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For a Banach algebra, one can define two kinds of K-theory: topological K-
theory, which satisfies Bott periodicity, and algebraic K-theory, which usually
does not. It was discovered, starting in the early 80’s, that the “comparison
map” from algebraic to topological K-theory is a surprisingly rich object.
About the same time, it was also found that the algebraic (as opposed to
topological) K-theory of operator algebras does have some direct applications
in operator theory. This article will summarize what is known about these
applications and the comparison map.

1 Some Problems in Operator Theory

1.1 Toeplitz operators and K-Theory

The connection between operator theory and K-theory has very old roots,
although it took a long time for the connection to be understood. We begin
with an example. Think of S1 as the unit circle in the complex plane and let
H ⊂ L2(S1) be the Hilbert space H2 of functions all of whose negative Fourier
coefficients vanish. In other words, if we identify functions with their formal
Fourier expansions,

H =

{
∞∑

n=0

cnzn with

∞∑

n=0

|cn|
2

< ∞

}
.

Now let f ∈ C(S1) and let Mf be the operator of multiplication by f
on L2(S1). This operator does not necessarily map H into itself, so let
P : L2(S1) → H be the orthogonal projection and let Tf = PMf , viewed
as an operator from H to itself. This is called the Toeplitz operator with
continuous symbol f . In terms of the orthonormal basis e0(z) = 1, e1(z) =

? Partially supported by NSF Grant DMS-0103647.
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z, e2(z) = z2, · · · of H, Tf is given by the (one-sided) infinite matrix with en-
tries 〈Tfei, ej〉 = cj−i, where f(z) =

∑
cnzn is the formal Fourier expansion

of f . This is precisely a Toeplitz matrix , i.e., a matrix with constant entries
along any diagonal. The operator Tf may also be viewed as a singular integral
operator, since by the Cauchy integral formula, one has

Tfϕ(z) =
1

2πi

∮

S1

f(ζ)ϕ(ζ)

ζ − z
dζ

for |z| < 1, and the same formula is “formally” valid for |z| = 1.
A natural question now arises: when is Tf invertible? And when this is

the case, can one give a formula for the inverse? In other words, how does
one solve the singular integral equation Tfϕ(z) = g(z)? The following result
is “classical” and was first proved by Krein back in the 1950’s, though his
formulation looked quite different.

Theorem 1.1. Let Tf be the Toeplitz operator on H2 defined as above, for

f ∈ C(S1). Then Tf is invertible if and only if f is everywhere non-vanishing

(so that f can be viewed as a map S1 → C×) and if the winding number of f ,

i.e., the degree of the map f
|f | : S1 → S1, is zero.

Sketch of a modern proof. (For more details, see [17, Ch. 7, especially Theo-
rem 7.23 and Proposition 7.24].) Let T be the C∗-algebra2 generated by all
the operators Tf , f ∈ C(S1), i.e., the norm closure of the algebra generated by
these operators and their adjoints. T is called the Toeplitz algebra. The first
thing to observe is that there is a surjective ∗-homomorphism σ : T → C(S1),
the “symbol map,” induced by Tf 7→ f , fitting into a short exact sequence of
C∗-algebras

0 → K → T
σ
→ C(S1) → 0, (1)

where K is the algebra of compact operators on H2. In particular, T is com-
mutative modulo compact operators.

To begin with, it is obvious that

T ∗
f = (PMfP )∗|

H2 = (PM∗
f P )

∣∣
H2

= (PMf̄P )
∣∣
H2

= Tf̄

and that the map f 7→ Tf is linear, and

‖Tf‖ = ‖PMf‖ ≤ ‖P‖ ‖Mf‖ = ‖f‖∞.

So since polynomials in z are dense in C(S1), for proving commutativity
of T modulo compacts and multiplicativity of σ it is enough to check that
Tzj Tzk ≡ Tzj+k mod K. This is immediate since

Tzj Tzkem = Tzj+kem = em+j+k

2 By definition, a C∗-algebra is a Banach algebra with involution ∗, isometrically
∗-isomorphic to a norm-closed self-adjoint algebra of operators on a Hilbert space.
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for m sufficiently large (m ≥ |j| + |k|). Thus T /(T ∩ K) is commutative,
and σ by construction is surjective. Next, we show that K ⊂ T . For this it
suffices to show that the action of T on K is irreducible, and since Tz is the
unilateral shift (sending ej 7→ ej+1), which is known to be irreducible, the
result follows. (In fact, the rank-one operators ξ 7→ 〈ξ, ej〉ek, which generate
a dense subalgebra of K, can all be written as polynomials in Tz and its adjoint
Tz−1 . For example, Tz−1Tz −TzTz−1 is orthogonal projection onto the span of
e0.) Finally, we need to show that the kernel of σ is precisely K; this can be
checked by showing that the map f 7→ Tf mod K is an isometry — a detailed
proof is in [17, proof of Theorem 7.11].

Now we get to the more interesting part of the proof, the part that involves
K-theory. The idea is to use the long exact K-theory sequences

K1(T )

��

σ∗ // K1(C(S1))
∂ //

��

K0(K) = Z

0 = K1(L) // K1(Q)
∂ // K0(K) = Z

(2)

associated to (1) and to the algebra L of all bounded linear operators on
H2 and its quotient Q = L/K, the so-called Calkin algebra. The downward-
pointing arrows here are induced by the inclusion T ↪→ L. Note that we are
using excision for K0 to identify the relative groups K0(T ,K) and K0(L,K)
with K0(K) = Z. Now one can show that ∂([f ]) is (up to a sign depending
on orientation conventions) the winding number of f . (To prove this, one can
first show that ∂([f ]) only depends on the homotopy class of f as a map
S1 → C×, and then compute for f(z) = z, which generates π1(S

1).) If Tf is
invertible, then from (1), σ(Tf ) = f is invertible. And by exactness of (2),
∂([f ]) = 0, so the winding number condition in the theorem is satisfied. In
the other direction, suppose f is invertible in C(S1). Then f defines a class in
K1(C(S1)) and ∂([f ]) is an obstruction to lifting f to an invertible element
of T . So if the winding number condition in the theorem is satisfied, the
obstruction vanishes. From the bottom part of the commuting diagram (2),
together with the interpretation of the inverse image of Q× in L as the set of
Fredholm operators and ∂ : K1(Q) → K0(K) as the Fredholm index, Tf is a
Fredholm operator of index 0. Thus dim ker Tf = dim kerT ∗

f = dim ker Tf̄ . But
one can show that ker Tf and kerTf̄ can’t both be non-trivial [17, Proposition
7.24], so Tf is invertible. ut

1.2 K-Theory of Banach Algebras

The connection between Fredholm operators and K-theory, which appeared
to some extent in the above proof, first appeared in [32]. This marked the be-
ginning of formal connections between operator theory and K-theory. About
the same time, Wood [69] noticed that topological K-theory can be defined
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for Banach algebras, in such a way that Bott periodicity holds, just as it does
for topological K-theory of spaces. However, it took a while for specialists in
Banach algebras to notice the possibilities that K-theory afforded for solv-
ing certain kinds of problems. Direct applications of K-theory to operator
algebras did not surface until the early 70’s, with publication of works like
[58] and [10]. In the rest of this section, we will discuss a few of the other
early connections between K-theory and problems in operator algebras, and
in Section 2 which follows, we will discuss some of the motivation for studying
the comparison map between algebraic and topological K-theory for Banach
algebras.

In [58] and [59], Taylor began to consider direct applications of K-theory
of Banach algebras to problems in harmonic analysis. Part of the motivation
was to give new proofs of results like the Cohen idempotent theorem (which
says that the idempotent finite measures on a locally compact abelian group
are generated by those of the form χ(h) dh, with H a compact subgroup, dh
its Haar measure, and χ a character on H). One of the things he found was:

Theorem 1.2 (Taylor). If A is a unital commutative Banach algebra and if

X is its maximal ideal space, then the Gelfand transform A → C(X) induces

an isomorphism on topological K-theory.

An immediate corollary is that topological K-theory vanishes for the rad-
ical of A (the intersection of all the maximal ideals), and thus for purposes
of studying topological K-theory, it is no loss of generality to assume that A
is semisimple, or even that A is a C∗-algebra. The corresponding result for
algebraic K1 is easily seen to be false, however. (Just consider the algebra of
dual numbers, C[x]/(x2).)

