(A®B)p, with 

E^ # = Tor£(K^A)p,K^(B)p). 

If R is a principal ideal domain, then there is a natural short 
exact sequence 

0 >K^(A)p S R K^(B) p —-K^(A®B) p >Tor*(K^ (A) p , K^ (B) p) >0. 

PROOF: The Kiinneth spectral sequence localizes to yield a 
spectral sequence which converges strongly to K^fAgB) and with 

E * ^ = Tor£(K^(A)p,K°(B)p), 

since Tor respects localization. If R is a pid, the Tor terms 
vanish for p>l and the spectral sequence degenerates to the short 
exact sequence shown. • 
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Theorem 6.3 is parallel to results of C. Phillips [Ph], who 
deals with equivariant K-theory for finite groups. 

Next we indicate how our equivariant Kiinneth theorem implies 
the Pimsner-Voiculescu exact sequence [PV]. Suppose that A is a 
C -algebra with a *-automorphism 0 inducing an action a of Z. The 
problem is to compute K ^ Z K A) in terms of the action of 0# on 
K^fA). Let fi denote the dual action of T on ZK A. Then Takai 
duality takes the form 

A$K = T*a(ZKaA) 

and so 

K^A) 2 K^TKglZ^A)) S Kj(Z*aA). 

The R(T)-action on K^fA) comes from tensoring by characters of T 

or, via Fourier transform, from the action of Z on A, so if we 
write R(T) = Zl^t" 1], then t acts as 0#. Then K ^ Z K A) may be 
computed by the Hodgkin spectral sequence (with H = {1}), which 

2 has E term 

TorJ(T,(Z,K,(A)) S Tor£(T)(Z,K^(ZKaA)). 

Now Z has homological dimension 1 over R(T) , and hence 
Tor * (Z,-) = 0 for p>l. Thus the spectral sequence collapses. 
In fact, the free resolution 

0 • R(T) — 1 ~ 1 » R(T) > Z > 0 

yields the exact sequence 

0 —•TorJ(T,(lfK<(A)) >K„(A) - ^ K,(A) >ZQR(J)K*(k) — 0. 

Thus there is a short exact sequence 

0 —•Cok(0s|e-1) ^ ( Z ^ A ) • Ker(0Jle-l) — - 0 

and this implies the Pimsner-Voiculescu long exact sequence 
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... >Kj<A) ^ Kj(A> >K (Z^A) »K (A) — • ... 

as desired. 

Note that, although the Pimsner-Voiculescu theorem was used 
previously in this paper, there are some algebras for which the 
Kunneth spectral sequence can be established by other methods, so 
that for suitable pairs (A,*) this is indeed an independent 
proof. 

If we argue similarly using Takai duality for Z - and 
I -actions, Theorem 6.1 leads to Kasparov's generalization [Ka3, 
17, Theorem 2] of the Pimsner-Voiculescu sequence in the form of 
a spectral sequence 

Hp(Zr; Kg(A)) — Kp+g(ZrKaA). 

since 

r r 
Tor^ 1 Uz,-) a Tor2/2 ](Z,-) 

s Hp(Zr,-) 

by [CE, Ch. X]. 
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SECTION Zl IMI UNIVERSAL COEFFICIENT SPECTRAL SEQUENCE 

SPECIAL CASES 

Given a compact group G and a pair (A,B) of G-algebras 
satisfying the usual technical hypotheses, there is a natural 
map 

Y = Y(A,B) : KK*(A,B) • HomR(Q)(K^(A), K^(B)) 

given as the adjoint of the Kasparov pairing $. . Alternatively, 
c one may by [Ka2,%7] identify an element of KK1(A,B) with the 

equivalence class of an extension of G-algebras 

0 > B%K • E • A • 0 

and assign to an element the pair of connecting homomorphisms in 
the six-term exact sequence in equivariant K-theory associated to 
the extension. The map Y is an edge homomorphism in the universal 
coefficient spectral sequence. In particular, if K#(B) is 
injective as an R(G)-module, then Y(A,B) should be an isomorphism 
for all suitable A. In this section we prove that this is indeed 
the case. As in the case of the Kunneth Theorem, we prove this 
first for tori and then pass to general Hodgkin groups using 
Theorem 3.7. This requires an additional algebraic fact (Theorem 
7.5) which seems to be new: if G is a Hodgkin group with maximal 
torus T, then R(T) is "self-dual" over R(G). 

PROPOSITION 7.1 Assume that K*(B) is an injective R(G)-module. 
Then KKQ(-,B) and HomR,Qv (K* (-) , K^B)) are additive cohomology 
theories (on the category of G-algebras), and Y(-,B) is a natural 
transformation of theories 

Y(-,B): KK*(-,B) > HomR(G)(K^(-), K*(B)). 

Proof: Each theory is clearly homotopy invariant. The theory 
KKr(-,B) satisfies the exactness axiom in the first variable, by 
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[Ka2], and it is additive (that is, it yields a lim sequence, as 
in [Sc3, RS2]). The theory !£*(-) satisfies the exactness and 
additivity axioms as usual. If K^fB) is R(G)-infective, then 
HomR,Gv(-, K*(B)) is an exact functor, thus Hom(K#(-), K^(B)) 
satisfies the exactness and additivity axioms, D 

PROPOSITION 7.2. Suppose that K*(B) is R(G)-injective. 

a) If J is an invariant ideal of the G-algebra A and if two of 
the maps Y(J,B), Y(A,B), Y(A/J,B) are isomorphisms, then so is 
the third map. 

b) If A 1 >k2 >A3 • ... is a countable direct system of 
G-algebras with limit A and if Y(A.,B) is an isomorphism for each 
i, then Y(A,B) is an isomorphism. 

c) If Y(A,B) is an isomorphism, then so is Y(A®C (fRn),B). 

d) If Y(A,B) is an isomorphism and if A is G-stably equivalent to 
A1, then Y(A!,B) is an isomorphism. 

e) If Y(A,B) is an isomorphism and if A is exterior equivalent to 
A1, then Y(A',B) is an isomorphism. 

f) If Y(A,B) is an isomorphism and if Axr denotes the crossed 
product by the group r = IR or Z whose action commutes with the 
G-action, then Y(A*r,B) is an isomorphism. 

PROOF: Parts a) and b) depend upon Proposition 7.1. Part c) holds 
by Bott periodicity. For part d) , we note that both sides are 
invariant under G-stable isomorphism. Part e) follows from 
Proposition 3.1. For part f) in the case of the group IR, one 
uses Connes1 Thorn isomorphism and its generalization by Fack and 
Skandalis [FS] to KK. Part (f) in the case r = Z follows from the 
case of fR and from (a) and (d) , since given an action a of Z on a 
G-algebra A (commuting with the G-action), Ax Z and T AxIR are 
G-stably isomorphic, where T A is the mapping torus of a (cf. 
[Co], p. 48). a 

PROPOSITION 7.3. Suppose that K*(B) is R(G)-injective and that 
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Y(A,B) is an isomorphism for all A in some A -fundamental (resp., 
G 

C„-fundamental) family F. Then Y(A,B) is an isomorphism for all 
G 

separable abelian (resp., Type I) G-algebras A. 

PROOF: This is an immediate consequence of Proposition 7.2. D 

PROPOSITION 7.4. Suppose that T = Tn is a torus, H is a closed 
T subgroup, A = C(T/H) with the evident T-action, and K^B) is 

R(T)-injective. Then Y(A,B) is an isomorphism. 
PROOF: We shall use the special case of the Hodgkin spectral 
sequence (6.2) 

E2 = Tor^(T)(R(H),K^(B)) =* KK*(C(T/H),B). 

We compare the functor Tor*<T)(R(H),-) with Ext* T)(R(H),-). 
First suppose that n=l. If H = T there is nothing to prove, so we 
may assume that H = Z. , embedded in T in the standard manner. We 
have 

R(T) = ZCt^t"1] R(H) = R(T)/(tk-l), 

so we obtain the free resolution 

(tk-l) 
0 >R(T) • R(T) >R(H) • 0. 

