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orthogonality. We define the notion of P-NDOP, which is a weaken-
ing of NDOP. For superstable theories with P-NDOP, we prove the
existence of P-decompositions and derive an analog of [Sh401]. In
this context, we also find a sufficient condition on P-decompositions
that imply non-isomorphic models. For this, we investigate natural
structures on the types in P ∩ S(M) modulo non-orthogonality.

1 Introduction

Results by the first author, most notably Chapter X of [4] and the first half of
[Sh401] demonstrate that ℵǫ-saturated models of superstable theories with
NDOP admit very desirable decompositions. In this paper, we generalize
these results in three ways. First, we always assume that the theory T is su-
perstable, but we only have NDOP for a class P of regular types. Second, we
show that the tree structure of a decomposition of an ℵǫ-saturated model M
can be read off from the non-orthogonality classes of regular types in S(M).
Third, we show that these results for ℵǫ-saturated models give information
about weak decompositions of arbitrary models of such theories.

In more detail, throughout the paper we assume we have a fixed, complete,
superstable theory and we work within a monster model C. We fix a set
P of stationary, regular types over small subsets of C that is closed under
automorphisms of C and the equivalence relation of nonorthogonality, and
additionally assume that our theory satisfies P-NDOP. Typically, we fix a
model M that is at least ℵǫ-saturated (i.e., M contains a realization of every
strong type over every finite subset of M) and study P-decompositions inside
M of many varieties. Of primary interest are prime, (ℵǫ,P)-decompositions
d of M over

(

B

A

)

(see Definition 4.16) where A ⊆ B are ǫ-finite and every
regular type p non-orthogonal to stp(B/A) is in P. We associate a subset
PP(d,M) of S(M)∩P (see Definition 5.1) to such a pair. The main theorem
of the paper, Theorem 5.12, asserts that this set of regular types depends
only on

(

B

A

)

. In particular, it is independent of the decomposition d, and
successive results show that these sets have a tree structure under inclusion.

In the final section of the paper, we show how this result, which holds
only for ℵǫ-saturated models, gives positive information for much weaker
decompositions of models M0 without any saturation assumption.
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2 Preliminaries

As mentioned above, we always work in a class of models of a complete,
superstable, first-order theory T . We fix a monster model C, and all models
and sets we discuss will be small subsets of C. We assume that T eliminates
quantifiers, so any model M will be an elementary submodel of C, and we
additionally assume that ‘T = T eq’, so that every type over an algebraically
closed set is stationary.

Definition 2.1 A set A is ǫ-finite if acl(A) = acl(a) for some a ∈ C
eq.

Recall that as we are working in C
eq, it would be equivalent to say that

acl(A) = acl(ā) for some finite tuple. It is easily seen that the union of two
ǫ-finite sets is ǫ-finite. Furthermore, since T is superstable, any subset B ⊆ A
of an ǫ-finite set is ǫ-finite. [Why? If B ⊆ A with acl(A) = acl(a), choose
a finite b̄ from B such that B ⌣̄

b
a. Then acl(B) = acl(b̄).] Thus, the set of

ǫ-finite subsets of C form an ideal.

Convention 2.2 ℵǫ is a cardinal strictly between ℵ0 and ℵ1.

Thus, if we write ‘M is λ-saturated for some λ ≥ ℵǫ’ we mean that either
M is ℵǫ-saturated (i.e., realizes all types over ǫ-finite subsets) or M is λ-
saturated for some λ ≥ ℵ1. Recall that by e.g., IV 2.2(7) of [4], that for
λ ≥ ℵ1, M is λ-saturated if and only if for every subset A ⊆ M of size less
than λ, M realizes every type over acl(A).

We record several facts from [4] that will be used throughout this paper.
The first is the Second Characterization Theorem, IV 4.18, the second is
X Claim 1.6(5), the third is V 1.12, and (4) follows easily from (2) and (3).

Fact 2.3 Suppose T is superstable and λ ≥ ℵǫ.

1. A model M is λ-prime over a set A if and only if (1) M ⊇ A and is
λ-saturated; (2) M is λ-atomic over A; and (3) every A-indiscernible
sequence I ⊆ M has length at most λ. (When λ = ℵǫ, the λ occurring
in (3) should be replaced by ℵ0.)

2. If M is λ-saturated, A ⊇ M , and N is λ-prime over M ∪A, then N is
dominated by A over M .
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3. If M � N are both λ-saturated, p ∈ S(M) is regular, and there is some
c ∈ N \M such that tp(c/M) 6⊥ p, then p is realized in N .

4. If M0 � M1 � M2 are all λ-saturated and there is e ∈ M2 \ M1 such
that tp(e/M1) is regular and non-orthogonal to M0, then there is e∗ ∈
M2 \ M1 such that e and e∗ are domination equivalent over M1, with
e∗ ⌣

M0

M1.

3 P-NDOP

Our story begins by localizing the notion of DOP around a single parallelism
class of stationary, regular types.

Definition 3.1 An independent triple of models (M0,M1,M2) satisfy M0 =
M1 ∩M2 and {M1,M2} are independent over M0. For λ ≥ ℵǫ, a λ-quadruple
is a sequence (M0,M1,M2,M3) of λ-saturated models, where (M0,M1,M2)
form an independent triple, and M3 is λ-prime over M1 ∪ M2. A λ-DOP
witness for a stationary, regular type p is a λ-quadruple (M0,M1,M2,M3)
for which Cb(p) ⊆ M3, but p ⊥ M1 and p ⊥ M2. We say that p has a DOP
witness if it has a λ-DOP witness for some λ ≥ ℵǫ.

Visibly, whether a specific λ-quadruple is a λ-DOP witness for p depends
only on the parallelism class of p. To understand the consequences of this no-
tion, we recall that a set A is self-based on an independent triple (M0,M1,M2)
of models if A ⌣

A∩Mi

Mi holds for each i < 3. The concept of self-basedness was

defined explicitly in [2] and was used implicitly in the proof of X 2.2(iii→iv)
of [4]. The fact that for any independent triple (M0,M1,M2), any finite set A
can be extended to a finite, self-based B ⊆ AM1M2 follows from Lemma 2.4
of [2]. The Claim in the proof of Theorem 1.3 of [2] establishes the following
Fact.