1.3 Essentially Normal Operators

At about the same time, interest in K-theory for C∗-algebras began to ex-
plode, thanks to the work of Brown, Douglas, and Fillmore (“BDF” [6], [7])
on extensions of C∗-algebras, followed quickly by the work of Kasparov on
“operator K-homology” ([39], [40]). The BDF work grew out of the study
of a rather concrete problem in operator theory: classification of essentially

normal operators, bounded operators T on an infinite-dimensional separable
Hilbert space H for which T ∗T − TT ∗ is compact. Given such an operator,
1, T , T ∗, and K (the algebra of compact operators) generate a C∗-algebra
E ⊂ L containing K as an ideal and with E/K = A a unital commutative
C∗-algebra, hence with A ∼= C(X), where X is the “essential spectrum” of T .
Thus T defines an extension of C∗-algebras

0 → K → E
q
→ C(X) → 0. (3)

The similarity with (1) is not an accident; in fact, the Toeplitz extension is
the special case where H = H2 and T is the Toeplitz operator Tz. The original
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problem was to determine when T can be written in the form N + K with
N normal (i.e., N∗N = NN∗) and K compact. (Clearly any operator T of
the form N + K satisfies the original condition T ∗T − TT ∗ ∈ K.) If we can
write T = N + K in this fashion, then the map q(T ) 7→ N defines a splitting
of the exact sequence (3) (assuming we choose N so that its spectrum is no
larger than the essential spectrum of T ). So classification of essentially normal
operators comes down to classification of C∗-algebra extensions by K, modulo
split extensions. This was the motivation for the BDF project.

The important discovery in the BDF work was that extensions of the form
(3) (modulo split extensions, in some sense) can be made into an abelian
group Ext(X), and that Ext is part of a homology theory which is dual to
(topological) K-theory. The addition operation on extensions makes use of
the fact that M2(K) ∼= K. Given two such extensions E1 and E2, then

E1 ⊕A E2 =def {(e1, e2) ∈ E1 ⊕ E2 : e1 ≡ e2 mod K}

is an extension of A by K⊕K, and if we add to E1⊕AE2 ⊂ L⊕L ⊂ M2(L) ∼= L
the ideal M2(K) ∼= K, we get an extension of A by K. In fact, Ext extends
to a contravariant functor on a the category of separable nuclear C∗-algebras
(where we replace A = C(X) by more general C∗-algebras) — the duality with
K-theory comes from the fact that the long exact K-theory sequence of (3)
gives a homomorphism ∂ : K1(A) → K0(K) = Z just as in the above proof
of Theorem 1.1. And should this “primary obstruction” to splitting of (3)
vanish, there is a secondary obstruction that comes from the exact sequence

0 → K0(K) = Z → K0(E)
q∗
−→ K0(A) → K−1(K) = 0 ,

which defines an element of Ext1Z (K0(A), Z). In fact, Brown showed [10] that
these invariants give rise to a “universal coefficient theorem” (UCT) exact
sequence

0 → Ext1Z
(
K0(X), Z

)
→ Ext(X) → HomZ

(
K−1(X), Z

)
→ 0.

1.4 Smooth Extensions and K2

A bounded operator T on a Hilbert space H is said to be of determinant class

if T−1 belongs to the ideal L1 ⊆ L(H) of trace-class operators. There is a well-
defined notion of determinant for operators of determinant class. As expected,
it is defined to be 0 if T is not invertible. If T is invertible, then one can
show that T = exp(S) for some trace-class operator S, and we define det T =
det(exp(S)) to be eTr(S), according to the usual relationship between the trace
and the determinant. (One needs to check that this is independent of the choice
of S.) The determinant defined this way is multiplicative (on operators of
determinant class); in fact it defines a homomorphism det : K1(L,L1) → C×.
Using this notion of determinant, Helton and Howe [27] defined an interesting
invariant for a special subclass of the essentially normal operators. It was
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then shown by Brown ([9], [10]) that this invariant can be viewed as having
something to do with algebraic K2. The idea is this. Suppose one has an
extension of the form (3), and suppose X is a smooth manifold (possibly with
boundary). Inside E, which is an extension of C(X) by K, suppose one has a
subalgebra A which is an extension

0 → L1 → A
q
→ C∞(X) → 0. (4)

of C∞(X) by L1, the trace-class operators. Thus operators T in A are not
only essentially normal; they have trace-class self-commutators (i.e., T ∗T −
TT ∗ ∈ L1). Suppose T and S are two invertible operators in A. Then the
images modulo L1 of T , T ∗, S, and S∗ commute, and so the multiplicative
commutator TST−1S−1 is 1 modulo L1, and so is of determinant class. In
particular, det(TST−1S−1) is defined. Brown noticed that

det(TST−1S−1) = det ◦∂ ({q(T ), q(S)}) ,

where ∂ : K2(C
∞(X)) → K1(A, L1) is the connecting map in the long exact

K-theory sequence of (4), we view det as a function on K1(A, L1) via the
natural map K1(A, L1) → K1(L, L1), and {q(T ), q(S)} ∈ K2(C

∞(X)) is the
Steinberg symbol of the functions q(T ) and q(S). In particular, one obtains
the relation det(TST−1S−1) = 1 when the symbols satisfy q(T ) + q(S) = 1,
which is not at all obvious from the operator-theoretic point of view.

1.5 Multiplicative Commutators

Algebraic K1 and K2 are also related to a number of other problems about
multiplicative commutators in various operator algebras. For example, one
has:

Theorem 1.3 (Brown and Schochet [8]). K1(L, K) = 0.

This is proved by showing explicitly that every invertible operator ≡ 1
mod K is a product of a finite number of (multiplicative) commutators of
such operators. Thus there is a huge difference between the algebraic K-
theory of K and that of L1. (Recall that we have the determinant map
det : K1(A, L1) → C×, which is surjective.) Brown and Schochet also re-

mark [8, Remark 3] that their methods also show that K1(K̃, K) = 0, with

K̃ = K + C · 1 the algebra obtained by adjoining a unit to K. (The two
statements are not the same since K1 does not in general satisfy the excision
property.) A subsequent paper [11], using refinements of the same techniques,
showed that the group of invertible operators in L which are ≡ 1 mod K
is perfect, with all even cohomology groups nontrivial. These groups are of
course related by the Hurewicz homomorphism to the higher algebraic K-
theory K∗(L, K) (about which we will say more later). A related later paper
by de la Harpe and Skandalis [16] showed that if A is a stable C∗-algebra, i.e.,
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if A ∼= A ⊗K,3 then the connected component of the identity in the group of
invertible operators of the form 1 + a, a ∈ K, is always perfect.

1.6 AF Algebras and Dimension Groups

One other important source for interest in K-theory of operator algebras
comes from the study of so-called AF algebras, or C∗-algebra inductive limits
of finite-dimensional semisimple algebras over C. (The abbreviation AF stands
for “approximately finite-dimensional.”) Such algebras were first introduced
by Bratteli [4], who showed how to classify them by means of equivalence
classes of certain combinatorial constructs now called “Bratteli diagrams.”
However, this method of classification was almost uncomputable. A major
breakthrough came a few years later when Elliott [19] showed that AF algebras
are classified by their K0 groups, together with the natural ordering on K0

induced by the monoid of finitely generated projective modules, and in the
unital case, the “order unit” corresponding to the rank-one free module. (The
invariant consisting of K0 and this extra order structure is often called the
dimension group.) This classification theorem was made even more satisfying
by a subsequent paper of Effros, Handelman, and Shen [18], which gave an
abstract characterization of the possible dimension groups of AF algebras
— they are exactly the unperforated ordered abelian groups satisfying the
Riesz interpolation property. There has been much subsequent literature on
classification of various classes of C∗-algebras via topological K-theory and
the order structure on it, but we do not go into this here.

2 “Lie Groups Made Discrete” and Early Explorations

Topological K-theory, first introduced for compact spaces by Atiyah and
Hirzebruch, was extended to Banach algebras as early as the work of Wood
[69] in the mid-60’s. As higher algebraic K-theory began to be developed in
the 1970’s, the question arose of trying to understand the similarities and

3 Here A⊗K is the C∗-algebra completion of the algebraic tensor product A�K. For
general C∗-algebras A and B, there can be more than one C∗-algebra completion
of A � B, but there is always a maximal one A ⊗max B, defined by completing
A � B in the norm

‚‚P
n

i=1
ai ⊗ bi

‚‚
max

= sup
˘‚‚P

n

i=1
ρ1(ai)ρ2(bi)

‚‚ : ρ1 and ρ2

commuting representations of A and B} ,

as well as a minimal one A⊗min B, the completion of A�B ⊂ L(H1 ⊗H2) when
A is represented on a Hilbert space H1 and B is represented on a Hilbert space
H2. (One can show this is independent of the choices of faithful representations
of A and B.) But if one of the two algebras is nuclear , and in particular if B is
commutative or B = K, all completions coincide.
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differences between the two theories in the cases where both of them made
sense. These explorations eventually went off in two different directions, with
a certain overlap between them. The first of the directions had to do with
relating purely algebraic and topological or “quasi-topological” K-theories
for algebraic varieties, especially over C. This subject is intimately connected
with the Riemann-Roch problem (see [3] and [60], for example) and led to
the development of semi-topological K-theory (see [22]). This line of develop-
ment will not be the primary theme of this article, but the interested reader
should consult the chapter by Friedlander and Walker for a treatment of at
least some of this topic. Instead we will discuss another thread in the subject,
of relating algebraic and topological K-theory for Banach algebras in general
and for C∗-algebras in particular. This subject is also related to the use of
algebraic K-theory as a language for discussing certain problems in operator
theory.