From this we see that for any R(T)-module M, 

R(H)0R(T)M 3 coker(mult by tk-l on M). 

Tor^(T)(R(H),M) 2 ker(mult by tk-l on M) 

and dually, 

HomR(I)(R(H),M) S Tor^(T) (R(H),M), 

and 

Purchased from American Mathematical Society for the exclusive use of Claude Schochet (sccll)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



EQUIVARIANT K-THEORY AND KK-THEORY 53 

Ext£(T)(R(H),M) 2 R(H)0R(T)M. 

T Using the injectivity assumption on M = K#(B), we see that the 
o Hodgkin spectral sequence has E = 0 for p*l, and the 

isomorphism 

KK*((C,C(T/H)®B) -=—> Tor*(¥) (R(H),K¥(B)) 

may be identified under the Poincare duality pairing with the 
natural map 

Y(C(T/H),B) : KK*(C(T/H),B) >HomR(T)(R(H),K¥(B)) 

which completes the case of the circle. If n>l then as pointed 
out in [Sn], we may assume that H is standard, i.e., the pair 
(T,H) is a product of similar pairs associated to one-dimensional 
tori. This makes it possible to reduce to the one-dimensional 
case. a 

THEOREM 7.5. Let G be a compact Lie group satisfying the Hodgkin 
condition, and let T be a maximal torus in G. Then 

a) the Poincare duality isomorphism 

8: KKG(C(G/T),C) > KKG(C,C(G/T)) 

is an isomorphism of R(T)-modules (where the R(T)-module 
structure on the left-hand side will be explained below); 

b) for any R(G)-module M, 

HomR(Q)(R(T),M) * R(T)0R(Q)M 

as R(T)-modules; 

c) if B is a G-algebra such that K#(B) is R(G) -infective, then 
K^(B) is R(T)-injective. 

PROOF: a) We recall the Poincare duality map used in the proof of 
Theorem 3.7. Let 
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A: G/T • G/T X G/T 

be the diagonal embedding, and let 

A* € HomG(C(G/T)®C(G/T),C(G/T)) • KKG(C(G/T)0C{G/T),C(G/T)) 

be the induced element. Then 

[DL] = <[L^C(G/T)A*)0C(G/T)[D] € KKG(C(G/T),C) 

is the class of the Dolbeault complex over C(G/T) with values in 
the homogeneous holomorphic line bundle I, and the Poincare 
duality map 8 satisfies 

S([DL]) = [£]. 

Recall that R(T) is R(G)-free on the Steinberg basis {e }, that 
KKG(C(G/T) ,<C) is R(G)-free on the (dual) basis {a }, and that the 
Kasparov pairing 

®C(G/T): KKG(C,C(G/T)) X KKG (C(G/T) ,<E) — R(G) 

induces a natural isomorphism (a priori of R(G)-modules) 

KKG(C(G/T),(C) = HomR(Q)(R(T),R(G)). (7.6) 

To complete the proof of part a), then, it suffices to prove that 
(7.6) is an isomorphism of R(T)-modules. The ring R(T) 2 
KKG(C,C(G/T)) operates naturally on KKG(C(G/T),C) by the formula 

V'X = Y»C(G/T)A**C<G/T)X' 

for y € KKG(C,C(G/T) ) and x 6 KKG(C(G/T) ,(L) . 

Let [L-], C^o^ e T (identified with the corresponding 
induced line bundles over G/T), and let 

d* € KKG(C(G/T)0C(G/T)0C(G/T),C(G/T)) 

be the iterated diagonal map, defined similarly to A . Then we 
have 
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[ t l ] * C D t 2
] = U 1 ] ® C ( G / T ) & ® C ( G / T ) ( U 2 ] ® C ( G / T ) 4 ® C ( G / T ) [ D ] ) 

= llL
1l\LL

2
])®C(G/T)QC(G/T)'i ® C ( G / T ) [ D ] 

= ^1L
1^CIL2])9C{Q/V)9C(Q/T)& >®c(G/T) A ® C ( G / T ) [ D ] 

= [ t j ^ a ^ C t O / T J ^ C t Q / T ) 1 0 3 

• [ IW-
Hence, 

.([^1-tD^]) = »([DliW2]> 

= [La0L2] = [L1]*[L2] 

= [LJ-SdD. ]), 

so 5 is R(T)-linear. This completes a) and shows that (7.6) is an 
isomorphism of R(T)-modules. 

b) Since R(T) is finitely generated and free over R(G) of 
rank the order of the Weyl group, we have 

HomR(G)(R(T),M) » R(T)®R(G)M = ^rfi 

as R(G)-modules, and also 

HomR(G)(R(T),M) S HomR(G)(R(T),R(G))®R(Q)M 

as R(T)-modules. Thus we may assume that M = R(G) , and then part 
b) reduces to (7.6). 

c) By Theorem 3.7, we know 

KJ(B) * R(T)8R(G)K^(B) 

as R(T)-modules, and part b) implies that 

Purchased from American Mathematical Society for the exclusive use of Claude Schochet (sccll)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



56 JONATHAN ROSENBERG AND CLAUDE SCHOCHET 

K^(B) £ HomR(G)(R(T),K^(B)) 

as R(T)-modules. But for any ring extension R c S and any 
injective R-module M, Horn (S,M) is S-injective by [CE, Ch. II, 
Proposition 6.1a]. D 

We complete this section with its main result. 

THEOREM 7.7. Let G be a compact connected Lie group satisfying 
the Hodgkin condition and let B be any G-algebra such that K^jB) 
is R(G)-injective. Then for each A € BQ, Y(A,B) is an 
isomorphism. 

PROOF: If G is a torus, this follows by combining Theorem 2.8 and 
Propositions 7.2, 7.3, and 7.4. If G is a general Hodgkin group 

T with maximal torus T, then by Theorem 7.5c, K^fB) is 
R(T)-injective. Hence, by the result for tori, 

YT(A,B): KK^(A,B) > HomR(T)(K»(A),Kj(B)) 

is an isomorphism. Now consider the commutative diagram 

KKG(A,B) Y (A'B) » HomR(G)(K^(A),K^(B)) 

T 
KK?(A,B) Y <A,B? ' HomR(T)(K*(A),K*(B)). 

Since r is injective, in fact 

KK»(A,B) 2 R(T)®R(Q)r(KK°(A,B)) 

by Theorem 3.7(11), we see that Y (A,B) is injective. On the 
other hand, 

HomR(T)(K^(A),K^(B)) » HomR(T)(K*(A),HomR(Q)(R(T),K^(B))) 

by (3.7)(1) and (7.5) 
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s HomR(Q)(K^(A),K^(B)) by adjoint associativity 

S HomR(G)(R(T)0R(G)K^(A),K^(B)) by (3.7) 

S R(T)8R(G)HomR(G)(K^(A),K^(B)) 

since R(T) is finitely generated free over R(T) , and by faithful 
T flatness of R(G) C R(T), surjectivity of Y (A,B) implies 

surjectivity of Y (A,B). a 
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SECTION 8: GEOMETRIC INJECTIVE RESOLUTIONS 

In this section we shall construct a geometric injective 
resolution for a separable G-algebra B. The usual algebraic 
construction of injectives would take us out of the separable 
category, so we must proceed in a more delicate fashion. First we 
prove the algebraic results that we shall utilize. Next we show 
that any countably generated graded R(G)-module may be realized 
as K^fA) for a suitable G-algebra A, provided that the group G is 
compact Lie and satisfies the Hodgkin condition. Then the 
resolutions themselves are constructed. 

If R is a commutative ring and M any R-module, we denote by 
E(M) the "R-injective hull" of M, i.e., the smallest injective 
R-module containing M. This is unique up to isomorphism as 
explained in [Ma]. 

PROPOSITION 8.1. Let R be a commutative Noetherian ring and let M 
be a finitely generated R-module. Then M can be embedded in a 
finite direct sum of modules of the form E(R/p) , p £ Ass(M) Q 
Spec(R). 