Fact 3.2 If A is self-based on the independent triple (M0,M1,M2), p ∈ S(A)
is stationary, p ⊥ M1, and p ⊥ M2, then p ⊢ p|AM1M2.

Using this Fact, an easy examination of the proof of [4], X 2.2 yields:

Fact 3.3 Let p be any stationary, regular type with a DOP witness. Then:
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1. For every λ ≥ ℵǫ, p has a λ-DOP witness;

2. For every λ-DOP witness (M0,M1,M2,M3) for p, there is an infinite,
indiscernible set I ⊆ M3 over M1 ∪M2 whose average type Av(I,M3)
is parallel to p; and

3. For every λ-DOP witness (M0,M1,M2,M3) for p, there is a subset
A ⊆ M3, |A| < λ over which p is based and stationary and a Morley
sequence 〈bi : i < λ〉 from M3 in p|AM1M2.

We isolate one Corollary from this that will be crucial for us later.

Corollary 3.4 For any λ ≥ ℵǫ, if (M0,M1,M2,M3) is a λ-DOP witness for
a stationary, regular p ∈ S(M3), then for any realization c of p, any λ-prime
model M3[c] over M3∪{c} is isomorphic to M3 over M1∪M2. In particular,
M3[c] is λ-prime over M1 ∪M2.

Proof. By the uniqueness of λ-prime models, both statements will fol-
low once we establish that M3 ∪ {c} is the universe of a λ-construction
sequence over M1 ∪ M2. To see this, first fix a λ-construction sequence
〈bi : i < δ〉 of M3 over M1 ∪ M2. As notation, for each i < δ, let Bi =
M1 ∪ M2 ∪ {bj : j < i} and fix a subset Xi ⊆ Bi, |Xi| < λ such that
stp(bi/Xi) ⊢ stp(bi/Bi).

Next, choose a subset A ⊆ M3, |A| < λ over which p is based and
stationary. By forming an increasing ω-chain, we can increase A slightly (still
maintaining |A| < λ) so that A is self-based on (M0,M1,M2) and Xi ⊆ A
whenever bi ∈ A.

Let 〈ai : i < γ〉 be the enumeration of A given by the ordering of the
original construction. Easily, 〈ai : i < γ〉 is λ-constructible over M1 ∪M2.

Furthermore, it follows from Fact 3.2 that for any Morley sequence I
in p|A with |I| < λ, we have p|AI ⊢ p|AIM1M2. Using this, we have a
λ-construction sequence 〈ai : i < γ〉ˆ〈cj : j < λ〉 over M1 ∪ M2, where
〈cj : j < λ〉 is any Morley sequence in p|A from M3 (the existence of such a
sequence follows from Fact 3.3(4)). It follows from the uniqueness of λ-prime
models and the fact that such models are λ-constructible that there is another
λ-construction sequence of M3 over M1∪M2 in which 〈ai : i < γ〉ˆ〈cj : j < λ〉
is an initial segment. As notation, let 〈bk : k < ν〉 be the tail of this sequence.
For each k < ν, let B∗

k = M1∪M2∪A∪{cj : j < λ}∪{bℓ : ℓ < k} and choose
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Yk ⊆ B∗
k, |Yk| < λ such that stp(bk/Yk) ⊢ stp(bk/B

∗
k). Without loss, we may

assume A ⊂ Yk for each k. To complete the proof, it suffices to prove that

〈ai : i < γ〉ˆ〈c〉ˆ〈ci : i < λ〉ˆ〈bk : k < ν〉

is a λ-construction sequence over M1 ∪M2.
We already know that 〈ai : i < γ〉 is a λ-construction sequence over

M1 ∪ M2. Using the first sentence of the previous paragraph, combined
with the fact that {c} ∪ {cj : j < λ} is independent over A, we inductively
obtain that 〈ai : i < γ〉ˆ〈c〉ˆ〈cj : j < λ〉 is also a λ-construction sequence
over M1 ∪ M2. Thus, it suffices to prove that stp(bk/Yk) ⊢ stp(bk/B

∗
kc)

for each k < ν. For this, since both tp(c/B∗
k) and tp(bk/B

∗
k) do not fork

over Yk, it suffices to show that tp(c/Yk) is almost orthogonal to stp(bk/Yk).
To see this, choose j < λ such that tp(cj/A) does not fork over Yk. Now,
tp(c/Yk) = tp(cj/Yk) and tp(cj/Yk) is almost orthogonal to stp(bk/Yk) since
stp(bk/Yk) ⊢ stp(bk/Ykcj), so we finish.

Next, we show additional closure properties of DOP witnesses.

Definition 3.5 A regular type q lies directly above p if there is a non-forking
extension p′ ∈ S(M) of p with M ℵǫ-saturated, a realization c of p′, and an
ℵǫ-prime model M [c] over M∪{c} such that q 6⊥ M [c], but q ⊥ M . A regular
type q lies above p if there is a sequence p0, . . . , pn of types such that p0 = p,
pn = q, and pi+1 lies directly above pi for each i < n. (We allow n = 0, so in
particular, any regular type lies above itself.)

We say that p supports q if q lies above p.

The nomenclature above is apt if one considers a branch of a decompo-
sition tree. Suppose M0 � . . . � Mn is a sequence of ℵǫ-saturated models
such that for each i < n there is ai ∈ Mi+1 such that tp(ai/Mi) is regular
(and orthogonal to Mi−1 when i > 0) and Mi+1 is ℵǫ-prime over Mi ∪ {ai}.
Then any regular q 6⊥ Mn lies over any regular type p non-orthogonal to
tp(a0/M0). Similarly, any such p supports any such q.

Proposition 3.6 Fix a stationary, regular type p with a DOP witness. Then:

1. Every type parallel to p has a DOP witness;

2. Every automorphic image of p has a DOP witness;
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3. Every stationary, regular q non-orthogonal to p has a DOP witness;

4. Every stationary, regular q lying above p has a DOP witness.

Proof. (1) and (2) are immediate. For (3), choose λ ≥ ℵǫ and a λ-
quadruple (M0,M1,M2,M3) witnessing that p has λ-DOP. Let q be any sta-
tionary, regular type non-orthogonal to p. As q is non-orthogonal to M3,
there is q′ ∈ S(M3) non-orthogonal to q (and hence to p) and conjugate to
q. But now, q′ ⊥ M1 and q′ ⊥ M2, so (M0,M1,M2,M3) witnesses that q

′ has
λ-DOP. Thus, q has a DOP witness by (2).