2.1 Basic Concepts and Notations

In order to make it possible to give precise statements for all results, we
begin by establishing some definitions and notation. The definitions here do
not always coincide with those in use when the results were first established,
but we have translated everything into terms consistent with these “modern”
definitions.

First we need to make precise exactly what we mean by algebraic and
topological K-theory for Banach algebras. Let A be a Banach algebra over
F = R or C. (The Banach norm ‖ · ‖ on A is implicit.) For the moment we
assume A is unital, though it will be necessary from time to time to talk about
non-unital Banach algebras as well. (Just as an example, stable C∗-algebras,
which already appeared in Section 1.5 above, are necessarily non-unital.) By
Kn(A) we will mean the usual (Quillen) algebraic K-groups of A for n ≥ 0.
However, since the topological K-groups Ktop

n (A) are periodic in n (with
period 2 if F = C, period 8 if F = R), and since we want to compare Kn(A)
with Ktop

n (A), it is also necessary to have a good definition of Kn(A) for n < 0.
Accordingly, we let K(A) be the non-connective delooping of the algebraic K-
theory spectrum of A, as defined in [24] and [64], and let Kn(A) denote the
n-th homotopy group of K(A), whether or not n is positive. The groups Kn(A)
for n < 0 then agree with the “Bass negative K-groups” defined in [36] or
[2], and in fact all the standard constructions of deloopings of the algebraic
K-theory spectrum are known to be naturally equivalent [44, §§5–6].

By the same token, we let Ktop(A) be the topological K-theory spectrum
of A. This is an Ω-spectrum in which every second (or eighth, depending on
whether F = C or R) space is GL(A), the infinite general linear group of
A, with the Hausdorff group topology defined by the norm on A (not the
discrete topology on GL(A), which we’ll denote by GL(A)δ, used to define
K(A)). More specifically, when F = C, Ktop(A) is given by the homotopy
equivalences
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K0(A) × BGL(A)
'
−→ ΩGL(A),

GL(A)
'
−→ ΩBGL(A) = Ω (K0(A) × BGL(A))

of the Bott Periodicity Theorem [69], and by similar maps when F = R. The
homotopy groups Ktop

n (A) of Ktop(A) are thus periodic in n (with period 2 if
F = C, period 8 if F = R).

Basic to what follows is [49, Theorem 1.1]:

Theorem 2.1. Let A be a Banach algebra (over F = R or C). There is a

functorial “comparison map” of spectra c : K(A) → Ktop(A) induced by the

“change of topology” map GL(A)δ → GL(A). The induced map c∗ : K0(A) →
Ktop

0 (A) is the identity, and the induced map c∗ : K1(A) → Ktop
1 (A) is the

quotient map GL(A)/E(A) → GL(A)/GL(A)0. (Here E(A) is the group gen-

erated by the elementary matrices, and GL(A)0 ⊇ E(A) is the identity com-

ponent of GL(A).)
Recall also that K(A) is a K(F)-module spectrum and that Ktop(A) is a

Ktop(F)-module spectrum. The map c is compatible with the product structures,

in that the diagram

K(F) × K(A)
µ

//

(cF,cA)

��

K(A)

c

��

Ktop(F) × Ktop(A)
µtop

// Ktop(A),

µ denoting the multiplication maps, is homotopy commutative.

Proof (Sketch). The “change of topology” map of topological groups

GL(A)δ → GL(A)

induces a map of classifying spaces BGL(A)δ → BGL(A). Apply the Quillen
+-construction. Since BGL(A) is already an H-space, this does nothing to

BGL(A), and we get a map
(
BGL(A)δ

)+
→ BGL(A) and thus a map

K0(A) ×
(
BGL(A)δ

)+
→ K0(A) × BGL(A). This is an infinite loop space

map, and induces a map c of connective K-theory spectra K(A)〈0〉 →
Ktop(A)〈0〉 with the desired properties. So it’s only necessary to deloop it.
This could be done using the Pedersen-Weibel construction in [44], or we
can do it inductively, one step at a time, as follows. The single deloop-

ing of K0(A) ×
(
BGL(A)δ

)+
, which on the spectrum level we’ll denote by

Σ
(
K(A)〈−1〉

)
, is a direct summand in the K-theory space of the Laurent

polynomial ring A[t, t−1], i.e., in K0(A[t, t−1]) ×
(
BGL(A[t, t−1])δ

)+
. Now

by Stone-Weierstraß, A[t, t−1] is a dense subalgebra of the Banach algebra
C(S1, A) (in the complex case), or of

{f ∈ C(S1, AC) : f(z−1) = f(z)}
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in the real case. (Note this is not the same as the algebra of real-valued
continuous functions S1 → A, since the Laurent polynomial variable t should
be identified with the complex variable z on the unit circle in the complex
plane, and z−1 = z̄.) Let us denote the completion of A[t, t−1] in both cases
by ΣA, and call it the “suspension” of A. As before we have a map of spectra
K(ΣA)〈0〉 → Ktop(ΣA)〈0〉. However, by the Fundamental Theorem of K-
theory,

K(A[t, t−1]) ' K(A) ⊕ ΣK(A) ⊕ Nil terms,

and similarly Ktop(ΣA) ' Ktop(A) ⊕ ΣKtop(A) by Bott periodicity (for KR
in the real case). We thus obtain a commutative diagram of spectra

Σ
(
K(A)〈−1〉

) Σ(c delooped)
//

� _

��
�

�

�

Σ
(
Ktop(A)〈−1〉

)
� _

��
�

�

�

K(A[t, t−1])〈0〉 // K(ΣA)〈0〉
cΣA // Ktop(ΣA)〈0〉,

with the vertical dotted arrows split inclusions, which gives the inductive step.
The compatibility of the map c with products follows from the way the

products are defined. The product in topological K-theory comes from a group
homomorphism µtop : GL(F) × GL(A) → GL(A) (see for example [48, Theo-
rem 5.3.1, pp. 280–281], and the product in algebraic K-theory comes from a
map µ : GL(F) × GL(A) → GL(A) defined by exactly the same formula, so
clearly the diagram

GL(F)δ × GL(A)δ
µ

//

��

GL(A)δ

��

GL(F) × GL(A)
µtop

// GL(A),

commutes. So apply the classifying space functor, the plus construction, etc.
ut

Now we can formulate the basic problems to be studied in this article:

Problems 2.2.

1. How close is the map c : K(A) → Ktop(A) to being an equivalence?
2. When c is far from being an equivalence, can we still say anything intel-

ligent about K(A)?

We will sometimes consider K-theory with coefficients. With A as before,
K(A; Z/n), the algebraic K-theory spectrum with coefficients in Z/n, is ob-
tained by smashing K(A) with the mod n Moore spectrum (the cofiber of

the map S
n
−→ S of degree n, where S is the sphere spectrum). This definition

agrees in positive degrees with, but is not precisely identical to, the (older)
definition of mod n K-theory in [5].
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2.2 Direct Calculation in the Abelian Case

In considering Problems 2.2(1–2), one must certainly begin with the case of
the simplest Banach algebras, namely the archimedean local fields R and C,
and after that with commutative Banach algebras. Taylor’s Theorem 1.2 shows
that the study of the commutative case reduces to the study of the algebras
of continuous functions, CR(X) and CC(X). Already in [43, §7], Milnor did a
direct analysis of these cases in low dimensions, and found:

Theorem 2.3. Let X be a compact Hausdorff space, let F = R or C, and let

A = CF(X). Then the map c∗ : Kj(A) → Ktop
j (A) is surjective for j = 1, with

kernel C(X, F×
0 ), the continuous functions from X to the identity component

of F×. If F = R, since R×
0 = R×

+ is contractible,

exp: CR(X)
∼=
−→ C(X, R×

0 ),

while if F = C, since C× has the homotopy type of a circle,

exp: CC(X) � C(X, C×)

with kernel C(X, Z) = C0(X, Z) (Čech cohomology). Furthermore, c∗ is sur-

jective also for j = 2.

This shows in particular that c∗ can have a huge kernel when j = 1,
since CR(X) is always a Q-vector space of uncountable dimension. It is also
true that c∗ can have a huge kernel when j = 2, since for example by [43,
Theorem 11.10], K2(R) and K2(C) must be uncountable, while on the other
hand Ktop

2 (R) = Z/2 and Ktop
2 (C) = Z. So in general we cannot expect c∗

to be close to an isomorphism, and we can already see that the presence of
large uniquely divisible groups is part of the explanation. This suggests that
examining c∗ with finite coefficients might be more valuable.