PROOF: By [Mat, Theorem 10], M has a finite composition series 

0 C Mx C M2 C . . . C Mn = M 

with M./M.__1 = R/p., p. € Ass(M) Q Spec(R) . One proves the 
proposition by induction on n. If n=l we are obviously done. 
Otherwise, assume that M_ . c E., where E„ is a finite direct sum 

n-l l l 
of modules E(R/p.), and consider the diagram 

»M M , >M >M/M„ . 
,n-i n-l 

E i 

Since E is injective, the inclusion M •E1 extends to a map 
0:M •E1. Consider also the composite 
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e : M —-M/M„ , S R/p C E(R/p ). n-i n n 

Clearly, 0$£:M >E eE(R/p ) is an injection of M into a finite 
direct sum of modules E(R/p.). (Of course, E(M) might be a proper 
submodule of this.) a 

PROPOSITION 8.2. Let R be a countable commutative Noetherian ring 
and let p € Spec(R) . Then E(R/p) is countably generated as an 
R-module. 

PROOF: The argument of [Ma, Theorem 3.11] shows that E(R/p) is 
countably generated over the local ring R . But if R itself is 
countable then R is countably generated as an R-module, as one 
needs only countably many denominators, a 

PROPOSITION 8.3. Let G be a compact Lie group and let M be a 
countably generated R(G)-module. Then there exists an injective 
countably generated R(G)-module E and an injection of 
R(G)-modules M >E. 

PROOF: By [Sel, Cor 3.3], R(G) is a Noetherian ring, and of 
course R(G) is countable since G is countable. Since M is 
countably generated, it is a countable injective limit of 
finitely generated submodules M.. By [Ma, Prop. 1.2], lim E(M.) 
is injective and it obviously contains a copy of M. So it's 
enough to show that if M is finitely generated over R(G), then 
E(M) is countably generated. This is immediate from Propositions 
8.1 and 8.2. n 

REMARK 8.4. One can give an alternative proof of Proposition 8.3 
by using the method of [CE, Ch.I, Theorem 3.3], and noting that 
if R is a countable Noetherian ring then a countable direct limit 
of countably generated modules will work. The present proof, 
however, has the advantage of displaying explicitly the sorts of 
injective modules that are actually required. 

The proof of the next proposition works for any connected 
Lie group for which R(G) has finite global dimension. It's 
possible the statement is true for any compact Lie group, but, if 
so, a completely different argument would be needed. 
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PROPOSITION 8.5. Let G be a compact Lie group satisfying the 
Hodgkin condition and let M* be any countably generated Z -
graded R(G)-module. Then there exists a G-algebra A in BQ with 

K*(A) * M* 

as graded R(G)-modules. 

PROOF: By [Ho, Prop. 8.3], R(G) has finite global dimension. Thus 
one can construct a finite projective resolution 

0 — (Fn), — ^ ( V l } * — I i z i-...—^ (Fx)* — — M, — 0 

by countably generated Z/2-graded R(G)-modules. The usual 
construction will actually make F , ...,F countably generated 
and free, and F countably generated and projective. By using 
"Eilenberg's Lemma" [Ba] , we can make F free as well, merely by 
adding on the same countably generated free module to both F and 

We now proceed as follows. Suppose we have constructed 
C -algebras A.,,A0,...,A € B~ with K*(A.) 2 (F.)*, and also (if 1 2 n G J 3 
n>l) maps 0.:A. >A. , 2^j^n, such that (0.:)* = £• and 
0. ^0. = 0 (the latter condition for j=3,...,n). We begin by 
forming the mapping cone C0 , From the short exact mapping cone 
sequence 

0 • SA , >C0 •A • 0 
n-1 n n 

we obtain the exact triangle of 2/2-graded R(G)-modules 

< V * — <Fn-l>* • 
N a <S 

' G'uc , 
n' **<co 

from which we see that KA(C0 ) = coker(f ). If n=2, we are done 
(take A = SC02) and of course if n=l we were done before when we 
constructed A„. Otherwise, construct a map 0 „:C0 •SA _ by 

1 * n-1 n n-2 J 

0n-1(f,a)(t) = V l ( f ( t ) ) ' 
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(Recall that C0n = {(f,a):f£C ((0,1],A^ , ) , a€A , f(l)=0 (a)}, so n o n-l n n 
that 0 „(f(l)) = 0 A0 (a) = 0 as required.) Then we clearly ji-1 ' n-l n ^ J 

sm have (0 - ) * = £ « (interpreted as a monomorphi 
coker(£ ) >F ) , except for a shift of degree. Forming the 
mapping cone 00 , gives a short exact sequence 

0 • S2A „ >C0 „ >C0 • 0 
n-2 n-l n 

and the exact triangle 

e n 1 
Coker(e ) » (F 0) ± 

x n' v n-27* 

G 
K*<C*n-l> 

G ~ so that K#(C0 « ) = coker(£ _1 ) • If n=3 we are done. Otherwise, n J. n 1 ^ G ^ 
repeat the construction to get 0 with K# (C0 ) = 
coker(£ - ) , etc. The process eventually stops. 

It remains to construct A„ , . . . ,A and the 0's. For this it 
l n 

is enough to treat the case where (F-)0 = 0 for all j, since we 
can eventually take the direct sum of an algebra with vanishing 

c* c 
KQ and of one with vanishing K (constructed as the suspension of 
one with vanishing K ). We may begin by taking for A a (c -) 
direct sum of copies of C (IR) with trivial G-action, one summand 
for each element in an R(G)-basis of F . Then take for A « a 
similar direct sum of copies of C ((R)0£. We may choose 0 :A — * 

o n n 
A_ . with (0 )* = £ by the proof of the geometric resolution n-l n * n 
Proposition 4.1 needed in the proof of the Kunneth theorem: each 
basis element of K. (A ) is sent to an element of K-(A 1) 
represented by a map C (fR) >A , and this map will serve as 
the appropriate component of £ . The A

n_o',,,'Ai m a v a i s o b e 

chosen to be direct sums of copies of C (IR)0Jf, and the same 
construction will give the maps 0 _ ,...,0 . The only problem is 
to insure that the composition of any two successive 0fs is zero. 
We could guarantee this by being sufficiently careful, but it is 
easier to note that since (*j « ) * (*J ) * = £-j_i£-j = °' it m u s t toe 

that 0.* ,0J is null-homotopic. (This follows from [Ro2, Theorem 
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4.1]. For j<n, one needs also [Ro2, Remark 3.5] along with the 
observation that we can take our 0.:A.- •A. 1 to be in the image 
of what is there called a with respect to an abelian subalgebra 
of A..) This is good enough for our purposes, because if h.(t), 
O^t^l, is a homotopy from h.(0) = 0 . 0 . to h,(l) = 0, then we 
can define 0 . instead by n-1 * 

0n-l ( f' a ) ( t ) = 

f <V:i.(f(2t))' 0 * t $ 1/2 

hn(2t-l)(a), 1/2 3 t 3 1, 

and the induced map on K-theory will be the same as before, a 

THEOREM 8.6. Let G be a compact Lie group satisfying the Hodgkin 
condition, and let B be a G-algebra. Then there exists a 
G-algebra D £ BQ with K^fD) R(G)-infective and a map of 
C -algebras from some suspension of B$K into D which induces an 
inclusion 

K*(B) K®(D). 

PROOF: The R(G)-module K#(B) is countably generated, so by 
Proposition 8.3 there is an embedding K^fB) c I* with 1^ 
countably generated and R(G)-infective. By Proposition 8.5, there 
is a G-algebra E with K^JE) s 1^. Fix an embedding 

0: K*(B) C K»(E) 

and let A be the diagonal embedding 

A: K®(B) K*(B)$K*(E) A(x) = (x,-0(x)). 

The image M# of A is a submodule of K^fBeE). We will construct a 
* n 

C -algebra D € Br and for some n a map S (BeE)$/f • D such that 
c the induced map in K* theory is the quotient map 

K°(BeE) - K"(BeE)/M# * I,. 

Composing with the natural embedding B >BeE, we obtain a map 
B • D which induces 0 on K#. 
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To construct D, we proceed somewhat as in the proof of 
Proposition 8.5. First choose a finite resolution of M# by 
countably generated free R(G)-modules, 

0 •(Fn)„ *-... .(P^, U M* > 0. 