(4) It suffices to prove this for q lying directly above p. As both notions
are parallelism invariant, we may assume that p ∈ S(N), where N is ℵǫ-
saturated. Choose c realizing p and N [c] ℵǫ-prime over N ∪ {c} such that
q 6⊥ N [c], but q ⊥ N . Choose q′ ∈ S(N [c]) nonorthogonal to q. Fix a cardinal
λ > |N |, and choose a λ-DOP witness (M0,M1,M2,M3) for p. Without loss,
we may assume that N � M3 and that c⌣

N
M3. Let M∗ be λ-prime over

N [c]∪M3 and let q∗ be the non-forking extension of q′ to M∗. We argue that
(M0,M1,M2,M

∗) is a λ-DOP witness for q∗.
To see this, first note that N [c] is ℵǫ-constructible over N ∪ {c}, N is

ℵǫ-saturated, and c⌣
N
M3, so N [c] is ℵǫ-constructible (hence λ-constructible)

over M3 ∪ {c}. Since M∗ is λ-constructible over N [c] ∪ M3, it follows that
M∗ is λ-constructible over M3 ∪ {c}, hence is λ-prime over M3 ∪ {c}. Thus,
by Corollary 3.4, M∗ is λ-prime over M1 ∪M2. That is, (M0,M1,M2,M

∗) is
a λ-quadruple.

As well, q′ ∈ S(N [c]) is orthogonal to N and N [c]⌣
N
M3, so q′ ⊥ M3. As

M1 ∪M2 ⊆ M3, it follows immediately that q∗ ⊥ M1 and q∗ ⊥ M2.

Throughout the remainder of this paper, we consider sets P of stationary,
regular types over small subsets of the monster model C. We typically require
P to be closed under automorphisms of C and nonorthogonality.

Definition 3.7 Let Treg denote the set of all stationary, regular types over
small subsets of C and fix a subset P ⊆ Treg that is closed under automor-
phisms of C and nonorthogonality.

As notation,

• A stationary type q is orthogonal to P, written q ⊥ P, if q is orthogonal
to every p ∈ P. P⊥ = {q ∈ Treg : q ⊥ P};
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• Pactive is the closure of P in Treg under automorphisms, nonorthog-
onality, and supporting (i.e., if p ∈ Treg supports some q ∈ P, then
p ∈ Pactive;

• Pdull = Treg \Pactive.

Definition 3.8 Let P ⊆ Treg be any set of regular types. A theory T has
P-NDOP if no p ∈ P has a DOP witness.

The following Corollary is merely a restatement of Proposition 3.6.

Corollary 3.9 For any P ⊆ Treg, T has P-NDOP if and only if T has
Pactive-NDOP.

Definition 3.10 Given a class P of regular types, we define the P-depth of
a stationary, regular type p, dp

P
(p) ∈ ON∪{−1}, by (1) dp

P
(p) = −1 if and

only if p ∈ Pdull; and (2) dp
P
(p) ≥ α if and only if p ∈ Pactive and for every

β ∈ α there is a triple (M,N, a), where M is ℵǫ-saturated, N is ℵǫ-prime
over M ∪ {a}, p is parallel to tp(a/M), and there is q ∈ S(N) orthogonal to
M with dp

P
(q) ≥ β.

As in Chapter X of [4], in the preceding definition it would be equivalent
to replace ‘ℵǫ-saturation’ by ‘λ-saturation’ for any uncountable cardinal λ.
The proof of the following Lemma is identical to the proof of Lemma X 7.2
of [4].

Lemma 3.11 If T has P − NDOP , then any regular p with dp
P
(p) > 0

is trivial, i.e., the set p(C) has a trivial pre-geometry with respect to the
dependence relation of forking.

We close this section with two technical Lemmas that will be used later.
Note that a type q (not necessarily regular) is orthogonal to Pdull if and only
if every regular type non-orthogonal to q is an element of Pactive.

Lemma 3.12 (P-NDOP, λ ≥ ℵǫ) Suppose that M is λ-prime over an in-
dependent triple (M0,M1,M2) of λ-saturated models, a is ǫ-finite satisfying
tp(a/M) ⊥ Pdull and tp(a/M) ⊥ M2. Let M [a] be any λ-prime model over
M ∪ {a}. For any subset N ⊆ M [a] that is maximal such that N ⌣

M1

M we

have:
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1. N � M [a], N is λ-saturated, and M [a] is λ-prime over N ∪M ; and

2. For any a∗ ⊆ N such that N ⌣
M1a

∗
a, N is λ-prime over M1 ∪ {a∗}.

Proof. To see that N � M [a] and N is λ-saturated, choose N+ � M [a]
to be λ-prime over N . As M1 is λ-saturated, it follows from Fact 2.3(2)
that N+ is dominated by N over M1, hence N+

⌣
M1

M , so N+ = N by the

maximality of N .
Next, choose M∗ � M [a] to be maximal such that M∗ is λ-saturated and

λ-atomic over N∪M . (Since T is superstable, the union of a continuous chain
of λ-saturated models is λ-saturated, so M∗ exists.) Since a is ǫ-finite, any
subset I ⊆ M [a] that is indiscernible overM has size at most λ (when λ = ℵǫ,
I must be countable). It follows at once that every subset I ⊆ M∗ that is
indiscernible over N ∪M has size at most λ, so by Fact 2.3(1) M∗ is λ-prime
over N ∪M . We complete the proof of (1) by showing that M∗ = M [a].

Suppose not. Choose c ∈ M [a] \ M∗ such that q = tp(c/M∗) is reg-
ular. The argument splits into cases. First, if q ⊥ N and q ⊥ M , then
(M1, N,M,M∗) is a DOP witness for q, so by Corollary 3.4, any λ-prime
model over M∗∪{c} is λ-prime over N ∪M , which contradicts the maximal-
ity of M∗. Second, if q 6⊥ N , then choose a regular r ∈ S(M∗) that does not
fork over N but q 6⊥ r. Choose d ∈ M [a]\M∗ realizing r. Then, by symmetry
and transitivity of non-forking, Nd⌣

M1

M , which contradicts the maximality

of N . Finally, suppose that q 6⊥ M . As before, there is a regular p ∈ S(M∗)
that does not fork over M but q 6⊥ p, and an element e ∈ M [a]\M∗ realizing
p. As p is regular, based on M , and non-orthogonal to tp(a/M), p ∈ Pactive

and p ⊥ M2. So, by P-NDOP it must be that p 6⊥ M1. But then, p 6⊥ N , so
arguing as above we contradict the maximality of N . This proves (1).