2.3 “Lie Groups Made Discrete” and Suslin’s Theorems on K∗(R),
K∗(C)

The algebraic K-theory of F = R or C is more accessible than that of gen-
eral Banach algebras, since it can be obtained from applying the Quillen
+-construction to BGL(F)δ, and GL(F) is an inductive limit of Lie groups.
Thus understanding K(F; Z/n) is related to understanding the group homol-
ogy with finite coefficients of “Lie groups made discrete.” This was studied
by Friedlander (as early as the mid-1970’s) and Friedlander-Mislin (see, e.g.,
[21]), using the machinery of étale homotopy theory, and by Milnor [42].

The most optimistic possible conjecture is that for any Lie group G, the
natural map BGδ → BG is a homology isomorphism with finite coefficients.
As Milnor shows in [42], this is indeed the case for solvable Lie groups. Milnor
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also proves that for G any Lie group with finitely many components, the map
H∗(BG; Z/n) → H∗(BGδ; Z/n) is split injective.4

Around the same time as Milnor’s work, Suslin began to investigate
K(F; Z/n) (for F = R or C, as well as for more general local or algebraically
closed fields) by using completely different techniques coming from algebraic
geometry. We quickly summarize his remarkable results.

Theorem 2.4 (Suslin [52]). If F ↪→ L is an extension of algebraically

closed fields, then for any positive integer n, the induced map K(F ; Z/n) →
K(L; Z/n) is an equivalence.

Comments on the proof. Suslin begins by observing that L = lim
−→

A, where A
runs over the finitely generated F -subalgebras of L. Since F is algebraically
closed, the Nullstellensatz implies that for any such A, the map F ↪→ A has
an F -linear splitting, and in particular, K∗(F ; Z/n) → K∗(A; Z/n) is split
injective. Thus K∗(F ; Z/n) → K∗(L; Z/n) is injective. However, this is the
“trivial” part of the proof, as it would have applied just as well to the integral
K-groups.

The finite coefficients are used (though the divisibility of L× and of
Pic0(C), C a smooth curve over L) in the course of proving the rigidity the-
orem 2.5 below. This is then applied with A a smooth finitely generated F -
subalgebra of L, h0 : A → L the inclusion, and h1 : A → L factoring through
a an F -algebra homomorphism A → F . Passage to the limit over all such A’s
gives the surjectivity of K∗(F ; Z/n) → K∗(A; Z/n). ut

The proof is completed with:

Theorem 2.5 (Suslin rigidity theorem [52]). If F ↪→ L is an extension

of algebraically closed fields, if A is a smooth affine F -algebra without zero-

divisors, and if h0, h1 : A → L are two F -homomorphisms, then for any

positive integer n, (h0)∗ ' (h1)∗ as maps K∗(A; Z/n) → K∗(L; Z/n).

Theorem 2.4 implies:

Corollary 2.6. If F is an algebraically closed field of characteristic 0, then

K(F ; Z/n) ' K(C; Z/n). And if F is an algebraically closed field of charac-

teristic p > 0, then for (n, p) = 1, Ki(F ; Z/n) ∼= Ktop
i (C; Z/n).

Proof. Theorem 2.4 implies that the homotopy type of K(F ; Z/n) is the same
as for F = Q (in the characteristic 0 case) or for F = Fp (in the characteristic
p case). The first statement follows from Theorem 2.4 applied to Q ↪→ C;
the second follows from Quillen’s calculation [46] of the homotopy type of
K(Fq). ut

More relevant for our purposes is:

4 One might even hope that injectivity would be true for more general locally
compact groups, but this cannot even be the case for general profinite groups, as
demonstrated in [50].
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Theorem 2.7 (Suslin [54]). Let F = R or C. Then the comparison map c

of Theorem 2.1 induces isomorphisms c∗ : Kj(F; Z/n)
∼=
−→ Ktop

j (F; Z/n) for

all positive integers n and for all j ≥ 0. We can rephrase this by saying that

c induces an equivalence of spectra K(F; Z/n)
'
−→ Ktop(F; Z/n)〈0〉, where the

spectrum on the right is the connective topological K-theory spectrum, often

denoted bu(Z/n) or bo(Z/n).

Comparison of this result with Corollary 2.6 yields the remarkable conclu-
sion that for algebraically closed fields F , the homotopy type of K(F ; Z/n)
is almost independent of F . (The only variations show up when n is a mul-
tiple of the characteristic.) However, this is taking us somewhat far afield, as
our interest here is in Banach algebras. The proof of Theorem 2.7 follows a
surprising detour; it depends on:

Theorem 2.8 (Gabber [23], Gillet-Thomason [25]). Let A be a commu-

tative ring in which the integer n > 0 is invertible, and let I / A be an ideal

contained in the radical of A, such that the pair (A, I) is Henselian. (This

means that the conclusion of Hensel’s Lemma holds for the map A � A/I,
i.e., that if f ∈ A[t] and if the reduction f̄ ∈ (A/I)[t] of f mod I has a root

ᾱ ∈ A/I such that f̄ ′(ᾱ) is a unit in A/I, then ᾱ can be lifted to a root α of

f in A.) Then K∗(A,A/I; Z/n) = 0.

Comments on the proof of Theorem 2.7. Theorem 2.8 has a fairly obvious ap-
plication to the computation of K∗(Qp; Z/n) or of mod n K-theory of other
non-archimedean local fields F , since if O is the ring of integers in F and p

is its maximal ideal, then (O, p) is Henselian, but the most ingenious part of
[54] is the development of a trick for handling the case of the archimedean
fields R and C.

First there is a relatively straightforward reduction of the problem to prov-
ing that the identity map BSLk(F)δ → BSLk(F) induces an isomorphism on
mod n homology in a range of dimensions (depending on k but increasing to
infinity as k → ∞). But since Gk = SLk(F) is a Lie group, it turns out that
there is a good model for the fiber of the map BGδ

k → BGk, which Suslin
denotes (BGk)ε, obtained by fixing a left-invariant Riemannian metric on Gk

and choosing ε small enough so that if Uε denotes the open ε-ball around the
identity e of Gk, then there is a unique geodesic arc joining any two points
in Uε. This guarantees that any intersection of left translates of Uε, if non-
empty, is contractible. One then takes (BGk)ε to be the geometric realization
of the simplicial set whose m-simplices are m-tuples [g1, . . . , gm] such that
Uε ∩ g1Uε ∩ . . . ∩ gmUε 6= ∅.

Now because of the Serre spectral sequence of the fibration

(BGk)ε → BGδ
k → BGk

as well as Milnor’s results, it turns out it suffices to prove that the natural map
(BGk)ε → BGk induces the zero map on mod n homology. To prove this, one
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similarly translates Theorem 2.8 into a statement about mod n homology,
namely that the map BGLk(R, I) → BGL(R, I) induces the zero map on
mod n homology in the limit as k → ∞. This is then used in a strange way
— we take R to be the local ring of germs of F-valued continuous functions

on

j︷ ︸︸ ︷
Gk × · · · × Gk near (e, . . . , e), and I to be its maximal ideal of functions

vanishing at (e, . . . , e). Disentangling everything turns out to give the result
one needs in degree j, since j-chains on (BGk)ε (where one can pass to the
limit as ε → 0) are basically elements of R.

One can also find an exposition of the proof in [51]. ut

2.4 Karoubi’s Early Work on Algebraic K-Theory of Operator
Algebras

The first substantial work on Problems 2.2 for infinite-dimensional Banach
algebras, aside from the few special results already mentioned, was under-
taken by Karoubi. In this subsection we summarize some of the results in two
important papers of Karoubi, [37] and [38]. In all of this section, all Banach
and C∗-algebras will be over C, not R.

In the category of C∗-algebras, it is rather artificial to restrict attention to
unital algebras, so at this point it’s necessary to say something about algebraic
K-theory for non-unital algebras (over a field of characteristic zero). The
problem is that algebraic K-theory does not in general satisfy excision , so
that the algebraic K-theory of a non-unital algebra A should be interpreted
as the relative K-theory of a pair (B,A), where B is an algebra containing A
as an ideal. When A is a nonunital C∗-algebra, there are two canonical choices
for B, both of which are C∗-algebras: Ã = A + 1 · C, the algebra obtained by
adjoining a unit to A, and M(A), the multiplier algebra of A. The latter, first
introduced in [33] and [12], is the largest unital C∗-algebra containing A as

an essential ideal, just as Ã is the smallest such C∗-algebra. For example, if
X is a locally compact Hausdorff space and if A = C0(X), Ã = C(X+) and
M(A) = C(βX), where X+ is the one-point compactification of X and βX
is the Stone-Čech compactification of X. It turns out that M(K) = L, the
algebra of bounded operators on the same Hilbert space where K is the algebra
of compact operators. Below, when we talk about the algebraic K-theory of
K, we will implicitly mean the K-theory of (L,K). (Later on, in section 3.2,

it will turn out it doesn’t matter, and the pair (K̃,K) would give the same
results.)