As before, we may choose an algebra A £ AQ (abelian with trivial 
G-action) and a map 

M1:SA1 • S(BeE)®K 

such that (M*)* = £« (composed with the inclusion M^C K#(BeE)) 
Form the mapping cone CM-. We obtain a short exact sequence 

0 • S*((BeE)®K) =-• C u 1 • SA1 • 0 

inducing the exact triangle 

(*!>* *—> K;(BSE) 
ei „G, 

K*(C M I), 

where the image of £- is M*. Thus we obtain a short exact 
sequence 

0 •K»(B©E)/MJ|t ^ - K»(CM 1) • ker S± > 0. 

Hence if n=l we are done, with D = CM-. In any event, since 
K^fBeEJ/M* is infective, the above short exact sequence splits. 
Choose a splitting map ker £ * >KJlt(Cu1) and compose it with 

~ G 
*2:(F2)* ' k e r ei t 0 o b t a i n a maP * 2

: ( F 2 ) * >K*(°W1)- 0 n c e 

again, we may choose an abelian algebra A9 with trivial G-action 
P ^ 

and a map ju2:SA2 • SCjn1®Jf such that K*(A2) = (F2^* a n d ^ 2 ^ * = 
£-. Form the mapping cone CM2# the associated mapping cone 
sequence 

2 v2 
0 > s CM 10IT =->cu 2 — SA2 
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and resulting exact triangle 

(*V* - K;(CMI) 

(yo)* 

K*(CM2) 

This time the image of £„ * s "tne complement to K^ (BeE)/M^, so 
there is a short exact sequence 

0 • K^(BeE)/M# 
'Vl1' 

- K ; ( C M 9 ) • ker e9 > 0. 

Continue this process to arrive at 

K^(BeE)/M# * K^(CMn). 

The quotient map K^(BeE) • K̂ fCjji ) is induced by the 

composition v v *•••»., (with appropriate adjustment for 

suspensions and tensoring with K). • 

We proceed to the construction of the geometric infective 
resolutions. Suppose that G is a compact Lie group satisfying the 
Hodgkin condition and that B is a G-algebra. We assume without 
loss of generality that B and all other G-algebras constructed 
are stable. Theorem 8.6 implies that there is a G-algebra I with 
K^I-) R(G)-infective and a G-map 

r 
0, : S °B • L 

for some suspension S B of B (and we take rn to be even) which 
induces an inclusion K#(B) 

(with W = C0 ) 
Si The mapping cone sequence 

-• SI, -*W„ .S
r°B 
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has associated to it the short exact sequence of R(G)-modules 

0 • Kj(B) > K j < V — " * Kj-l^l' * ° 

which is the beginning of an injective resolution of K^fB). 

G rl Repeat the process commencing with a K^- injection S W • I 
with r odd to obtain 

rl 
o >si 2 • w 2 • s w 1 • o 

and associated short exact sequence 

0 •K5"1 ( W1 ) > Kj ( 12 > ' Kj-l(W2> ' °-

The K -theory exact sequences splice together to yield the exact 
sequence 

0 >Kj(B) >K5<zi> > K j ( I 2 ) ' Kj-l ( W2 ) ' °' 

Let us fix some k which is greater than the injective 
dimension of R(G) and carry out the above procedure k times, with 
the K#- injections 

r 
0 . : S ^ V ^ . Ij (rj Odd) 

and associated mapping cone sequences (with W. = C0.) 

Pj rj-l 0 •SI. > W. *—• S J W. 1 > 0 . 

Then there is a sequence of surjective G-maps 

pk r P2 r +...+r Pl r +...+r 
W. » S K XW, , • ... >S X K XW, » S u K XB. 
k k-1 1 
Let 

r +...+r 
8. = p p. : W. • S J W. „ 
j *j Kk k j-1 

and 
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r„+...+r,. 

s l " Pi«---'P k '• W k >S 
Lk-1 B 

with associated short exact sequences 

0 •ker s . J^Wk 3U s 3 -1 W . < _ 1 • O 

and 

t s r n+. . .+r. 
0 •ker s1 =->Wk ±- S ° 1C"1B >0. 

Then there is an ascending sequence of ideals 

ker s, £ ker s, c . . . c ker s c ker s 

and corresponding ascending sequence of ideals 

ctk c ct^j c ... c ct2 c ctj. 

The G-algebra Ct 1 is equivariantly weakly equivalent to e 
suspension of B. More precisely, there is a short exact sequence 

0 •Cone(ker s 1 ) • C t 1 —%-+ S B -• 0 

so that the map K induces an isomorphism of K #- groups. Finally, 
we identify the successive quotients in the filtration. For each 
j there is a natural exact diagram 

0 •conefker s. 1 ) * c ti + i 
1+r .+ . . .+r. , 

->s 3 k"2w -•0 

d. 
3 

1+r .+ . . ,+r. „ 
5 J k-1 

0 •cone(ker s.) -Ct 
1+r +...+r 

• S 3 x K XW J-i 

Thus, up to equivariant weak equivalence, 

r i + - " + r k - l C t j / C t j + 1 .* S J * x(ker p ) 

1+r +...+r k_ 
= S 3 K 1 I J . 
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In particular, K? (Ct ./Ct ._,_, ) = K*? . ,x1(I.) is R(G)- injective. 
* i j j+1' i+k-j+1 j 

Set B. = Ct. . and B = {0}. Then there is an increasing sequence 
of ideals 

0 = BQ £ Bx £ ... £ Bk 

with 

K?<Bj/BJ-l) S K?+J-l(1k-j> 
and a weak equivalence of B, with a suspension of B. We have 
established the following theorem. 

THEOREM 8.8. Let G be a compact Lie group satisfying the Hodgkin 
condition and let B be a G-algebra. Then there is a G-algebra B. 
which is equivariantly weakly equivalent to a suspension of B and 
an ascending sequence of G-invariant ideals 

0 = B 0 £ B1 £ ... £ Bk 

with K*(B ./B.« ) R(G)-injective for each j, and such that the 
J J J- Q 

natural maps induce an injective resolution of K^tB) of the form 

0 >l£(B). — K ? < V B k - l ) *2<Blc-l/Bk-2) * 

> K?(B /B ) — 0. 
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SECTION £1 CONSTRUCTION OF THE UNIVERSAL COEFFICIENT 
SPECTRAL SEQUENCE 

This section is devoted to the construction of the Universal 
Coefficient spectral sequence. Recall that this is a spectral 
sequence which converges to KK^fA,!*) and has 

E*'* = Extg(G)(K^(A),K^(B)). 

To be precise about the internal degree, elements of 
Extjj Ĝ»(K (A) ,K (B) ) are given internal degree r+s and total 
degree p+r+s. Generally, we suppress degrees for simplicity of 
the presentation. Note though that in the universal coefficient 
spectral sequence the differential d changes total degree by one 
(mod 2) and raises homological degree by r. 

In Section 7 we studied the special situation which obtains 
when one assumes that K#(B) is R(G)-infective. Then the spectral 
sequence vanishes for homological degree p>0 and the universal 
coefficient spectral sequence reduces to the assertion that the 
map 

Y(A,B): KK*(A,B) >Hom
R(G) (K*(A) 'K*(B)> 

is an isomorphism. The following theorem makes the ascent to the 
general case. 

THEOREM 9.1. Suppose that G is a compact Lie group which 
satisfies the Hodgkin condition. Fix some G-algebra A. Suppose 
that the map Y(A,B) is an isomorphism for all G-algebras B 
provided that K^fB) is R(G)-injective. Then the universal 
coefficient spectral sequence holds for (A,B) for all G-algebras 
B. 