For (2), choose any such a∗. We show that N is λ-prime over M1 ∪ {a∗}
via Fact 2.3(1). We already know that N is λ-saturated. To see that N is
λ-atomic over M1 ∪ {a∗}, choose any finite set c from N . As N ⊆ M [a],
tp(c/Ma) is λ-isolated. But c ⌣

M1a
∗
Ma, so tp(c/M1a

∗) is λ-isolated as well

(see e.g., [4] IV 4.1). Finally, if I ⊆ N is indiscernible over M1∪{a∗}, then I
is indiscernible over M1. But N ⌣

M1

M , so I is indiscernible over N ∪M . As

M [a] is λ-prime over N ∪M , it follows that I has size at most λ, completing
the proof of (2).
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Lemma 3.13 (P-NDOP, λ ≥ ℵǫ) Suppose that M1 � M are both λ-saturated,
a is ǫ-finite, tp(a/M) ⊥ Pdull, and either tp(a/M) does not fork over M1,
or tp(a/M) is regular and non-orthogonal to M1. Let M [a] be any λ-prime
model over M ∪ {a}. For any subset N ⊆ M [a] that is maximal such that
N ⌣

M1

M we have:

1. N � M [a], N is λ-saturated, and M [a] is λ-prime over N ∪M ; and

2. For any a∗ ⊆ N such that N ⌣
M1a

∗
a, N is λ-prime over M1 ∪ {a∗}.

Proof. The proof is similar to the proof of Lemma 3.12, only easier. The
hypotheses on tp(a/M) ensure that for any e ∈ M [a] \M , as e is dominated
by a over M , it follows that tp(e/M) 6⊥ M1.

To see (1), take N+ � M [a] to be λ-prime over N . As before, the
maximality of N implies that N+ = N , so N � M [a] and N is λ-saturated.
As well, choose M∗ � M [a] that is maximal such that M∗ is λ-saturated and
λ-atomic over N ∪ M . As before, indiscernible subsets of M∗ over N ∪ M
have size at most λ, so M∗ is λ-prime over N ∪M .

The verification that M∗ = M [a] is also similar. If not, choose c ∈
M [a] \ M∗ such that q = tp(c/M∗) is regular. If q ⊥ N and q ⊥ M ,
then (M1, N,M,M∗) is a DOP witness for q, which again contradicts the
maximality of M∗ by Corollary 3.4. If q 6⊥ N , then arguing as before there
is a regular r ∈ S(M∗) that does not fork over N , q 6⊥ r, and a realization d
of r, which contradicts the maximality of N . Finally, if q 6⊥ M , then there is
a regular p ∈ S(M∗) that does not fork over M but q 6⊥ p and a realization e
of p in M [a]. Our conditions on tp(a/M) imply that tp(e/M) 6⊥ M1, hence
tp(e/M) 6⊥ N and we argue as above, completing the verification of (1). The
verification of (2) is identical to its verification in the proof of Lemma 3.12.

4 P-decompositions

Throughout this section, assume that T is superstable, and that P is a class
of regular types, closed under automorphisms of C and non-orthogonality.
We define a number of species of P-decompositions, along with a number of
ways in which one P-decomposition can extend another.
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Definition 4.1 Fix a model M . A weak P-decomposition inside M is a
sequence d = 〈Nη, aη : η ∈ I〉 indexed by a tree (I,E) satisfying:

1. {Nη : η ∈ I} is an independent tree of elementary submodels of M ;

2. η E ν implies Nη � Nν ;

3. Each aη ∈ Nη (but a〈〉 is meaningless);

4. For all ν ∈ SuccI(η), Nν is dominated by aν over Nη;

5. If η 6= 〈〉, then tp(aν/Nη) ⊥ Nη− for each ν ∈ SuccI(η);

6. For each η ∈ I, {aν : ν ∈ SuccI(η)} is independent over Nη and
tp(aν/Nη) ⊥ P⊥ for each ν ∈ SuccI(η).

Note that in the Definition above, we do not require that tp(aν/Nη) be
regular. However, the content of (6) is that any regular type q 6⊥ tp(aν/Nη)
is necessarily in P.

Lemma 4.2 Suppose d = 〈Nη, aη : η ∈ I〉 is a weak P-decomposition inside
M . Then:

1. If I1, I2 ⊆ I are both downward closed and I0 = I1 ∩ I2, then

(

⋃

η∈I1

Nη

)

⌣
(
⋃

η∈I0
Nη)

(

⋃

η∈I2

Nη

)

2. If η ∈ I, ν = ηˆ〈α〉, where α is least such that ηˆ〈α〉 6∈ I, the element
aν ∈ M satisfies tp(aν/Nη) ⊥ P⊥, if η 6= 〈〉 then tp(aν/Nη) ⊥ Nη−,
and aν ⌣

Nη

{aγ : γ ∈ SuccI(η)}, and Nν � M is dominated by aν over

Nη, then d
∗ = dˆ〈Nν , aν〉 is a weak P-decomposition inside M .

There are two ways of defining when a weak P-decomposition inside a
model M is ‘maximal’. Fortunately, at least when both M and each of the
submodels Nη are ℵǫ-saturated, Lemma 4.4 shows that the two notions are
equivalent.
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Definition 4.3 Suppose that d = 〈Nη, aη : η ∈ I〉 of M is a weak P-
decomposition inside M . As notation, for each η ∈ I, let

Cη(M) = {a ∈ M \Nη : tp(a/Nη) ⊥ P⊥ and ⊥ Nη− (when η 6= 〈〉)}

• d is a weak P-decomposition of M if, for every η ∈ I, {aν : ν ∈
SuccI(η)} is a maximal Nη-independent subset of Cη(M).