Karoubi noticed that the periodicity of Ktop(C) can be attributed to two
special elements, the Bott element β ∈ Ktop

2 (C) and the inverse Bott element
β−1 ∈ Ktop

−2 (C). The class β, once we use finite coefficients, does lie in the

image of the comparison map K2(C; Z/n) → Ktop
2 (C; Z/n) of Theorem 2.1.

(This follows immediately from Theorem 2.7, but it can also be proved di-
rectly — see [37, Proposition 5.5].) However, β−1 cannot lie in the image of
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the comparison map, even with finite coefficients, since C is a regular ring and
thus its negative K-groups vanish. However, Karoubi noticed that topologi-
cal K-theory is the same for C and for the algebra K of compact operators.
(More precisely, the non-unital homomorphism C ↪→ K sending 1 to a rank-
one projection induces an isomorphism on topological K-theory. The excision
property of topological K-theory implies functoriality for non-unital homo-
morphisms.) And there is an algebraic inverse Bott element in K−2(K) which
maps to β−1 ∈ Ktop

−2 (C) under the composite

K−2(K)
cK−−→ Ktop

−2 (K)
∼=
−→ Ktop

−2 (C) ∼= Z.

Karoubi proves this using two simple observations. The first is:

Theorem 2.9 ([37, Théorème 3.6]). If A is a C∗-algebra (with or without

unit), the map c : K−1(A) → Ktop
−1 (A) is surjective.

Sketch of proof [37, §III]. It suffices to consider the case where A has a unit

(since if A is non-unital, K−1(A) ∼= K−1(Ã), where Ã is the C∗-algebra ob-
tained by adjoining a unit to A). Recall that the Bass definition of K−1(A)
is in terms of a direct summand in K0(A[t, t−1]), and that the Laurent
polynomial ring A[t, t−1] embeds densely in C(S1, A). But K0(C(S1, A)) ∼=
K0(A)⊕Ktop

1 (A), and Ktop
1 (A) ∼= Ktop

−1 (A) by Bott periodicity. So we just need

to show that the summand K−1(A) in K0(A[t, t−1]) surjects onto Ktop
1 (A) un-

der the map induced by the inclusion A[t, t−1] ↪→ C(S1, A). Since elements
of Ktop

1 (A) are represented by unitary matrices over A and we can always
replace A by Mr(A) for some r, it suffices to show that if u ∈ A is unitary
(i.e., u is invertible and u−1 = u∗), the corresponding class in Ktop

1 (A) lies in
the image of K0(A[t, t−1]). Since the C∗-algebra generated by u is a quotient
of C(S1) (since u is normal and has spectrum in the unit circle), under a
∗-homomorphism sending the standard generator z of C(S1) (the indentity
map S1 → S1 ⊂ C, when we think of S1 as the unit circle in the complex
plane) to u, it suffices to deal with the case where A = C(S1) and we are
considering the class [z]. Then we just need to show that the Bott element in
Ktop

1 (C(S1)) ∼= K0(C(T 2)) lies in the image of K0(C(S1)[t, t−1]). However,
one can write the Bott element out in terms of a very explicit 2 × 2 matrix
with entries that are functions of z and t that are Laurent polynomials in the
t-variable (see [37, pp. 269–270]), so that does it. ut

Now we obtain the desired result on the inverse Bott element as follows:

Theorem 2.10 (Karoubi). The comparison map c : K−2(K) → Ktop
−2 (K) is

surjective.

Proof. Consider the exact sequence of C∗-algebras

0 → K → L → Q = L/K → 0,
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where Q is the Calkin algebra. Since L, the algebra of all bounded operators on
a separable Hilbert space, is “flasque” by the “Eilenberg swindle” (all finitely
generated projective L-modules are stably isomorphic to 0), all its K-groups,
whether topological or algebraic, vanish. So now consider the commutative
diagram of exact sequences:

0 = K−1(L) // K−1(Q) //

����

K−2(K) //

��

0 = K−2(L)

0 = Ktop
−1 (L) // Ktop

−1 (Q) // Ktop
−2 (K) // 0 = Ktop

−2 (L),

where the surjectivity of the arrow K−1(Q) → Ktop
−1 (Q) follows from Theorem

2.9. The result follows by diagram chasing. ut

In fact because of the multiplicative structure on K-theory one can do
much better than this, and Karoubi managed to prove:

Theorem 2.11 (Karoubi). The comparison map c : K∗(K; Z/n) → Ktop
∗ (K;

Z/n) is an isomorphism (in all degrees), and the map c : Kj(K) → Ktop
j (K)

is surjective for all j and an isomorphism for j ≤ 0.

Proof. The first step is to prove the statement about K-theory with finite
coefficients. Choose γ ∈ K−2(K) mapping to β−1 ∈ Ktop

−2 (K); this is possible
by Theorem 2.10. Let βn be the mod n Bott element in K2(C; Z/n). (Recall
Suslin’s Theorem 2.7.) Then the cup-product βn · γ ∈ K0(K; Z/n) ∼= Z/n
maps to β · β−1 = 1 ∈ Ktop

0 (K; Z/n) ∼= Z/n (by the last part of Theorem 2.1,
the compatibility with products), and so is 1. So the product with γ is inverse
to the product with βn on K∗(K; Z/n), and so K∗(K; Z/n) is Bott-periodic
and canonically isomorphic to Ktop

∗ (K; Z/n) = Z/n[β, β−1].
Now we lift the mod n result to an integral result for K2. Recall that by

Theorem 1.3, K1(K) = 0. Because of this fact and the above result on mod n
K-theory, we have the commuting diagram of long exact sequences

· · · // K2(K)
n //

c

��

K2(K) //

c

��

K2(K; Z/n) ∼= Z/n //

c∼=

��

K1(K) = 0

0 // Ktop
2 (K) ∼= Z

n // Ktop
2 (K) ∼= Z // Ktop(K; Z/n) ∼= Z/n // Ktop

1 (K) = 0.

From this it follows that the comparison map c : K2(K) → Ktop
2 (K) ∼= Z hits

a generator mod n for each n, and thus this map is integrally surjective.
Hence we can choose an algebraic Bott element δ ∈ K2(K) mapping to

β ∈ Ktop
2 (K). We could then deduce that multiplication by γ is inverse to

multiplication by δ, and thus that the algebraic K-theory of K is Bott-periodic
and canonically isomorphic to the topological K-theory, provided we had a
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good cup-product structure on K-theory for non-commutative rings. Unfor-
tunately there is a problem with this that comes from failure of excision in
algebraic K-theory in positive degrees. This is exactly why Karoubi can only
conclude that c : Kj(K) → Ktop

j (K) is surjective for all j and an isomorphism
for j ≤ 0. ut

The above result on the K-theory of K (or rather, Karoubi’s first partial
results in this direction, since the paper [37] predated Theorem 2.11) mo-
tivated a rather audacious conjecture in [37] about the K-theory of stable
C∗-algebras, which came to be known as the Karoubi Conjecture.

Conjecture 2.12 (Karoubi Conjecture [37]). For any stable C∗-algebra

A, the comparison map c : K(A) → Ktop(A) is an equivalence.

The original formulation of this conjecture in Karoubi’s paper seems a
bit vague about what definition of algebraic K-theory should be used here
for non-unital algebras. Fortunately we shall see later (section 3.2) that all
possible definitions coincide. In fact it would appear that Karoubi wants to
work with K∗(A ⊗ L, A ⊗ K), which presents a problem since the minimal
C∗-algebra tensor product is not an exact functor in general. Fortunately all
the difficulties resolve themselves a posteriori.

It is also worth mentioning that Karoubi’s paper [38] deals not only with
C∗-algebras, but also with Banach algebras, especially the Schatten ideals
Lp(H) in L(H). (The ideal Lp(H), 1 ≤ p < ∞ is contained in K(H); a compact
operator T lies in Lp(H) when the eigenvalues (counted with multiplicities)

of the self-adjoint compact operator (T ∗T )
1
2 form an lp sequence. Thus L1 is

the ideal of trace-class operators discussed previously.) All the ideals Lp have
the same topological K-theory, but roughly speaking, the algebraic K-theory
of Lp becomes more and more “stable” (resembling the K-theory of K) as
p → ∞. This is reflected in:

Theorem 2.13 (Karoubi, [38, Propositions 3.5 and 3.9, Corollaire
4.2, and Théorème 4.13]). For all p ≥ 1, K−1(L

p) = 0 and c : K−2(L
p) →

Ktop
−2 (Lp) ∼= Z is surjective. However, for integers n ≥ 1, c : K2n(Lp) →

Ktop
2n (Lp) ∼= Z is the 0-map for p ≤ 2n − 1 and is surjective for n = 1, p > 1.