PROOF: Fix some G-algebra B and apply Theorem 8.8. Then there is 
some G-algebra B which is equivariantly weakly equivalent to 
(some suspension of) B and a sequence of G-invariant ideals 
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0 = BQ C B1 C . C Br 

with K^B./B. ,.) R(G)-injective for each j and such that the 
J J i G 

natural maps induce an infective resolution of K^fB) of the form 

0 >K°(B) •K°(Br/Br_1) •K°(Br_1/Br_2) > . . . HC^BJ/BQ) •O. 
(*) 

We next apply the homology theory KK#(A,-) to this situation as 
in [Scl] to obtain a spectral sequence which converges strongly 
to KK^fAjB) (adjusting for suspensions), and with 

fiP'* * KK^tAfBp/Bp^) 

S HomR(G)(K*(A)'K*(Bp/Vl)) 

since each K*{B /B -) is R(G)-injective. We may identify E-
easily if we observe that (*) is an R(G)-infective resolution of 
K^fB). Then, essentially by definition, 

E | ' * = Ext|(G)(K*(A),K»(B)) 

as desired, a 

THEOREM 9.2. (Universal Coefficient Spectral Sequence) Let G be a 
compact Lie group which satisfies the Hodgkin condition. For A € 
B r and B a G-algebra, there is a spectral sequence of 

c R(G)-modules which strongly converges to KK^fAfB) with 

E | ' * = Extg ( G )(K°(A),K^(B)). 

The spectral sequence has the canonical grading, so that 
Ext^/r.x(K (A),K.(B)) has homological degree p and total degree 

K(u] S t 
p+s+t (mod 2 ) . The edge homomorphism 

KK^(A,B) > E°'* 2 Hom R ( G )(K°(A),K^(B)) 

is the map Y . The spectral sequence is natural with respect to 
pairs (A,B) in the category. If G has rank r then E ^ = 0 for 
p>r+l and E r + 2 = E^. 
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PROOF; Theorem 7.7 tells us that Y(A,B) is an isomorphism for A € 
BQ and K^tB) R(G)-injective, and Theorem 9.1 completes the 
argument. The identification of the edge homomorphism is 
immediate from the construction in the proof of (9.1). a 

REMARK 9.3. Let G be a Hodgkin group with maximal torus T. There 
is a very close relationship between the spectral sequences 

EJ'*(G) —> KK^(A,B) 

and 

E*'*(T) —> KK^(A,B). 

Theorem 3.7 (ii) says that 

KKJ(A,B) 2 R(T)3R(G)KK^(A,B). 

An argument from homological algebra, similar to the argument at 
the end of Section 7 and using the fact that 

Extg(T)(M,HomR(G)(R(T),N)) S Extjj(G) (M,N) 

(which holds since R(T) is a free R(G)-module), yields 

Extg(T)(Kj(A),Kj(B)) a R(T)®R(G)Extg(G)(K*(A),K*(B)). 

This suggests that the two spectral sequences should be related, 
that for each r, 

EJ'*(T) * R(T)®R(G)E£'*(G) 

as differential graded R(T) -modules. In fact this is true and, 
moreover, it is possible to construct the spectral sequence E(G) 
in this manner, by first arguing for the torus via Theorem 9.2, 
then arguing via faithful flatness. This is not an easier road of 
development, but it does make one point clearly: all 
differentials in the spectral sequence for KK#(A,B) arise in the 

T spectral sequence for KK#(A,B). 

REMARK 9.4. The spectral sequence is natural in various ways. In 
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the A-variable, the spectral sequence is natural for each E ; in 
the B-variable naturality commences with r=2. More generally, an 
element X € KK (A,A1) induces a morphism of spectral sequences 
X :E (A',B) >E (A,B) by the Kasparov pairings. Similarly, an 

c element X € KK (B,Bf) induces a morphism of spectral sequences 
X,:Ep(A,B) >Er(A,B'). 

REMARK 9.5. In general the Kiinneth and Universal Coefficient 
spectral sequences do not collapse- that is, the differentials 
d (r>l) are generally non-trivial. These differentials 
correspond to higher-order operations. It would be of some 
interest to identify these operations. 

* 
Note further that since Ext_,-V does not commute with 

R(G) 
localization in general (with respect to a collection P of prime 
ideals in R(G)), the naive analogue of Theorem 6.3 for the 
Universal Coefficient spectral sequence is actually false. 
However, one does have the following result, which in the special 
case G = T, A = C(M) (M a closed G-manifold), and B = C, appears 
as [IP, Part I, Theorem 5.6]. 

THEOREM 9.6. Let G, A, and B be as in Theorem 9.2 and assume in 
addition that K#(A) is finitely generated as an R(G)-module. Let 
P be a collection of prime ideals in R(G) and let R = R(G) . Then 
there is a spectral sequence which strongly converges to 
KK*(A,B)p with 

Ej'* = ExtP(K^(A)p,K^(B)p). 

In particular, if R is a principal ideal domain, there is a short 
exact sequence 

0 • Ext* (K^(A)p,K^(B)p) • 

KK^(A,B)p • HomR(K^(A)p,K^(B)p) — • 0. 

PROOF: Apply the localization functor to the spectral sequence of 
(9.2). Since R(G) is Noetherian and K3|e(A) is finitely generated, 
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EXtR(G)(K*(A)'K*(B))P " E x tR< K*< AV K*< BV' 

by [CE, Ch. VI, Exercise 11 and Ch. VII, Exercise 10]. D 
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SECTION 10: APPLICATIONS- KKG EQUIVALENCE 

In our previous work [RS2] we showed that if A and B are 
* C -algebras in C = C(1* with K^fA) = K^fB) then A is 

KK-equivalent to B. In this section we consider equivariant 
generalizations. Generally speaking, the map 

Y = Y(A,B): KK*(A,B) • HomR( (K«(A),K*(B)) 

is not surjective, and so a particular isomorphism 
c* c* 

f: K^fA) s K^fB) may not be in the image of Y. Even if f = Y(X) 
for some x € KKQ(A,B) it is not clear that there must be a 
KK -inverse. 

We study the problem by means of the Universal Coefficient 
spectral sequence, where Y appears as the edge homomorphism 

KK*(A,B) — E°'* = HomR(G)(K^(A),KG(B)) 

which we also denote by Y(A,B). The second problem mentioned 
above is dispatched by the following theorem. 

THEOREM 10.1. Let G be a compact Lie group satisfying the Hodgkin 
condition and let A and B be G-algebras in B . Suppose that there 
is an isomorphism of graded R(G)-modules 

f: K^(A) 2 K*(B). 

and that there exists x E KK (A,B) with Y(X) = f. Then x is a 
KK -equivalence. 

PROOF: We claim that x has both a left and a right inverse. For 
instance, to show that x has a left inverse, consider the map of 
spectral sequences induced by (-)8«x: 
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Ext*(Q)(K®(B),K*(A)) =* KK^(B,A) 

KK*(B,B) 

This commutes by functoriality of the product. Since the map of 
spectral sequences is an isomorphism at E2 (since x induces the 
isomorphism f), we deduce that 

(-)®Ax : KKQ(B,A) • K K Q ^ B ) 

is an isomorphism. In particular, there exists an element y € 
KKQ(B,A) such that y®Ax = 1R. The argument on the other side is 
similar. • 

Thus our attention is focused upon conditions which imply 
that the edge homomorphism is surjective. A simple hypothesis is 
that the spectral sequence itself collapse: E- = E^. So we search 
for conditions which imply that the spectral sequence collapses. 
Here is a simple but common situation where this happens. 

Lemma 10.2. Suppose that G is a Hodgkin group and that A and B 
are G-algebras in BQ with 

K^(A) * K^(B) 

and 
K^(A) = K^(B) = 0. 

Then all even differentials d0 vanish. 
2r 

PROOF: This is an immediate consequence of the grading of the 
differentials, a 

Sometimes one has control on the homological or infective 
dimension of the modules involved. 

Ext* Q (K*(B),K^(B)) 
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THEOREM 10.3. Suppose that G is a Hodgkin group, A and B are 
rj r+ r* 

G-algebras in B with K^A) s K^B) = M, and suppose that M has 
homological or injective dimension ^ 1. Then A and B are 
KK -equivalent (and the equivalence covers the given 
isomorphism). 

