Remark: We are working in the context of Riemann Integrals.

Problem 1
2.1.1 Solve $u_{tt} = c^2 u_{xx}, u(x, t) = e^x, u_t(x, 0) = \sin x$.

Solution: By d’Alembert’s formula, we have that

$$u(x, t) = \frac{1}{2} [e^{x+ct} + e^{x-ct}] + \frac{1}{2c} \int_{x-ct}^{x+ct} \sin s \, ds$$

$$= e^x \left(\frac{e^{ct} + e^{-ct}}{2} \right) + \frac{1}{2c} \left[\cos(x - ct) - \cos(x + ct) \right]$$

$$= e^x \cosh ct + \frac{1}{2c} \left[\cos x \cos ct + \sin x \sin ct - \cos x \cos ct + \sin x \sin ct \right]$$

$$= e^x \cosh ct + \frac{1}{c} \sin x \sin ct.$$

Problem 2
2.1.5 *(The hammer blow)* Let $\phi(x) \equiv 0$ and $\psi(x) = 1$ for $|x| < a$ and $\psi(x) = 0$ for $|x| \geq a$. Sketch the string profile (u versus x) at each of the successive instants $t = a/2c, a/c, 3a/2c, 2a/c, \text{and } 5a/c$.

Solution: At $t = a/2c$, we have that

$$u(x, a/2c) = \frac{1}{2c} \int_{x-a/2}^{x+a/2} \psi(s) \, ds$$

$$= \begin{cases}
0 & \text{for } x \leq -\frac{3}{2}a, \\
\frac{1}{2c} (\frac{3}{2}a + x) & \text{for } -\frac{3}{2}a < x < -\frac{1}{2}a, \\
\frac{a}{2c} & \text{for } -\frac{1}{2}a < x < \frac{1}{2}a, \\
\frac{1}{2c} (\frac{3}{2}a - x) & \text{for } \frac{1}{2}a \leq x < \frac{3}{2}a, \\
0 & \text{for } x \geq \frac{3}{2}a.
\end{cases}$$

At $t = a/c$, we have that

$$u(x, a/c) = \frac{1}{2c} \int_{x-a}^{x+a} \psi(s) \, ds$$

$$= \begin{cases}
0 & \text{for } x \leq -2a, \\
\frac{1}{2c} (2a + x) & \text{for } -2a < x < 0, \\
\frac{1}{2c} (2a - x) & \text{for } 0 \leq x < 2a, \\
0 & \text{for } x \geq 2a.
\end{cases}$$
At $t = 3a/2c$, we have that
\[
\begin{align*}
\frac{1}{2c} \int_{x-3a/2}^{x+3a/2} \psi(s) \, ds & = \begin{cases}
0 & \text{for } x \leq -\frac{5}{2}a, \\
\frac{a}{c} \left(\frac{5}{2}a + x \right) & \text{for } -\frac{5}{2}a < x < -\frac{1}{2}a, \\
\frac{1}{2c} (\frac{5}{2}a - x) & \text{for } -\frac{1}{2}a \leq x \leq \frac{1}{2}a, \\
0 & \text{for } x \geq \frac{5}{2}a.
\end{cases}
\end{align*}
\]

At $t = 2a/c$, we have that
\[
\begin{align*}
\frac{1}{2c} \int_{x-2a}^{x+2a} \psi(s) \, ds & = \begin{cases}
0 & \text{for } x \leq -3a, \\
\frac{a}{c} (3a + x) & \text{for } -3a < x < -a, \\
\frac{1}{2c} (3a - x) & \text{for } -a \leq x \leq a, \\
0 & \text{for } x \geq 3a.
\end{cases}
\end{align*}
\]

And finally, at $t = 5a/c$, we have that
\[
\begin{align*}
\frac{1}{2c} \int_{x-5a}^{x+5a} \psi(s) \, ds & = \begin{cases}
0 & \text{for } x \leq -6a, \\
\frac{a}{c} (6a + x) & \text{for } -6a < x < -4a, \\
\frac{1}{2c} (6a - x) & \text{for } -4a \leq x \leq 4a, \\
0 & \text{for } x \geq 6a.
\end{cases}
\end{align*}
\]

Problem 3

2.1.8 A spherical wave is a solution of the three-dimensional wave equation of the form $u(r,t)$, where r is the distance to the origin (the spherical coordinate). The wave equation takes the form
\[
u_{tt} = c^2 \left(u_{rr} + \frac{2}{r} u_r \right) \quad \text{ (“spherical wave equation”).}
\]

(a) Change variables $v = ru$ to get the equation for $v : v_{tt} = c^2 u_{rr}$.