The result for K2 suggests that by using products one should obtain sur-
jectivity of c : K2n(Lp) → Ktop

2n (Lp) ∼= Z for p large enough compared with n,
but failure of excision gets in the way of proving this in an elementary fashion.
This issue is discussed in more detail in [68, §2], where additional results along
these lines are obtained.
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3 Recent Progress on Algebraic K-Theory of Operator

Algebras

3.1 Algebraic K-Theory Invariants for Operator Algebras

For some purposes, it is useful to study the homotopy fiber Krel(A) of the
comparison map c : K(A) → Ktop(A) of Theorem 2.1. We call this spectrum
(or the set of its homotopy groups) the relative K-theory ; it measures the
difference between the algebraic and topological theories. Obviously we get a
long exact sequence of K-groups

· · · → Ktop
j+1(A) → Krel

j (A) → Kj(A)
c
→ Ktop

j (A) → Krel
j−1(A) → · · · . (5)

Since (for any unital Banach algebra A) K1(A) surjects onto Ktop
1 (A) and

K0(A) → Ktop
0 (A) is an isomorphism, Krel

0 (A) = 0. We have Krel
j (C) = Z for

j = −3,−5, · · · and Krel
j (C) = 0 for other negative values of j. The Karoubi

Conjecture (Conjecture 2.12) amounts to the assertion that Krel(A) is trivial
for stable C∗-algebras.

A number of papers in the literature, such as [13], [14], [34], and [35], at-
tempt to detect classes in relative K-theory through secondary index invari-
ants or regulators. (“Primary” index invariants detect classes in topological
K-theory.) For example, suppose τ is a p-summable Fredholm module over A.
This consists of a representation of A on a Hilbert space H, together with an
operator F ∈ L(H) that satisfies F 2 = 1 and that commutes with A modulo
the Schatten class Lp(H). When p is even, one additionally requires that H
is Z/2-graded, that the action of A on H preserves the grading, and that T
is odd with respect to the grading. (The prototype for this situation is the
case where A = C∞(M), M a compact (p− 1)-dimensional smooth manifold,
and T is obtained by functional calculus from a first-order elliptic differential
operator, such as the Dirac operator or signature operator.) In [13] and [14],
Connes and Karoubi set up, for each (p + 1)-summable Fredholm module τ ,
a commutative diagram with exact rows, where the top row comes from (5):

Kp+2(A)
c // Ktop

p+2(A)

Indτ

��

// Krel
p+1(A)

Indsec
τ

��

// Kp+1(A)

Indsec
τ

��

c // Ktop
p+1(A)

0 // Z
2πi // C

exp
// C× // 0.

The downward arrow Indτ is the usual index and the downward arrows Indsec
τ

are the secondary index invariants. When A = C∞(S1) (this is only a Fréchet
algebra, but standard properties of topological K-theory for Banach algebras
apply to it as well) and τ corresponds to the smooth Toeplitz extension (4),
Indsec

τ recovers the determinant invariant discussed above in section 1.4. Other
papers such as [34] and [35] relate other secondary invariants defined analyti-
cally (for example, via the eta invariant) to the Connes-Karoubi construction.
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3.2 The Work of Suslin-Wodzicki on Excision

As we saw in section 2.4, the Karoubi Conjecture (Conjecture 2.12) and re-
lated conjectures about the K-theory of operator algebras are dependent on
understanding to what extent the K-theory of nonunital Banach algebras sat-
isfies excision. Work on this topic was begun by Wodzicki ([66], [67]) and
completed in collaboration with Suslin [55]. Wodzicki started by studying ex-
cision in cyclic homology, then moved on to the study of rational K-theory,
and finally Suslin and Wodzicki clarified the status of excision in integral al-
gebraic K-theory. As the papers [67] and [55] are massive and deep, there is
no room to discuss them here in detail, so we will be content with a short
synopsis. For simplicity we specialize the results to algebras over a field F of
characteristic 0, the only case of interest to us. Then (in [66]) Wodzicki calls
an F -algebra A homologically unital, or H-unital for short, if the standard

bar complex B•(A) is acyclic, i.e., if Tor
eA
• (F, F ) = 0, where Ã = A + F · 1 is

A with unit adjoined. In [66] and [67], Wodzicki shows that C∗-algebras, Ba-
nach algebras with bounded approximate unit [66, Proposition 5], and many
familiar Fréchet algebras such as S(Rn) [67, Corollary 6.3], are H-unital. Fur-
thermore, any tensor product (over F ) of an H-unital algebra with a unital
F -algebra is H-unital [67, Corollary 9.7]. The main result of [66] is that an
F -algebra satisfies excision in cyclic homology if and only if it is H-unital. It
is also pointed out, as a consequence of Goodwillie’s Theorem [26], that if an
F -algebra satisfies excision in rational algebraic K-theory, then it must satisfy
excision in cyclic homology and thus be H-unital.

In [55], Suslin and Wodzicki managed to prove the converse, that if A is an
H-unital F -algebra, then A satisfies excision in rational algebraic K-theory,
i.e., K•(B,A)⊗ZQ is independent of B, for B an F -algebra containing A as an
ideal. Since Weibel had already shown [65] that K-theory with Z/p-coefficients
satisfies excision for Q-algebras, this implies:

Theorem 3.1 (Suslin-Wodzicki [55]). Let A be an algebra over a field F
of characteristic 0. Then A satisfies excision for algebraic K-theory if and

only if A is H-unital. In particular, C∗-algebras satisfy excision for algebraic

K-theory.

The proof of the Suslin-Wodzicki Theorem is rather complicated, but ul-
timately, via the use of the Volodin approach to K-theory, it comes down to
showing that the inclusion

A ↪→ A1 =

(
A A
0 0

)

induces an isomorphism on Lie algebra homology HLie
• (gl(A)) ∼= HLie

• (gl(A1)).
This in turn follows from showing that HC•(A) ∼= HC•(A1), which can be
deduced from the H-unitality of A. (By the way, if one is only interested in C∗-
algebras A, then since they satisfy A2 = A, the proof in [55] can be shortened
somewhat, as explained on page 89.)
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3.3 Resolution of the Karoubi Conjecture

The Karoubi Conjecture is now known to be true, thanks to a combination of
the work of Higson [28] and the Suslin-Wodzicki Theorem discussed above in
Section 3.2. The method of Higson is somewhat indirect, and is based on the
following intermediate result of independent interest:

Theorem 3.2 ([28, Theorem 3.2.2]). Let k be a functor from the category

of C∗-algebras and ∗-homomorphisms (or a suitable full subcategory, such

as the category of separable C∗-algebras) to the category of abelian groups.

Assume that k is stable, i.e., that the morphism A → A ⊗ K (C∗-algebra

tensor product) given by a 7→ a ⊗ e, where e is a rank-one projection in K,

always induces an isomorphism k(A) → k(A ⊗ K). Also assume that k is

split exact, i.e., that it sends split short exact sequences of C∗-algebras to

split short exact sequences of abelian groups. Then k is homotopy-invariant.

A few ideas from the proof. The idea is to use the hypotheses to construct a
pairing of k with Fredholm modules. More precisely, suppose ϕ = (ϕ+, ϕ−) is
a Fredholm pair; i.e., ϕ+ and ϕ− are ∗-representations of a C∗-algebra B on
a Hilbert space H, such that ϕ+(a) − ϕ−(a) ∈ K(H) for all a ∈ B. From this
data, by a construction originally due to Cuntz, one gets a split short exact
sequence (for any C∗-algebra A)

0 // A ⊗K // A ⊗ Bϕ p
// A ⊗ B

1⊗ϕ
qq

// 0 ,

where Bϕ = {(b, x) ∈ B ⊕ L(H) | ϕ(b) − x ∈ K(H)}. (Note that this is
independent of whether one uses ϕ+ or ϕ−.) Since k was assumed stable and
split exact, we get a map

ϕ∗ : k(A ⊗ B) → ker(p∗)
∼=
−→ k(A ⊗K)

∼=
−→ k(A)

with certain good functorial properties. The next step (which is not so diffi-
cult) is to show that this pairing can be expressed a pairing with Fredholm
modules of the more conventional sort (where one has a ∗-representation ϕ
of B on a Hilbert space H and a unitary operator F that commutes with the
representation modulo compacts). One simply lets ϕ+ = ϕ, ϕ− = Ad(F ) ◦ ϕ.
Then one shows that this pairing is invariant under operatorial homotopy ,
i.e., norm-continuous deformation of the F , keeping ϕ fixed and with the
“commutation modulo compacts” condition satisfied at all times. The final,
and hardest, step is to construct an operatorial homotopy

(
ϕ, {Ft}t∈[0,1]

)
of

Fredholm modules over C([0, 1]), such that the pairing of k with (ϕ,F0),
k(A⊗C([0, 1])) → k(A), corresponds to evaluation of functions at 0, and the
pairing of k with (ϕ,F1) corresponds to evaluation of functions at 1. This
step of the proof is highly reminiscent of the proof [40, §6, Theorem 1] that
operatorial homotopy invariance of Kasparov’s KK-functor implies homotopy
invariance in the most general sense, and establishes the theorem. ut
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From this and the Suslin-Wodzicki Theorem we immediately deduce

Theorem 3.3. The Karoubi Conjecture is true. In other words, if A ∼= A ⊗
K is a stable C∗-algebra, then the comparison map c : K(A) → Ktop(A) of

Theorem 2.1 is an equivalence.