• d P-exhausts M if, for every η ∈ I for every regular p ∈ S(Nη) ∩P or-
thogonal toNη− (when η 6= 〈〉) and for every e ∈ p(C), if e⌣

Nη

{aν : ν ∈ SuccI(η)}

then e⌣
Nη

M .

Lemma 4.4 Suppose that d = 〈Nη, aη : η ∈ I〉 is a weak P-decomposition
inside an ℵǫ-saturated model M such that every Nη is ℵǫ-saturated as well.
Then d is weak P-decomposition of M if and only if d P-exhausts M .

Proof. For both directions, recall that if h ∈ M \ Nη, then there is a
finite, Nη-independent set {bi : i < n} ⊆ M domination equivalent to h over
Nη with tp(bi/Nη) is regular for each i < n.

For the easy direction, suppose that d is not a weak P-decomposition
of M . Choose η ∈ I such that A = {aν : ν ∈ SuccI(η)} is not maximal
in Cη(M). Choose h ∈ Cη(M) such that h⌣

Nη

A, and from above, choose

{bi : i < n} ⊆ M domination equivalent to h over Nη. Then, for any i < n,
the element bi and the type tp(bi/Nη) witness that d does not P-exhaust M .

Conversely, suppose that d is a weak P-decomposition of M . Fix any
η ∈ I, any regular type p ∈ S(Nη) ∩ P that is ⊥ Nη− when η 6= 〈〉, and
any e ∈ p(C) with e⌣/

Nη

M . We will show that e⌣/
Nη

A, where A = {aν : ν ∈

SuccI(η)}.
To see this, using the note above choose n < ω minimal such that there

are h ∈ M \Nη and B = {bi : i < n} ⊆ M such that e⌣/
Nη

h, and h and B are

domination equivalent over Nη with tp(bi/Nη) regular for each i. It follows
from the minimality of n that tp(bi/Nη) is non-orthogonal to p, hence each
bi ∈ Cη(M). As A is maximal in Cη(M), we have that bi ⌣/

Nη

A for each i, hence

tp(bi/NηA) is hereditarily orthogonal to p (i.e., tp(bi/NηA), as well as every
forking extension of it is orthogonal to p). Thus, tp(B/NηA) is hereditarily
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orthogonal to p. This implies e⌣/
Nη

A. [Why? If not, then tp(e/NηA) would

be parallel to p, so by orthogonality we would have e ⌣
NηA

B. This would

imply that e and B (and hence e and h) are independent over Nη, which is
a contradiction.]

For our next series of results, we insist that the model M be sufficiently
saturated, and we additionally require that each submodel occurring in a
decomposition be sufficiently saturated as well. In most applications, ℵǫ-
saturation would suffice, but it costs little to work in the more general context
of (λ,P)-saturated models, which we now introduce.

Fix, for the remainder of this section, a pair λ = (λ, µ) of cardi-
nals satisfying λ, µ ≥ ℵǫ. Throughout the whole of this paper, if λ = µ =
ℵǫ, we write (ℵǫ,P) in place of (ℵǫ,ℵǫ,P).

Definition 4.5 We say that a modelM is (λ,P)-saturated if it is ℵǫ-saturated,
and for each finite A ⊆ M , dim(p,M) ≥ λ for each p ∈ P ∩ S(A), and
dim(q,M) ≥ µ for all stationary, regular q ∈ P⊥ ∩ S(A). (If either λ or µ is
ℵǫ, the associated dimension is at least ℵ0.)

We say that a (λ,P)-saturated model N is (λ,P)-prime over a set X if
N ⊇ X and N embeds elementarily over X into any (λ,P)-saturated model
containing X.

Note that our assumptions on λ guarantee that any (λ,P)-saturated
model is ℵǫ-saturated, but we include this clause for emphasis. Also, if
λ = µ, then the (λ,P)-saturated models are precisely the λ-saturated mod-
els. The standard facts about the existence (λ,P)-prime models extend eas-
ily to this context. To see this, call a type tp(a/B) (λ,P)-isolated if any
of the three conditions hold: (1) tp(a/B) is ℵǫ-isolated (= Fa

ℵ0
-isolated) or

(2) tp(a/B) ∈ P and is λ-isolated; or (3) tp(a/B) ∈ P⊥ and is µ-isolated.
Next, call a set B (λ,P)-primitive over A if B = A ∪ {bi : i < α}, where
tp(bi/A ∪ {bj : j < i}) is (λ,P)-isolated for every i, and call a model M
(λ,P)-primary over A if M is (λ,P)-saturated and its universe is (λ,P)-
primitive over A. This notion of isolation satisfies the same axioms as for
Fa

λ-isolation in Chapter 4 of [4] and thus we obtain the same consequences.
In particular:

13



• If A ⊆ M∗ with M∗ (λ,P)-saturated, then there is a M � M∗ that is
(λ,P)-primary over A;

• M (λ,P)-primary over A implies M is (λ,P)-prime over A; and

• If M is (λ,P)-saturated, M ⊆ A, and N is (λ,P)-prime over A, then
N is dominated by A over M .

Definition 4.6 Suppose thatM is (λ,P)-saturated. A weak (λ,P)-decomposition
inside M (of M) is a weak P-decomposition inside M (of M) for which each
of the submodels Nη is an (λ,P)-saturated elementary substructure of M .

A salient feature of weak (λ,P)-decompositions is that each of the sub-
models is itself ℵǫ-saturated. The proof of the following Lemma is virtually
identical to arguments in Section X.3 of [4].

Lemma 4.7 (P-NDOP) Suppose that 〈Nη, aη : η ∈ I〉 is a weak (λ,P)-
decomposition of a (λ,P)-saturated model M . Let M � M be any ℵǫ-prime
submodel of M over

⋃

η∈I Nη. Then if p ∈ P is non-orthogonal to M , then
there is a unique, ⊳-minimal η ∈ I such that p 6⊥ Nη.

Proof. We first show that p 6⊥ Nη for some η ∈ I. AsM is ℵǫ-saturated,
there is q ∈ S(M) that is regular and non-orthogonal to p. As any such q is
in P, we may assume that p ∈ S(M) to begin with. Choose a finite B ⊆ M
over which p is based and stationary. As B is ℵǫ-isolated over

⋃

η∈I Nη, there
is a finite subtree I0 ⊆ I such that B is ℵǫ-isolated over

⋃

η∈I0
Nη. Choose

any M0 � M such that B ⊆ M0 and M0 is ℵǫ-prime over
⋃

η∈I0
Nη. As there

is some type p′ ∈ S(M0) parallel to p, P-NDOP implies that p 6⊥ Nη for some
η ∈ I0.