D * PROOF: The dimension assumption implies that E^' = 0 for p>l, so 
E2 = E^ and the result follows from (10.1). D 

Consider the special case where the group G is the circle. 
Since the rank of T is 1, we know that E3 = E^ for any (A,B) in 
the category. The only possible non-trivial differential is 

v E ° ' q — E
2
2'q_1-

If K#(A) = K^B) is concentrated in one degree then one of these 
two groups is zero, and hence E2 = E^. We have established the 
following proposition. 

PROPOSITION 10.4. Suppose that A and B are T-algebras in CT with 
I T K^JA) = K#(B) concentrated in one degree. Then A and B are 
KKT-equivalent. 

For example, any TT-algebra in the category with 
I 

have 
K*(A) 2 K^(C(T)) is KK -equivalent to C(T) . More generally, we 

PROPOSITION 10.5. Suppose that G is a Hodgkin group, A,B € Br, 
c* c 
K^fA) = Kj(B) is concentrated in one degree, and the homological 
or injective dimension of KQ(A) is ^ 2. (This is automatic if G 
has rank 1.) Then A is KK -equivalent to B. 

PROOF: The dimension assumption implies that E3 = E^, so we need 
only consider d2: it vanishes by (10.2). a 

If two G-algebras A and B are KK -equivalent, then 
K^fA) a K^(B) as R(G)-modules. In the non-equivariant setting the 
converse of this statement holds (by [RS2]) for algebras in an 
appropriate category. That is, if two C -algebras have isomorphic 
K-groups, then they are KK-equivalent. The following example 
shows that the general equivariant converse is false, so that the 
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hypotheses of Propositions 10.3 and 10.5 are in fact necessary. 

Example 10.6. We shall construct commutative T-algebras A and B 
with the following properties: 

K*(A) 2 K*(B) as R(T)-modules 

K ^ A ) * K*(B) 

so that A and B can't be KK-equivalent (let alone 
KK_.-equivalent) . 

We take A = C(Spin (4)) with the free T-action which 
naturally arises from the identification 

Spinc(4) = TX^ Spin(4). 

There is a natural fibration 

T >SpinC(4) >S0(4) 

which is the usual (non-split) extension of compact Lie groups. 
Then 

K?(A) * K*(S0(4)) (as a Z-module) 

= A R U ,T?)/(8-1)T? by [Ho, Proposition 12.4] 

where R = Z[8]/(82-l,2(8-1)) = ZeZ2(8-l). Thus 

and 
KJ(A) = zez2(0-i)eze>? 

K|(A) * ze©z2(e-i)eez^ 

as abelian groups, and the R(T)-module action is determined by 
the fact that if we write R(T) 3 Z C t , ^ 1 ] , then t acts by 
tensor ing vector bundles on the base by the line bundle 
associated to the circle bundle above; in other words, t acts by 
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multiplication by 0. Since Spinc(4) is a Hodgkin group, it 

follows by [Ho, Theorem 11] that K#(A) is an exterior algebra 

over Z, and in particular it is free abelian. 

1 2 2 
The construction of B is more involved. Let Y = S X(IRP vS ) . 

Then 

* 2 2 2 
H (Y) = Z[x1,x2,y2]/(2x2,x2 ,x2y2,x1 ,y2 ), 

where the generators (in degrees 1,2,2 respectively) correspond 
1 2 2 to the usual generators of the cohomology of S , (RP , and S 

respectively. Let F be the total space of the principal T-bundle 
2 

with base space Y and characteristic class x2 € H (Y;Z), and let 
B = C(F). Then 

T * 1 * 2 2 K;(B) * K ( S 1 ) ^ ((RP'VS^) 

a H*(Y) 

as abelian groups. The R(T)-module structure on K#(B) is 
determined by the fact that t acts by tensoring vector bundles on 
Y by the line bundle associated to the circle bundle F >Y, so 
that t-1 acts by multiplication by xQ . To compute KJ|C(B) = K (F) , 

1 2 1 
we note that F = S xW, where p:W •(IfcP vS ) is the circle bundle 

2 2 defined by x. E H ([RP ;Z) = 2 . So by the Gysin sequence 

0 = H3([RP2
VS2) >H3(W) L H2(fRP2

vS2) 2 Z0Z2 >0 

3 
we deduce that H (W) contains 2-torsion. Since W is a finite 

3 1 1 
3-complex, H (W) is a direct summand of K (W) , so K (W) has 
2-torsion. This implies that K1(B) = K (S XW) has 2-torsion. 

Comparing the two algebras A and B, we see that they are not 
KK-equivalent, since K+(A) is torsion-free, whereas K#(B) has 
2-torsion. However, K^(A) a K^(B) 
isomorphism is obtained by mapping 

T T 2-torsion. However, K^fA) = K ^ B ) as graded R(T) -modules: the 

1 > 1 (8-1) • x 2 e/? • Y 2 

xx (8-1 )e > x 1x 2 r\ • xi v2' 
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This completes the example. 

REMARK 10.7. Recall that we showed in [RS2, Corollary 7.5] that 
* 

if A is any C -algebra in C (= CQ for G = {1}), then A is 
KK-equivalent to a commutative algebra of the form C eC , where 
K.(CJ) = 0 unless i=j. From this we deduced the splitting of the 
Kunneth Theorem and the Universal Coefficient Theorem exact 
sequences. Accordingly, one might wonder if the corresponding 
statement is true in the equivariant case. Example 10.6 shows 
that this is not always true, for if it were true that any A € 
AQ were KK -equivalent to C eC , where C and C had their K# 
-groups concentrated in one degree, then it would follow from 
Proposition 10.4 that K^A) determines A up to KKT-equivalence, 
which (by 10.6) is not always the case. However, we can prove an 
interesting "splitting theorem" under the hypotheses of Theorem 
10.3. We believe this to be new even for A £ A~, or for that 

G 
matter, even for A = C(X), where X is a finite G-complex. 

THEOREM 10.8. Let G be a compact Lie group satisfying the Hodgkin 
~ G 

condition, and let A € BQ with K#(A) having homological or 
infective dimension <1 (as an R(G)-module). Then 

c n 1 
a) A is KK -equivalent to a G-algebra in Br of the form C eC , 
where K.(CJ) = 0 unless i=j. 

b) If B is any G-algebra with K-(B) = 0, then there are split 
exact sequences of the form 

0 > K ^ ( A ) 0 R ( G ) K £ ( B ) ^ ( A ^ B ) >TorJ(G,(Kj_1(A),Kj5(B)) — 0 

and 

0 •ExtJ(G)(Kj_1(A),KJ5(B)) >KK^(A,B) 

- H o m R ( G ) ( K J ( A ) , K J ( B ) ) >0. 

c) In particular, there are split exact sequences 
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0 • K o ( A ) ^ R ( G ) Z ' K 0 ( A ) >Tor*(G)(KG(A),Z) >0 

and 

0 —> Ext*(G)(KG(A),R(G)) -4 K°(A) — HomR(Q}(KG(A),R(G)) — 0. 

The splittings of these sequences are not natural. 

PROOF: By Proposition 8.5 (applied twice), there exist G-algebras 

C°, C1 € B Q with 

KG(C°) = K G(A), KG(C°) = 0, 

K ^ C 1 ) = K G(A), ^ ( C 1 ) = 0. 

n i c 
Then by Proposition 10.3, A and C = C $C are KK -equivalent. 

Hence for any G-algebra B, 

KG(A®B) 2 K^C^BJeK^C^B) 

and 

KKG(A,B) * KKG(C°,B)eKKG(C1,B). 

If A has homological or injective dimension ^1, then the various 
universal coefficient and Kunneth spectral sequences for the 
pairs (A,B), (C ,B), (C ,B) all collapse to short exact 

p 
sequences. Then, if K1(B) = 0, the short exact sequences for 
(C ,B) and for (C ,B) degenerate to isomorphisms (because of the 
grading), and the result follows. Part c) arises from the special 
cases 

KQ(A) * KG(A0C(G)), B = C(G), KG(B) = Z, KG(B) = 0 

and 

KQ(A) = KKG(A,C), B « C, KG(B) = R(G), KG(B) = 0 . D 

We conclude this section by considering the following 
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examples. 