Proof. For each integer j, let kj(A) = Kj(A ⊗K). Then kj is a functor from
C∗-algebras to abelian groups — note that since A is H-unital, we do not need
to specify which unital algebra contains A ⊗ K as an ideal, by Theorem 3.1.
We claim this functor is split exact. Indeed, if

0 // A // B // C
vv

// 0

is split exact, then so is

0 // A ⊗K // B ⊗K // C ⊗K
rr

// 0

(because the C∗-algebra tensor product with K is an exact functor, since K is
nuclear), and we can apply the long exact sequence in K-theory. Furthermore,
kj is stable, since if e is a rank-one projection in K and ϕ : A → A⊗K is given
by a 7→ a⊗ e, then kj(ϕ) : Kj(A⊗K) → Kj(A⊗K⊗K) is the morphism on

K-theory induced by a⊗e 7→ a⊗e⊗e, and there is an isomorphism K⊗K
∼=
→ K

sending e ⊗ e 7→ e. Hence by Theorem 3.2, kj is homotopy-invariant.
Now we concude the proof by showing by induction that c∗ : kj(A) →

Ktop
j (A) is an isomorphism for all C∗-algebras A and all j. Clearly this is

true for j = 0. Next, we prove it for j positive. Assume by induction that
c∗ : kj(A) → Ktop

j (A) is an isomorphism for all C∗-algebras A. We have a
short exact sequence of C∗-algebras:

0 → C0((0, 1)) ⊗ A → C0([0, 1)) ⊗ A → A → 0.

The middle algebra is contractible, so by the homotopy invariance result just
proved, kj+1(C0([0, 1)) ⊗ A) = 0 and kj(C0([0, 1)) ⊗ A) = 0. A similar result
holds for topological K-theory. Thus the long exact sequences in K-theory
give a commuting diagram

kj+1(A)
∂

∼=
//

c∗

��

Kj(C0((0, 1)) ⊗ A)

c∗ ∼=

��

Ktop
j+1(A)

∂

∼=
// Ktop

j (C0((0, 1)) ⊗ A).

and thus c∗ : kj+1(A) → Ktop
j+1(A) is an isomorphism. This completes the

inductive step.
The result for j ≤ 0 is already contained in [37, Théorème 5.18] and is

essentially identical to the proof of Theorem 2.11, using the product structure
on K∗(K). ut
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Unfortunately this proof does not necessarily explain “why” the Karoubi
Conjecture is true, since, unlike the proof of the Brown-Schochet Theorem
(Theorem 1.3), it is not constructive.

A number of modifications or variants on Theorem 3.3 are now known.
For example, one has the “unstable Karoubi Conjecture” in [53]: if A is a
stable C∗-algebra, then the natural map B

(
GLn(A)δ

)
→ BGLn(A) is an

isomorphism on integral homology for all n. Here GLn(A) is to be interpreted

as GLn(Ã, A), i.e., the group of matrices in GLn(Ã) which are congruent to
1 modulo A. There is a Fréchet analogue of the Karoubi Conjecture in [57],
with K replaced by the algebra of smoothing operators, or in other words by
infinite matrices with rapidly decreasing entries, a version of the theorem for
certain generalized stable algebras in [30], and a pro-C∗-algebra analogue in
[31].

3.4 Other Miscellaneous Results

In this final section, we mention a number of other results and open problems
related to algebraic K-theory of operator algebras. These involve K-regularity,
negative K-theory, and K-theory with finite coefficients.

K-Regularity

We begin with a few results about K-regularity, or in other words, results
that say that C∗-algebras behave somewhat like regular rings with respect to
algebraic K-theory. As motivation for this subject, note that in [56], Swan
defined a commutative ring R with unit, and with no nilpotent elements, to
be seminormal if for any b, c ∈ R with b3 = c2, there is an element a ∈ R with
a2 = b and a3 = c. This condition guarantees that Pic R[X1, · · · , Xn] ∼= Pic R
for all n, which we can call Pic-regularity. Swan’s condition is clearly satisfied
for commutative C∗-algebras, since if R = C(X) for some compact Hausdorff
space X, and if b and c are as indicated, one can take

a(x) =

{
c(x)/b(x), b(x) 6= 0,

0, b(x) = c(x) = 0,

and check that a is continuous and thus lies in R. Hence commutative C∗-
algebras are Pic-regular. This suggests that they might be K-regular as well,
since Pic and K0 are closely related.

In [28, §6], Higson proved the K-regularity of stable C∗-algebras as part
of his work on the Karoubi Conjecture. In other words, we have

Theorem 3.4 (Higson; see also [30, Theorem 18]). If A is a stable C∗-

algebra, then for any n, the natural map K(A) → K(A[t1, · · · , tn]) (which is

obviously split by the map induced by sending tj 7→ 0) is an equivalence. In

other words, stable C∗-algebras are K-regular.
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Proof. For any j, the functor kn
j = A 7→ Kj(A[t1, · · · , tn]) satisfies the con-

ditions of Theorem 3.2. (Here we are using the fact that H-unitality of A
implies H-unitality of the polynomial ring A[t1, · · · , tn].) Hence kn

j is a homo-
topy functor. So we have an isomorphism kn

j (A ⊗ C([0, 1])) ∼= kn
j (A) induced

in one direction by the inclusion of A in A⊗C([0, 1]) ∼= C([0, 1], A) and in the
other direction by evaluation at either 0 or 1. Now consider the homomorphism
ϕ from C([0, 1], A)[t1, · · · , tn] to itself defined by

ϕ(f)(s, t1, · · · , tn) = f(s, st1, · · · , stn), s the coordinate on [0, 1].

Then ϕ followed by evaluation at s = 1 is the identity on A[t1, · · · , tn], so it
induces the identity on Kj(A[t1, · · · , tn]), but on the other hand, ϕ followed by
evaluation at s = 0 sends A[t1, · · · , tn] to A. Hence Kj(A[t1, · · · , tn]) factors
through Kj(A). ut

Other results on K-regularity of C∗-algebras may be found in [49]. For
example, there is some evidence there that all C∗-algebras should be K0-
regular (i.e., that one should have isomorphisms K0(A[t1, · · · , tn]) ∼= K0(A)
for all n, when A is a C∗-algebra). There are simple counterexamples there to
show this cannot be true for Banach algebras. Commutative C∗-algebras are
in some sense at the opposite extreme from stable C∗-algebras, and for these
one has basically the same K-regularity result, though the method of proof is
totally different.

Theorem 3.5 (Rosenberg [49, Theorem 3.1]). If A is a commutative

C∗-algebra, then for any n, the natural map K(A) → K(A[t1, · · · , tn]) (which

is obviously split by the map induced by sending tj 7→ 0) is an equivalence. In

other words, commutative C∗-algebras are K-regular.

As observed in [49], to prove the general case, one may by excision (section
3.2) reduce to the case where A is unital, and one may by a transfer argument
reduce to the case F = C. So we may take A = C(Y ). It was also observed
in [49] that any finitely generated subalgebra C[f1, . . . , fn] of A is reduced
(contains no nilpotent elements), hence by the Nullstellensatz is isomorphic
to the algebra C[X] of regular functions on some affine algebraic set X ⊆ CN ,
N ≤ n, not necessarily irreducible. Then the inclusion C[f1, . . . , fn] ↪→ A is
dual to a continuous map Y → X. Thus it suffices to show:

Theorem 3.6. Let A = C(Y ), where Y is a compact Hausdorff space, be a

(complex ) commutative C∗-algebra, and let X ⊆ CN be an affine algebraic set.

Suppose one is given a continuous map ϕ : Y → X, and let ϕ∗ : C[X] → C(Y )
be the dual map on functions. Then (ϕ∗)∗ vanishes identically on N jKm(A)
for any j ≥ 0 and m ≥ 0.

Proof. The proof of this given in [49] was based on the (basically correct) idea
of chopping up Y and factoring ϕ through smooth varieties, but the technical
details were incorrect.5 Indeed, as pointed out to me by Mark Walker, it was

5 I thank Mark Walker for pointing this out to me.
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claimed in [49] that one can find a closed covering of X such that a resolution

of singularities p : X̂ → X of X (in the sense of [29]) splits topologically over
each member of the closed cover, and this simply isn’t true. (It would be OK
with a locally closed cover, however.) Walker [personal communication] has
found another proof of Theorem 3.4; see also [22, Theorem 5.3]; to set the
record straight, we give still another proof here.