(b) Solve for v using (3) and thereby solve the spherical wave equation.

(c) Use (8) to solve it with initial conditions $u(r,0) = \phi(r), u_t(r,0) = \psi(r)$, taking both $\phi(r)$ and $\psi(r)$ to be even functions of r.

Solution:
(a) Define \(v(r,t) := ru(r,t) \), then we see that \(v_t = ru_t, v_{tt} = ru_{tt}, v_r = u + ru_r, \) and \(v_{rr} = 2u_r + ru_{rr} \). Hence it follows
\[
v_{tt} - c^2 v_{rr} = ru_{tt} - c^2(2u_r + ru_{rr})
\]
\[
= r \left(u_{tt} - c^2 \frac{2}{r} u_r - c^2 u_{rr} \right) = 0.
\]

(b) By equation (3), we get that
\[
v(r,t) = f(r + ct) + g(r - ct)
\]
which means
\[
u(r,t) = \frac{f(r + ct) + g(r - ct)}{r}.
\]

(c) Observe
\[
\begin{cases}
 u_{tt} = c^2 (u_{rr} + \frac{2}{r} u_r) & 0 < r < \infty \text{ and } -\infty < t < \infty \\
u(r,0) = \phi(r), u_t(r,0) = \psi(r)
\end{cases}
\]
gives rise to the problem
\[
\begin{cases}
v_{tt} = c^2 v_{rr} & -\infty < r < \infty \text{ and } -\infty < t < \infty \\
v(r,0) = \tilde{\phi}(r) := r\phi(r), v_t(r,0) = \tilde{\psi}(r) := r\psi(r)
\end{cases}
\]
since \(\tilde{\phi}(r) \) and \(\tilde{\psi}(r) \) are both odd functions. Using d’Alembert’s formula, we get that
\[
v(r,t) = \frac{1}{2} [\tilde{\phi}(r+ct) + \tilde{\phi}(r-ct)] + \frac{1}{2c} \int_{r-ct}^{r+ct} \tilde{\psi}(s) \, ds
\]
\[
= \frac{1}{2} [(r+ct)\phi(r+ct) + (r-ct)\phi(r-ct)] + \frac{1}{2c} \int_{r-ct}^{r+ct} \psi(s) \, ds
\]
then it follows
\[
u(r,t) = \frac{1}{2r} [(r+ct)\phi(r+ct) + (r-ct)\phi(r-ct)] + \frac{1}{2cr} \int_{r-ct}^{r+ct} \psi(s) \, ds
\]
for \(r > 0 \) and \(-\infty < t < \infty \).

Problem 4

2.2.6 Prove that, among all possible dimensions, only in three dimensions can one have distortionless spherical wave propagation with attenuation. This means the following. A spherical wave in \(n \)-dimensional space satisfies the PDE
\[
u_{tt} = c^2 \left(u_{rr} + \frac{n-1}{r} u_r \right),
\]
where \(r \) is the spherical coordinate. Consider such a wave that has the special form \(u(r,t) = \alpha(r)f(t - \beta(r)) \), where \(\alpha(r) \) is called the attenuation and \(\beta(r) \) the delay. The question is whether such solutions exist for "arbitrary" functions \(f \).

(a) Plug the special form into the PDE to get an ODE for \(f \).

(b) Set the coefficients of \(f'' \), \(f' \), and \(f \) equal to zero.

(c) Solve the ODEs to see that \(n = 1 \) or \(n = 3 \) (unless \(u \equiv 0 \)).
(d) If \(n = 1 \), show that \(\alpha(r) \) is a constant (so that "there is no attenuation").

Solution:

(a) If \(u(r, t) = \alpha(r)f(t - \beta(r)) \), then we see that

\[
\begin{align*}
 u_r(r, t) &= \alpha'(r)f(t - \beta(r)) - \alpha(r)\beta'(r)f'(t - \beta(r)) \\
 u_{rr}(r, t) &= \alpha''(r)f(t - \beta(r)) - 2\alpha'(r)\beta'(r)f'(t - \beta(r)) \\
&- \alpha(r)\beta''(r)f'(t - \beta(r)) + \alpha(r)[\beta'(r)]^2 f''(t - \beta(r)).
\end{align*}
\]