Example 10.9. Suppose that G acts freely on a compact space X. 
Then 1(G) (the augmentation ideal of R(G)) acts nilpotently on 
K*(X). If in addition G is of rank 1 (T or SU(2)) then we obtain 
a short exact sequence 

0 — Ext*(G)(K*(X),R(G)) — K*(X) — Ext*( Q ) ( K* + 1 (X) , R( G) ) — 0 

Does this sequence split? Not in general. For an example of 
non-splitting, set G = T, X = Spinc(4), so X/G = S0(4). Write 

R = Z[t,t""1]/(t2-l/2(t-l)) . 

Then KQ(X) = K G< X) - R®z- A free R(G)-resolution of R is given by 
the sequence 

2 
0 —• R(G) ( ~ 2 / t + M R(G)eR(G) (t -l,2(t-l)) ) R ( Q ) _^R _ ^ 

Apply Horn-,-,. (-,R(G) ) to obtain the complex 

0 - ^ R(G, (t2-l,2(t-l)) , R(Q,eR(Q) (- 2' t + 1 ) R(G), 

and then take homology. One finds that ExtD/ox(R,R(G)) = 0, 

ExtJ(Q)(R,R(G)) = {(t+l)hf2h): h € Z[t,t"1]}/{(t2-l)h, 2(t-l)h} 

* R(G)/(t-l) = Z 

and that 

Ext2(Q)(R,R(G)) = R(G)/(2,t+l) = *2 . 

Recall also that 

Ext£(G)(2,R(G)) = 
J = 1 

0 otherwise. 
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Thus the short exact sequence above becomes 

0 • Z2 > K Q ( X ) > z e z ' °-

(Here Z- and Z have t acting by the identity.) This sequence 
splits as abelian groups but not as R(G)-modules, since by 
Poincare duality, 

K®(X) S K*(X) 2 ReZ, 

on which t acts non-trivially. 

We remark that this sequence does split in the case of the 
other T-algebra in Example 10.6. 

Example 10.10. Suppose that G = T or SU(2) and A € Cp satisfies 
c c c 
K1(A) = 0. Then A is determined up to KK -equivalence by K (A) . 
In particular, there is a short exact sequence 

0 — Ext£(G)(KQ(A),R(G)) — K°(A) -2 HomR(G) (KJJ(A) ,R(G) ) — 0. 

We do not know whether this sequence always splits. 
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SECTION 11: APPLICATIONS- MOD P K-THEORY 

In this section we discuss some applications of our results 
to the "equivariant algebraic topology" of C -algebras. The 
homology theory 

K^(-;Zn) * K^(-®N) 

is introduced and is shown to be independent of N € BQ (for G in 
the Hodgkin class, of course). The basic properties of 
equivariant K-theory mod n are developed. The ring of R(G)-linear 
operations is determined; it turns out to be isomorphic to 
KK^fC^Cn) (where Cn is the mapping cone of the canonical degree 
n map of the circle), which is isomorphic to the exterior algebra 
over R(G) on the Bockstein element. Finally, we classify 
admissible multiplications; they are in bijection with R(G)$Z 
and (if n is odd) exactly one of these is graded commutative. 

Let us fix an integer n (in almost all applications this 
will be a prime p) and let Cn be the mapping cone of the 
canonical self-map of C (IR) of degree n, with trivial 
G-structure. For any group G and for any G-algebra D, one 
defines 

Kj ( D ; Zn ) E Kj< D® C n)-

In fact, the definition of "mod n K-theory" has little to do with 
the algebra Cn, for we have 

THEOREM 11.1. Suppose that G is a compact Lie group satisfying 
the Hodgkin condition. If N is any G-algebra in BG with 

K^(N) = R(G)®zZn and K^(N) = 0, 

pi 

then N is KK -equivalent to Cn, and hence there is a natural 
equivalence of G-homology theories 

K*(-;Zn) = K^(-3N). 
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PROOF: The homological dimension of R(G)$ Z is one, since there 
is a projective resolution of it of the form 

0 >R(G)—2-> R(G) >R(G)$ Zn >0 

and then Proposition (10.5) implies the result, a 

In particular, we see that the Cuntz algebra 0 1 is 
KK -equivalent to Cn. 

The elementary properties of K^ ( ;Z ) are easy to develop. 
The mapping cone sequence of the degree n map yields a long exact 
sequence of the form 

,G/R, n „G/K, pn W G „ , v *n „G 
•K~(A) >Kj<A> ^ K j < A ; Z n ) Kj-i(A) 

(11-2) 

where "n" is multiplication by n, p is the reduction map, and 
B is the Bockstein map. We let 6 = p B ; then 6 is a n Q ^n n 
self-homology operation for K#(-;Z ) and B = 0 . 

It is clear that K^[-;Zn) is homotopy invariant, additive, 
and satisfies an exactness axiom in the equivariant category. A 
formal argument yields the short exaqt sequence 

0 >K<?(A)®2Zn ^K^(A;Zn) >Tori <Kj-i < A>'V 
(11.3) 

courtesy of the identification 

Tor^(K^(A),Zn) 2 Tor£(G)(K^(A),R(G)®zZn). (11.4) 

Note that we can prove splitting of the exact sequence (11.3) for 
certain G-algebras A using Theorem 10.8. 

Next we require the analog of the Cuntz representability 
theorem. 

PROPOSITION 11.5. Let G be a compact group, let D be a G-algebra, 
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and suppose given z G K (D) with nz = 0. Then there exists a 
0* 

G-map 

f: 0 n + 1 •(D8«r)V0. 

such that f*[l] = z. (The group G acts trivially on O 1 and 
O .) 

PROOF: Without loss of generality we may assume that D is stable. 
p 

Then DxG is G-stably isomorphic to the fixed point algebra D . So 
• p 

it suffices to construct a map 0 1 • (D ) ®0^, and this is done 
in [Sc4, Section 6] or [Cu, Section 6.6]. The map is a G-map, 
since G acts trivially! D 

We move to consideration of homology operations on the 
p 

theory K#( ;Z ). We restrict attention to R(G)-linear operations. 
(If one simply requires linearity then there are more operations, 
but these operations do not pay sufficient attention to the 

p 
G-structure.) Any element of KK3jc(Cn,Cn) gives a homology 
operation by Kasparov product, so the first order of business is 
to compute this ring. 

PROPOSITION 11.6. Let G be a compact Lie group satisfying the 
p> 

Hodgkin condition. Then the Z.-graded ring KK*(Cn,Cn) is a free 
R(G)$_Z -module of rank 2 with generators 1 of degree 0 and £. n on 
B , the Bockstein element, of degree 1, with multiplication on 
determined by the relation 

>L • «• 

PROOF: The universal coefficient spectral sequence in this 
situation reduces to the usual short exact sequence, and the 
additive results follow immediately. The element Bn is the 

G generator of KK (Cn,Cn) which corresponds to the extension of 
R(G)-modules 

0 — R(G)®zZn ^R(G)02Z 2 >R(G)®zZn >0 
n 

However, JS induces the zero-map K#(Cn) >K# (Cn) , so £ 
induces the zero map K^fCn) •K#(Cn). This says that the edge 
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homomorphism r(Cn,Cn) annihilates Bn . The map Y(Cn,Cn) is an 
2 

isomorphism in this degree, so ^ = O.a 

We wish to determine all of the R(G)-linear homology 
operations on K#( ;Z ) . As in the non-equivariant case [RS2, 
Section 8], any homology operation commutes with the Bott 
periodicity map, so we may take our theory to be Z -graded. 

THEOREM 11.7. Let G be a compact Lie group satisfying the Hodgkin 
condition. Then the Z0-graded ring of R(G)-linear (self-) 
homology operations for K^ ( ;Z ) (on the category of G-algebras) 
is a free R(G)0_Z -module of rank 2 with generators the identity £. n 
map (of degree 0) and the Bockstein operation B (of degree 1). 
As a Z2-graded ring over R(G)# Z , it is the exterior algebra 
over RfGJa^Z on B . Z n n 

PROOF: In light of Proposition 11.6, we must show that there are 
no other homology operations other than those which come from 
KK*(Cn,Cn). 