Let p : X̂ → X be a resolution of singularities of X (in the sense of [29]).6

This has the following properties of interest to us:

1. X̂ is a smooth quasiprojective variety (not necessarily irreducible, since
we aren’t assuming this of X), and p is a proper surjective algebraic
morphism.

2. There is a Zariski-closed subset X1 of X, such that X \ X1 is a smooth

quasiprojective variety Zariski-dense in X, and such that if X̂1 = p−1(X1),

then p gives an isomorphism from X̂\X̂1 to X\X1, and a proper surjective

morphism from X̂1 to X1.

We now prove the theorem by induction on the dimension of X. To start
the induction, if dim X = 0, then X is necessarily smooth and the theorem
is trivial. So assume we know the result when X has smaller dimension, and
observe that the inductive hypothesis applies to the singular set X1. Also note,
as observed in [49], that there is no loss of generality in assuming Y ⊆ X. Let
Y1 = Y ∩ X1. From the diagram

Y1
� � //

ϕ

��

Y //

ϕ

��

(Y, Y1)

ϕ

��

X1
� � // X // (X, X1),

we get a commuting diagram of exact sequences of K-groups

N jKm+1(X1)
∂ //

(ϕ∗)∗

��

N jKm(X, X1) //

(ϕ∗)∗

��

N jKm(X) //

(ϕ∗)∗

��

· · ·

N jKm+1(C(Y1))
∂ // N jKm(C0(Y \ Y1)) // N jKm(C(Y )) // · · ·

· · · // N jKm(X) //

(ϕ∗)∗

��

N jKm(X1)
∂ //

(ϕ∗)∗

��

N jKm−1(X, X1)

(ϕ∗)∗

��

· · · // N jKm(C(Y )) // N jKm(C(Y1))
∂ // N jKm−1(C0(Y \ Y1)).

6 We don’t need the full force of the existence of a such a resolution, but it makes
the argument a little easier. The interested reader can think of how to formulate
everything without using bX.
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Here we have used excision (section 3.2) on the bottom rows and have iden-
tified K-theory of the coordinate ring of an affine variety with the K-theory
of its category of vector bundles. The K-groups of (X, X1) denote relative

K-theory of vector bundles in the sense of [15], and NK-theory for varieties
is defined by setting NKm(X) = ker(Km(X × A1) → Km(X)), etc. By in-

ductive hypothesis, the maps N jKm(X1)
(ϕ∗)∗
−−−→ N jKm+1(C(Y1)) vanish, so

by diagram chasing, it’s enough to show that the maps N jKm(X, X1) →
N jKm(C0(Y \ Y1)) vanish.

Since X \ X1 is smooth, one might think this should be automatic, but
that’s not the case since algebraic K-theory doesn’t satisfy excision. However,
we are saved by the fact that we have excision in the target algebra. The
map p : X̂ → X is an isomorphism from X̂ \ X̂1 to X \ X1, and induces

maps p∗ : N jKm(X, X1) → N jKm(X̂, X̂1). Since ϕ lifts over Y \ Y1, the

map N jKm(X, X1) → N jKm(C0(Y \ Y1)) factors through N jKm(X̂, X̂1).

(Here the approach of [15] is essential since X̂ may not be affine, and so we

can’t work just with K-theory of rings.) But N jKm(X̂, X̂1) vanishes since X̂

and X̂1 are smooth. ut

Negative K-Theory

In [47] and [49], the author began a study of the negative algebraic K-theory
of C∗-algebras. The most manageable case to study should be commutative
C∗-algebras. By Theorem 3.5, such algebras are K-regular, so they satisfy the
Fundamental Theorem in the simple form Kj(A[t, t−1]) ∼= Kj(A)⊕Kj−1(A).
A conjecture from [47] and [49], complementary to the results of Higson in
[28], is:

Conjecture 3.7 (Rosenberg). Negative K-theory is a homotopy functor on

the category of commutative C∗-algebras. Thus X 7→ Kj(C0(X)) is a homo-

topy functor on the category of locally compact Hausdorff spaces and proper

maps when j ≤ 0.

Corollary 3.8. On the category of (second countable) locally compact Haus-

dorff spaces, X 7→ Kj(C0(X)) coincides with connective K-theory bu−j(X),
for j ≤ 0.

Proof (from [49]) that the Corollary follows from the Conjecture. Let

k−j(X) =

{
Ktop

j (C0(X)), j > 0

Kj(C0(X)), j ≤ 0.

Then Conjecture 3.8 implies that k∗ is a homotopy functor, and it satisfies the
excision and long exact sequence axioms, by Theorem 3.1 and the long exact
sequences in algebraic and topological K-theory, pasted together at j = 0,
where they coincide. It is also clear that k∗ is additive on infinite disjoint
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unions, i.e., that k∗(
∐

i Xi) =
⊕

i k∗(Xi). Thus it is an additive cohomology
theory (with compact supports). There is an obvious natural transformation of
cohomology theories k∗ → K∗ (ordinary topological K-theory with compact
supports), induced by c∗ : Kj(C0(X)) → Ktop

j (C0(X)), which is an isomor-

phism on k−j , j ≤ 0. And k∗ is a connective theory, since C is a regular ring
and thus k−j(pt) = Kj(C) = 0 for j < 0. Thus by the universal property of
the connective cover of a spectrum [1, p. 145], k∗ → K∗ factors through bu∗.
Since k∗(X) → K∗(X) is an isomorphism for X a point, it is an isomorphism
for any X with X+ a finite CW-complex, and then by additivity, for X+ any
compact metric space (since any compact metric space is a countable inverse
limit of finite complexes). ut

While a proof of Conjecture 3.8 is outlined in [47], Mark Walker has kindly
pointed out that the proof is faulty. The author still believes that the same
method should work, and indeed it does in certain special cases, but it seems
to be hard to get the technical details to work. In fact, it is even conceivable
that negative K-theory is a homotopy functor for arbitrary C∗-algebras, but
a proof of this would require a totally new technique.

K-Theory with Finite Coefficients

In this last section, we discuss results on K-theory with finite coefficients that
generalize Theorem 2.7. These results can be viewed as analytic counterparts
to the work of Friedlander-Mislin and Milnor discussed above in Section 2,
and to the results of Thomason ([60], [61], [62], [63]) for algebraic varieties.

Theorem 3.9 (Fischer [20], Prasolov ([45], [41])). Let A be a commu-

tative C∗-algebra. Then the comparison map for A with finite coefficients,

c : Ki(A; Z/n) → Ktop
i (A; Z/n)

is an isomorphism for i ≥ 0.

The method of proof of this theorem is copied closely from the proof of
Suslin’s theorem, Theorem 2.7. Thus it relies on Theorem 2.8 on Henselian
rings, and is quite special to the commutative case. However, it is conceivable
that one has:

Conjecture 3.10 (Rosenberg [47, Conjecture 4.1]). Let A be a C∗-

algebra. Then the comparison map for A with finite coefficients,

c : Ki(A; Z/n) → Ktop
i (A; Z/n)

is an isomorphism for i ≥ 0.

In support of this, we have:
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Theorem 3.11 (Rosenberg [47, Theorem 4.2]). Let A be a type I C∗-

algebra which has a finite composition series, each of whose composition fac-

tors has the form A ⊗ Mn(F) (n ≥ 0) or A ⊗ K, where A is commutative.

Then the comparison map for A with finite coefficients,

c : Ki(A; Z/n) → Ktop
i (A; Z/n)

is an isomorphism for i ≥ 0.

This is proved by piecing together Theorems 3.9 and 3.3, using excision
(Theorem 3.1). The main obstruction to extending the proof to more general
classes of C∗-algebras is the lack of a good result on (topological) inductive
limits of C∗-algebras. Such a result would necessarily be delicate, because we
know that algebraic K-theory behaves differently under algebraic inductive
limits and topological inductive limits. For example, the algebraic inductive
limit lim

−→
Mn(C) has the same K-theory as C, and thus its negative K-theory

vanishes, whereas the C∗-algebra inductive limit lim
−→

Mn(C) is K, which has
infinitely many non-zero negative K-groups.
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(4), 30(2):241–277, 1997.

58. J. L. Taylor. Banach algebras and topology. In Algebras in analysis (Proc.
Instructional Conf. and NATO Advanced Study Inst., Birmingham, 1973 ), pages
118–186. Academic Press, London, 1975.

59. Joseph L. Taylor. Topological invariants of the maximal ideal space of a Banach
algebra. Advances in Math., 19(2):149–206, 1976.

60. R. W. Thomason. Riemann-Roch for algebraic versus topological K-theory. J.
Pure Appl. Algebra, 27(1):87–109, 1983.

61. R. W. Thomason. Algebraic K-theory and étale cohomology. Ann. Sci. École
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