Finally, using Lemma 4.2(1) it follows that there is a unique ⊳-minimal
η ∈ I with p 6⊥ Nη.

The following definition makes sense in our context, as (λ,P)-decompositions
have no control over types orthogonal to P.

Definition 4.8 An ℵǫ-saturated model N is P-minimal over X if N ⊇ X,
but for any ℵǫ-saturated N0 � N containing X, tp(e/N0) ⊥ P for every
e ∈ N \N0.

14



Corollary 4.9 (P-NDOP) Suppose that 〈Nη, aη : η ∈ I〉 is a weak (λ,P)-
decomposition of a (λ,P)-saturated model M and let M � M be any ℵǫ-prime
model over

⋃

η∈I Nη. Then:

1. Every c ∈ M \M satisfies tp(c/M) ⊥ P; and

2. M is P-minimal over
⋃

η∈I Nη.

Proof. (1) Assume by way of contradiction that there is c ∈ M such
that tp(c/M) 6⊥ P. As P is closed under non-orthogonality and automor-
phisms of C, there is p ∈ P ∩ S(M) non-orthogonal to tp(c/M). Then, by
Fact 2.3(3), there is e ∈ M realizing p. So, by Lemma 4.7, p 6⊥ Nη for some
η ∈ I. Thus, by Fact 2.3(4) there is e∗ ∈ M domination equivalent to e over
M with e∗ ⌣

Nη

M . As {aν : ν ∈ SuccI(η)} ⊆ M , this contradicts the fact that

〈Nη, aη : η ∈ I〉 is a weak (λ,P)-decomposition of M .
(2) Choose any M1 � M that is ℵǫ-prime over

⋃

η∈I Nη. Then (1) applies

to M1. That is, there is no c ∈ M \M1 such that tp(c/M1) 6⊥ P. Thus, M
is P-minimal over

⋃

η∈I Nη.

Next, we show that if we additionally assume that P = Pactive, then we
can extend the previous results to any ℵǫ-saturated submodel ofM containing
the decomposition.

Proposition 4.10 (P-NDOP, P = Pactive) Suppose that 〈Nη, aη : η ∈ I〉
is a weak (λ,P)-decomposition of a (λ,P)-saturated model M . Let M∗ � M
be any ℵǫ-saturated model containing

⋃

η∈I Nη. Then there is no e ∈ M \M∗

such that tp(e/M∗) 6⊥ P.

Proof. As both M∗ and M are ℵǫ-saturated, it suffices to prove that
there is no e ∈ M \M∗ such that tp(e/M∗) ∈ P. Assume by way of contra-
diction that there were such an e. Let M0 � M∗ be any ℵǫ-prime model over
⋃

η∈I Nη. Next, form an increasing sequence 〈Mα : α ≤ δ〉 of ℵǫ-saturated
models, with Mδ = M∗, Mα+1 is ℵǫ-prime over Mα ∪ {bα}, where tp(bα/Mα)
is regular, and for α < δ a non-zero limit, Mα is ℵǫ-prime over

⋃

β<α Mβ.
Choose α ≤ δ least such that there is some e ∈ M \ Mα such that

tp(e/Mα) ∈ P. By superstability, α cannot be a non-zero limit ordinal. Now
suppose α = β + 1. On one hand, if p = tp(e/Mα) ∈ P were non-orthogonal
to Mβ, then by Fact 2.3(4), there would be e∗ ∈ M such that q = tp(e∗/Mβ)
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is regular and non-orthogonal to p, contradicting the minimality of α. On
the other hand, if p ⊥ Mβ, then as Pactive = P, r = tp(bβ/Mβ) ∈ P, which
again contradicts the minimality of α.

Thus, α must equal zero, i.e., there is e ∈ M \ M0 such that p =
tp(e/M0) ∈ P. By Lemma 4.7, choose a ⊳-minimal η ∈ I such that p 6⊥ Nη.

Choose q ∈ S(Nη) regular such that p 6⊥ q and let q′ ∈ S(M0) be the
non-forking extension of q to M0. As both M0 and M are ℵǫ-saturated, there
is c ∈ M \M0 realizing q′. As q′ ∈ P, we have c ∈ Cη(M) in the notation of
Definition 4.3, which contradicts the maximality of {aν : ν ∈ SuccI(η)}.

Corollary 4.11 (P-NDOP, P = Pactive) Suppose that 〈Nη, aη : η ∈ I〉 is
a weak (λ,P)-decomposition of M . Let M∗ � M be any ℵǫ-saturated ele-
mentary submodel containing

⋃

η∈I Nη. If p ∈ P and p 6⊥ M , then p 6⊥ M∗.

Proof. As in the proof above, form an increasing sequence 〈Mα : α ≤ δ〉
of ℵǫ-saturated models, this time with M0 = M∗, Mδ = M , Mα+1 is ℵǫ-prime
over Mα ∪ {bα}, where tp(bα/Mα) is regular, and for α < δ a non-zero limit,
Mα is ℵǫ-prime over

⋃

β<α Mβ. Choose α ≤ δ least such that p 6⊥ Mα. We
will show that α = 0. Clearly, α cannot be a non-zero limit by superstability.
Assume by way of contradiction that α = β+1. Then p 6⊥ Mα, but p ⊥ Mβ.
But, as before, this implies that r = tp(bβ/Mβ) ∈ Pactive = P. But now,
Mβ is an ℵǫ-saturated model containing

⋃

η∈I Nη, yet there is an element of
M \ Mβ realizing r ∈ P, contradicting Proposition 4.10. Thus, α = 0, so
p 6⊥ M∗.

Corollary 4.12 (P-NDOP, P = Pactive) Suppose that 〈Nη, aη : η ∈ I〉 is
a weak (λ,P)-decomposition of a (λ,P)-saturated model M . If p ∈ P and
p 6⊥ M , then there is a unique ⊳-minimal η ∈ I such that p 6⊥ Nη.