Then it follows

\[
\begin{align*}
 u_{tt} - c^2 (u_{rr} + \frac{n-1}{r} u_r) &= \alpha f'' - c^2 \left(\alpha'' f - 2\alpha' \beta' f' - \alpha\beta'' f' + \alpha[\beta']^2 f'' + \frac{n-1}{r} [\alpha' f - \alpha\beta' f] \right) \\
&= \alpha \left(1 - c^2 [\beta']^2 \right) f'' + c^2 \left(2\alpha' \beta' + \alpha\beta'' + \frac{n-1}{r} \alpha\beta' \right) f' \\
&- c^2 \left(\frac{n-1}{r} \alpha' + \alpha'' \right) f = 0.
\end{align*}
\]

(b) Assume \(\alpha(r) \neq 0 \). Setting the coefficients of \(f'' \), \(f' \), and \(f \) equal to zero, we get the following system of differential equations

\[
\begin{align*}
 1 - c^2 [\beta']^2 &= 0 \\
 2\alpha' \beta' + \alpha\beta'' + \frac{n-1}{r} \alpha\beta' &= 0 \\
 \frac{n-1}{r} \alpha' + \alpha'' &= 0.
\end{align*}
\]

(c) By the first equation, we see that

\[
\beta'(r) = \pm \frac{1}{c}
\]

which means either

\[
\beta(r) = \frac{r}{c} + \beta_0 \quad \text{or} \quad \beta(r) = -\frac{r}{c} + \beta_0.
\]

By the first ode, we see that the second ode reduces to

\[
\alpha' + \frac{n-1}{2r} \alpha = 0
\]

which means

\[
\alpha(r) = \begin{cases}
 C & \text{if } n = 1 \\
 C r^{-(n-1)/2} & \text{if } n > 1
\end{cases}
\]

Next, let us solve the third ode. It’s clear that when \(n = 1 \), then \(C \) is also a solution to the third ode. If \(n > 1 \), then we see that

\[
\frac{n-1}{r} \alpha' + \alpha'' = C \left(-\frac{(n-1)^2}{2} + \frac{(n-1)(n+1)}{4} \right) r^{-(n+3)/2}
\]

\[
= - C \frac{(n-1)(n-3)}{4} r^{-(n+3)/2} = 0
\]

which means \(n = 3 \). Thus, the system has a solution provided \(n = 1 \) or \(n = 3 \).

(d) It’s clear from (c) that when \(n = 1 \), we have that \(\alpha(r) = \text{const.} \)
Problem 5

2.3.3 Consider the diffusion equation \(u_t = u_{xx} \) in the interval \((0, 1)\) with \(u(0, t) = u(1, t) = 0 \) and \(u(x, 0) = 1 - x^2 \). Note that this initial function does not satisfy the boundary condition at the left end, but that the solution will satisfy it for all \(t > 0 \).

(a) Show that \(u(x, t) > 0 \) at all interior points \(0 < x < 1, 0 < t < \infty \).

(b) For each \(t > 0 \), let \(\mu(t) = \max u(x, t) \) over \(0 \leq x \leq 1 \). Show that \(\mu(t) \) is a decreasing (i.e., non increasing) function of \(t \).

(c) Draw a rough sketch of what you think the solution looks like (\(u \) versus \(x \)) at a few times.

Solution:

(a) If \(u(x, t) \) solves the above diffusion equation, then \(v(x, t) := -u(x, t) \) also solves the following Cauchy problem

\[
\begin{align*}
v_t - v_{xx} &= 0 \quad \text{on } 0 < x < 1, 0 < t < \infty \\
v(0, t) &= v(1, t) = 0, v(x, 0) = x^2 - 1
\end{align*}
\]

since

\[
v_t - v_{xx} = -(u_t - u_{xx}) = 0.
\]

Fix \(T > 0 \). Consider the rectangle \(R_T = \{(x, t) \mid 0 \leq x \leq 1 \text{ and } 0 \leq t \leq T\} \) and the parabolic boundary,

\[
\Gamma_T = \{(x, t) \mid x = 0 \text{ or } x = 1 \text{ for } 0 \leq t \leq T\} \cup \{(x, t) \mid 0 \leq x \leq 1 \text{ and } t = 0\}.
\]

By the strong maximum principle, we know that the maximum of \(v(x, t) \) in \(R_T \) is only attained on \(\Gamma_T \), i.e. \(v(x, t) < 0 \) for all \((x, t) \in R_T - \Gamma_T \) since the maximum value of \(v \) on \(\Gamma_T \) is zero. Hence it follows \(u(x, t) > 0 \) for all \((x, t) \in R_T - \Gamma_T \). Moreover, since this holds for all fixed \(T \), then we see that \(u(x, t) > 0 \) for all \((x, t) \in \{(x, t) \mid 0 \leq x \leq 1 \text{ and } t = 0\} \).