Suppose that 9 is a homology operation and that D is a 
G-algebra. It suffices to show that the action of 0 on K̂ fD̂ -Z ) 

G is determined by the action of 9 on KA(0 ,-;Z ), since C> „ is _ * n+l rk n+l 
KK -equivalent to Cn. Write the generators of K#(0 +1;Z )as g in 
degree 0 (the reduction of the integral class 1 ), and h in 

%+l 
/-» 

degree 1, where B{h) = g. Thus if the operation 9 on K*(^ n + 1'* z ) 
is degree preserving, it must be given by multiplication by some 
r £ R(G) in degree 0 and by some s 6 R(G) in degree 1. It 
will follow (from the representation argument to follow) that on 
arbitrary G-algebras, 9 is given by s + (r-s)e, where e is a 
projection onto the kernel of B. However, one knows that the 
Kiinneth exact sequence has no natural splitting, i.e., there is 
no natural choice for e. Hence r=s and 9 is multiplication by 
some element of R(G). A similar argument applies to show that 9 
is a multiple of B if it is degree-reversing. 

It remains to show that 9 is determined by its action on 
K#(0 .;Z ). Since 9 is compatible with suspensions, it is enough 
to consider an arbitrary G-algebra D and an element x € 
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K^(D;Z ) and to compute 9(x) in terms of 9 for 0 . If B(x) = 0 
then x is the reduction mod n of a class u € Kn(D), by (11.2). 
Then u corresponds to a fixed projection in D $K, hence, viewing 
u as f#<l>, where f: C >D %K and <1> is the standard generator 
of KQ((C) , we have 

x = (f®id)*(<l>®g), 

where f$id:<E$C> - >V*$K%0 . (Here w e ' r e i d e n t i f y i n g K*(D;Z ) 
XX *^ JL —^ . XX^T ,X XX 

with a summand in K#(D #K;Z ) as usual.) Thus, by naturality of 
9, 

9(K) = (f$id)*0(<l>), 

where <1> is now the standard generator of K^Q^Z ). Since the 
c unital inclusion of C in 0 - induces an isomorphism on KQ( ;Z ), 

we see that 0(x) is determined by the restriction of 9 to 
K0«WZn>-

Now even if JB(x) * 0, JBB(X) = 0, and so JB(X) is the 
reduction of some class w € K-(D) with nw = 0. By (the 
suspension of) Proposition 11.5, there is an equivariant map 

*: 0n+1 • (SDSJOV^ 

with 0*(h) = w. Recall also that in K#(0n+1;Zn), *(h) = g. Then 

*(x) = **(g) = <**(*(*)) 

and so x-0#(h) is the reduction of an integral class, hence was 
already dealt with above. Thus 

9(x) = *>*(9(h)) + 0(x-*„(h)) 

is determined by 9 restricted to K±(0 ,-;Z ). We have shown in 
* n+l n r 

the process that 0 - is a sort of universal object for K*( ;Z ), 
just as it is in the non-equivariant situation, a 

We proceed next to the consideration of admissible 

n' multiplications on the theory K^f-jZ^). The non-equivariant 

Purchased from American Mathematical Society for the exclusive use of Claude Schochet (sccll)
Copyright 2017 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



EQUIVARIANT K-THEORY AND KK-THEORY 87 

definition generalizes in an obvious way. Thus, an admissible 
multiplication is an R(G)-bilinear natural transformation 

M:K<?(A;Zn) X Kj(B;Zn) — KJ+J(A®B;Zn) 

which satisfies the following obvious conditions: 

1) M is associative. 

2) M commutes (in the graded sense) with suspension in each 
variable. 

3) M should be the obvious multiplication when one or the other 
of the classes to be multiplied is the reduction of an integral 
class; that is, in the image of the map 

K^(D) >K^(D)®Zn >K2<D;Zn). 

4) The Bockstein map ^ is a graded derivation. 

In the non-equivariant setting, there are exactly n 
admissible multiplications, each of which arises from a 
KK-element. If n is odd then exactly one multiplication is 
commutative; if n is even then no multiplication is commutative. 
The situation in the equivariant setting is quite parallel, so 
much so that we only sketch the proof of the following theorem, 
referring the reader to [RS2, Theorem 8.9] for detail. 

THEOREM 11.8. Suppose that G is a compact group which satisfies 
the Hodgkin condition, and that n>l is some integer. The 
admissible multiplications on K^-j-Z ) are in one-to-one 

c correspondence with those elements of KK^fCn^n) whose image 
under Y in the group 

HomR(G)(K^(Cn)SR(G)0Z K^(Cn),K®(Cn)) £ R(G)$zZn 

is exactly the usual multiplication map 1 = 1D,P>A, . Such 
n K ( u J R?«-_ 

multiplications are in bijection with R(G)$Z , corresponding to 
-1 n 

the set Y (1 ). When n is odd, exactly one of these is 
commutative. When n = 2, none are commutative. The multiplication 
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which corresponds to a KK element X is given by the composition 

(involving Kasparov products) 

... . .. . ' ~ , V ~ ' .3 Ki(D0Cn)8R(Q)Kj(E0Cn) • K ± + (D0Cn®E$Cn) 

Q
 (~,9Cn$CnX 

,G -Ki+.(D®E®Cn$Cn) • Ki+.(D®E0Cn) 

where o0 « is induced by the "flip" automorphism. 

PROOF: The proof is quite similar to to proof of the analogous 
non-equivariant proposition [RS2, Theorem 8.9], so we give only a 
brief outline. By naturality and associativity of the Kasparov 
product, any element X € KK (Cn$Cn,Cn) will give rise to a 
natural R(G)-bilinear associative multiplication u of the 
correct bidegree, by the above construction. It is also clear 

that if JJL is to be the usual multiplication in the case D = E = 
-1 C, it must satisfy Y(JJL ) = 1 . We must determine Y (1 )• 

x n n 

The Kunneth spectral sequence degenerates for the pair 
(Cn,Cn) to yield 

Kj(Cn®Cn) = R(G)0Zn = M j = 0,1 

and then the Universal Coefficient spectral sequence degenerates 
to the short exact sequence 

0 >Ext* Q)(M,M) •KKG(Cn®Cn,Cn) > HomR(Q)(M$M,M) • 0 

which is the extension 

0 > M • KKG(Cn$Cn,Cn) — — > M > 0. 

Thus Y (1 ) = M, as claimed. (The fact that no single element of 
-1 n 

Y (1 ) is immediately preferred comes from the lack of a natural 
splitting of the UCT sequence.) 
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A direct check (parallel to the non-equivariant argument 
[RS2, Theorem 8.9]) implies that each element X of Y (1 ) gives 
rise to an admissible multiplication M and that the map X—>JJL is 

A. X 

one-to-one. Furthermore, the representability Proposition 11.5 
implies that each admissible multiplication arises in this 
manner. 

It remains to discuss commutativity. An admissible 
multiplication JLU is (graded) commutative if and only if X is 

c invariant under the automorphism a of KK (Cn#Cn,Cn) which is 
induced by the flip interchanging the two factors in Cn$Cn. The 
map a is trivial on K0(Cn#Cn) and acts as -1 on K.. (Cn$Cn) . 
Consider the universal coefficient sequence 

0 >Ext*(G)(KG(Cn®Cn),KG(Cn)) •KKG(Cn®Cn,Cn) • 

HomR(G) (KG(Cn0Cn) ,KG(Cn) ) • 0. 

One must distinguish now between the cases n even and odd. If n 
pi 

is odd then a has two distinct eigenvalues on KK (Cn#Cn,Cn) and 
since 2 is a unit in M, we have a direct sum splitting 

KKG(Cn®Cn,Cn) 2 Ext* .(KG(Cn®Cn),KG(Cn)) e KKG(Cn®Cn,Cn)a. 

The admissible multiplications all have the same component in the 
fixed-point set, so u is commutative if and only if X has 

1 C f 

projection 0 in ExtR, ,(K (Cn$Cn),KQ(Cn)), which happens for 
exactly one X. 

If n=2 then, just as in the non-equivariant case, a acts by 
a unipotent matrix and leaves no admissible multiplication fixed, 
a 
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