Proof. Let M∗ � M be any ℵǫ-prime model over
⋃

η∈I Nη. By Corol-
lary 4.11 p 6⊥ M∗, so by Lemma 4.7, p 6⊥ Nη for some ⊳-minimal η ∈ I. As
in the proof of Lemma 4.7, the uniqueness follows from Lemma 4.2(1).

Until this point in our discussion, the submodels occurring in a decom-
position could be very large, with an extreme case being that any model M
has a one-element decomposition 〈M〉. The next definition limits the size of
the submodels, while retaining the fact that they are at least ℵǫ-saturated.
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Definition 4.13 A prime (λ,P)-decomposition inside M (of M) is a weak
(λ,P)-decomposition inside M (of M) in which N〈〉 is (λ,P)-prime over ∅

and, for each η ∈ I \ {〈〉}, Nη is (λ,P)-prime over Nη− ∪ {aη}.

Definition 4.14 Fix a (λ,P)-saturated modelM . A prime (λ,P)-decomposition
d2 = 〈N2

η , a
2
η : η ∈ J〉 end extends the prime (λ,P)-decomposition d1 =

〈N1
η , a

1
η : η ∈ I〉 if I ⊆ J and, for each η ∈ I, N2

η = N1
η and a2η = a1η.

We say d2 is a regular end extension of d1 if, in addition tp(aη/Nη−) is
regular for each η ∈ J \ I. Furthermore, d2 is a standardly regular end
extension of d1 if, tp(aη/Nη−) = tp(aν/Nν−) whenever η, ν in J \ I, η− = ν−,
and tp(aη/Nη−) 6⊥ tp(aν/Nν−).

The following Lemma is straightforward, and relies on the fact that if
N � M are both (λ,P)-saturated with a ∈ M \ N satisfying tp(a/N) ∈ P,
then there is N [a] � M that is (λ,P)-prime over N ∪ {a} and that N [a]
contains realizations of every regular type over N non-orthogonal to tp(a/N).
Proofs of similar statements appear in Section X.3 of [4].

Lemma 4.15 Suppose d = 〈Nη, aη : η ∈ I〉 is a prime (λ,P)-decomposition
inside an (λ,P)-saturated model M . Then:

1. d is a prime (λ,P)-decomposition of M if and only if it has no proper
(standardly regular) end extension; and

2. There is a prime (λ,P)-decomposition d
∗ of M that is a standardly

regular end extension of d.

Similarly to the main theme of [Sh401], we wish to investigateP-decompositions
that lie above a specific triple (N,N ′, a), where N � N ′, with tp(a/N ′) ⊥ P⊥

and tp(a/N ′) ⊥ N . That is, triples where a could play the role of aν in some
P-decomposition with N ′ = Nη and N = Nη− . However, as in [Sh401], this
is too much data to record at once, so we seek an ǫ-finite approximation of
it.

Specifically, for M any model, let

Γ(M) := {(A,B) : A ⊆ B ⊆ M are both ǫ-finite}

We frequently write
(

B

A

)

for elements of Γ(M), and if A is not a subset of B,

we mean
(

A∪B
A

)

. Let
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ΓP(M) := {

(

B

A

)

∈ Γ(M) : tp(B/A) ⊥ P⊥}

Definition 4.16 For
(

B

A

)

∈ ΓP(M), a prime (λ,P)-decomposition over
(

B

A

)

inside M , d = 〈Nη, aη : η ∈ I〉, is a prime (λ,P)-decomposition inside M
in which 〈0〉 is the unique successor of 〈〉 in I, A ⊆ N〈〉, B ⊆ N〈0〉, and
B ⊆ dcl(a〈0〉). By analogy with Definition 4.3,

• such a d is of M if, for every η ∈ I 6= 〈〉, {aν : ν ∈ SuccI(η)} is a
maximal Nη-independent subset of Cη(M); and

• d P-exhausts M over
(

B

A

)

if, for every η ∈ I 6= 〈〉 for every regular
p ∈ S(Nη)∩P orthogonal to Nη− (when η 6= 〈〉) and for every e ∈ p(C),
if e⌣

Nη

{aν : ν ∈ SuccI(η)} then e⌣
Nη

M .

The following Lemma is straightforward. The verification of (5) is anal-
ogous to the proof of Lemma 4.4.

Lemma 4.17 Fix a (λ,P)-saturated model M and
(

B

A

)

∈ ΓP(M).

1. If N〈〉 � M is (λ,P)-prime over ∅, contains A, and B⌣
A
N〈〉, and

N〈0〉 � M is (λ,P)-prime over N〈〉 ∪ B, then 〈N〈〉, N〈0〉〉 is a prime

(λ,P)-decomposition over
(

B

A

)

inside M ;

2. A prime (λ,P)-decomposition d over
(

B

A

)

inside M is a prime (λ,P)-

decomposition over
(

B

A

)

of M if and only if d has no proper (λ,P)-

decomposition over
(

B

A

)

end extending it;

3. Every prime (λ,P)-decomposition over
(

B

A

)

inside M has a (standardly

regular) end extension to a prime (λ,P)-decomposition over
(

B

A

)

of M ;

4. Every prime (λ,P)-decomposition d over
(

B

A

)

inside M is a prime

(λ,P)-decomposition inside M , hence has a (standardly regular) end
extension to a prime (λ,P)-decomposition d

∗ of M ; Moreover, if d is
a decomposition over

(

B

A

)

of M and is indexed by the tree (I, ⊳) and d
∗

is indexed by (J, ⊳), then ¬(〈0〉 E η) for all η ∈ J \ I.

5. A (λ,P)-decomposition d over
(

B

A

)

inside M is of M if and only if d

P-exhausts M over
(

B

A

)

.
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5 Trees of subsets of an ℵǫ-saturated model

Throughout this section T is superstable with P-NDOP, and P
is closed under automorphisms of C, non-orthogonality, and P =
Pactive.

In addition, all models M we consider will be ℵǫ-saturated, and all de-
compositions we consider will be (ℵǫ,P)-decompositions inside/of M .