(b) Assume the maximum of \(u(x, t) \) at time \(t \) occurs at \(X(t) \). By part (a), we know that \(X(t) \in (0, 1) \) since \(u(x, t) > 0 \) for \((x, t) \in R_T - \Gamma_T \). Fix \(T > 0 \) and define \(\nu(x) = u(x, T) \), then it follows

\[
\frac{\partial}{\partial x} u(x, t) \bigg|_{(x, t) = (X(T), T)} = \frac{d}{dx} \nu(x) \bigg|_{x = X(T)} = 0
\]

and

\[
\frac{\partial^2}{\partial x^2} u(x, t) \bigg|_{(x, t) = (X(T), T)} = \frac{d^2}{dx^2} \nu(x) \bigg|_{x = X(T)} \leq 0
\]

since \(X(T) \) is a maximum on \(\{(x, T) \mid 0 \leq x \leq 1\} \). Now, define \(\mu(t) = u(X(t), t) \) and assuming \(X(t) \) is differentiable, we get that

\[
\frac{d}{dt} u(t) = u_t(X(t), t) + u_x(X(t), t)X'(t)
= u_{xx}(X(t), t) + u_x(X(t), t)X'(t)
= u_{xx}(X(t), t) \leq 0.
\]

Thus, we see that \(\mu(t) \) must be a decreasing function.

(c) Left to the reader.
Problem 6

2.3.4 Consider the diffusion equation $u_t = u_{xx}$ in $\{0 < x < 1, 0 < t < \infty\}$ with $u(0, t) = u(1, t) = 0$ and $u(x, 0) = 4x(1 - x)$.

(a) Show that $0 < u(x, t) < 1$ for all $t > 0$ and $0 < x < 1$.

(b) Show that $u(x, t) = u(1 - x, t)$ for all $t \geq 0$ and $0 \leq x \leq 1$.

(c) Use the energy method to show that $\int_0^1 u^2 \, dx$ is strictly decreasing function of t.

Solution:

(a) Fix $T > 0$. By the strong maximum principle, we know that the maximum of $u(x, t)$ in R_T is only attained on Γ_T, i.e. $u(x, t) < 1$ for all $(x, t) \in R_T - \Gamma_T$ since the maximum value of u on Γ_T is 1 which occurs at the point $(1/2, 0)$.

Likewise, applying the strong maximum principle to $v(x, t) := -u(x, t)$, we see that $v(x, t) > 0$ on $R_T - \Gamma_T$, i.e. $u(x, t) > 0$ on $R_T - \Gamma_T$. Thus, we have that $0 < u(x, t) < 1$ on $R_T - \Gamma_T$. Since this holds for all T, then we see that $0 < u(x, t) < 1$ for all $(x, t) \in \{(x, t) \mid 0 \leq x \leq 1$ and $0 \leq t < \infty\}$.

(b) Define $v(x, t) = u(1 - x, t)$. Observe $v_t(x, t) = u_t(1 - x, t), v_x(x, t) = -u_x(1 - x, t)$, and $u_{xx}(1 - x, t)$ which means

$$v_t - v_{xx} = u_t(1 - x, t) - u_{xx}(1 - x, t) = 0$$

since $0 < 1 - x < 1$. Now, it’s clear that $v(x, t)$ solves the same Dirichlet problem as $u(x, t)$

$$\begin{cases} v_t - v_{xx} = 0 & \text{on } 0 < x < 1, 0 < t < \infty \\ v(0, t) = v(1, t) = 0, & v(x, 0) = 4x(1 - x). \end{cases}$$

By the uniqueness theorem, we have that $u(x, t) = v(x, t) = u(1 - x, t)$ for $t \geq 0$ and $0 \leq x \leq 1$.

(c) Observe

$$\frac{d}{dt} \int_0^1 u(x, t)^2 \, dx = -2 \int_0^1 u_x(x, t)^2 \, dx.$$

If $u_x(x, t) \equiv 0$, then we see that $u_{xx} \equiv 0$ which means $u_t \equiv 0$. Thus, it follows $u(x, t) = \text{const}$, which clearly does not satisfy the initial condition. Hence $u_x(x, t) \neq 0$ which means

$$\int_0^1 u_x(x, t)^2 \, dx > 0$$

i.e., we have that

$$\frac{d}{dt} \int_0^1 u(x, t)^2 \, dx = -2 \int_0^1 u_x(x, t)^2 \, dx < 0.$$