Definition 5.1 Fix an ℵǫ-saturated model M and
(

B

A

)

∈ ΓP(M). Suppose

d = 〈Nη, aη : η ∈ I〉 is a prime (ℵǫ,P)-decomposition over
(

B

A

)

of M . Then

PP(d,M) = {p ∈ S(M) : p ∈ P, p ⊥ N〈〉, but p 6⊥ Nη for some η ∈ I \ {〈〉}}

The goal for this section will be Theorem 5.12, which asserts that PP(d1,M) =
PP(d2,M) for any two prime, (ℵǫ,P)-decompositions d1, d2 of M above

(

B

A

)

.
We begin by introducing another way of ‘increasing’ a decomposition.

Definition 5.2 A prime (ℵǫ,P)-decomposition d2 = 〈N2
η , a

2
η : η ∈ J〉 inside

C is a blow up of the prime (ℵǫ,P)-decomposition d1 = 〈N1
η , a

1
η : η ∈ I〉

inside C if J = I, but for every η ∈ I, N1
η � N2

η and, when η 6= 〈〉, N2
η is

(ℵǫ,P)-prime over N1
η ∪N2

η− .

Lemma 5.3 Suppose that M is ℵǫ-saturated,
(

B

A

)

∈ ΓP(M), d2 = 〈N2
η , aη :

η ∈ I〉 is a blow up of d1 = 〈N1
η , aη : η ∈ I〉, A ⊆ B ⊆ N1

〈0〉, and each

N2
η � M . Then:

1. If ν ∈ SuccI(η), then N2
η ⌣

N1
η

N1
ν ;

2. If Y = {ρ ∈ I : ¬(η ⊳ ρ)}, then N2
η ⌣
N1

η

⋃

ρ∈Y N1
ρ and η ⊳ ν implies

N2
ν ⌣

N1
η

⋃

ρ∈Y N1
ρ ;

3. d2 is an (ℵǫ,P)-decomposition inside M above
(

B

A

)

if and only if d1 is;
and

4. d2 is an (ℵǫ,P)-decomposition of M above
(

B

A

)

if and only if d1 is.

Proof. This is exactly analogous to Fact 1.20 of [Sh401]. In the proof
of (4), we need to appeal to P-NDOP instead of NDOP.
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Lemma 5.4 Suppose M is ℵǫ-saturated and
(

B

A

)

∈ ΓP(M). If d2 is a blow

up of d1 and both d1, d2 are (ℵǫ,P)-decompositions of M over
(

B

A

)

, then
PP(d1,M) = PP(d2,M).

Proof. This is very much like Fact 1.22 of [Sh401], but we give details.
As notation, say dℓ = 〈N ℓ

η, aη : η ∈ I〉 for ℓ = 1, 2. Fix p ∈ S(M) ∩ P, so in
particular, p is regular. We must prove that

(

p ⊥ N1
η− and p 6⊥ N1

η

)

⇔
(

p ⊥ N2
η− and p 6⊥ N2

η

)

for every η 6= 〈〉.
First, assume η 6= 〈〉 and p ⊥ N1

η− and p 6⊥ N1
η . As N1

η � N2
η , p 6⊥ N2

η

trivially. Also, choose a regular q ∈ S(N1
η ) with p 6⊥ q. Then q ⊥ N1

η− since

p is, and it suffices to show that q is orthogonal to N2
η− . But this follows

immediately since N1
η ⌣
N1

η−

N2
η− .

Conversely, assume η 6= 〈〉 and p ⊥ N2
η− and p 6⊥ N2

η . Then, since

N1
η− � N2

η− , p ⊥ N1
η− . As well, (N

1
η− , N

2
η− , N

1
η ) form an independent triple of

ℵǫ-saturated models (see Definition 3.1) and N2
η is ℵǫ-prime over their union.

Thus, as p ∈ P, it follows from P-NDOP that p 6⊥ N1
η .

Lemma 5.5 Suppose that M is ℵǫ-saturated,
(

B

A

)

∈ ΓP(M), and for ℓ = 1, 2

dℓ = 〈N ℓ
η, a

ℓ
η : η ∈ Iℓ〉 are each prime, ℵǫ-decompositions of M above

(

B

A

)

. If
N1

〈〉 = N2
〈〉 then PP(d1,M) = PP(d2,M).

Proof. First, by Lemma 4.17(4), choose a prime, ℵǫ-prime decompo-
sition d

∗
1 = 〈N1

η , a
1
η : η ∈ J1〉 of M end extending d1. As notation, let

H = J1 \ I1 and for each η ∈ H, let N2
η = N1

η and a2η = a1η. It is easily
checked that d∗2 := 〈N2

η , a
2
η : η ∈ I2 ∪H〉 is an (ℵǫ,P)-decomposition of M .

Now, for each p ∈ S(M) ∩ P with p ⊥ N1
〈〉 and for each ℓ = 1, 2 there

is a unique η(p, ℓ) ∈ Iℓ ∪H such that p 6⊥ Nη(p,ℓ), but p ⊥ Nη(p,ℓ)− . But, as
N2

η = N1
η for each η ∈ H, η(p, 1) ∈ H if and only if η(p, 2) ∈ H.

Thus, for each p ∈ S(M) ∩ P that is orthogonal to N1
〈〉 = N2

〈〉 we have

p ∈ PP(d1,M) if and only if η(p, 1) ∈ H if and only if η(p, 2) ∈ H if and only
if p ∈ PP(d2,M).

We come to the issue of the existence of blow-ups of decompositions. It is
comparatively easy to blow up a decomposition inside an ℵǫ-saturated model
M .
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Lemma 5.6 Suppose that M is ℵǫ-saturated and d = 〈Nη, aη : η ∈ I〉 is a
prime (ℵǫ,P)-decomposition inside M . For any N∗ satisfying N〈〉 � N∗ � M
that is ℵǫ-prime over ∅, there is a prime (ℵǫ,P)-decomposition d

∗ inside M
with N d∗

〈〉 = N∗ that is a blow up of d.

Proof. Choose any enumeration 〈ηi : i < i∗〉 of I such that ηi⊳ηj implies
i < j and so that for some α∗ ≤ i∗ ηi ∈ SuccI(〈〉) if and only if 1 ≤ i < α∗.
Note that η0 = 〈〉 for any such enumeration. Put N∗

〈〉 := N∗. Then, by
induction on 1 ≤ i < i∗, argue that

N∗
⌣
N〈〉

⋃

j<i

N∗
ηj

and let N∗
ηi

� M be any ℵǫ-prime model over N∗
η−i

∪ Nηi . Then it is easily

checked that d∗ = 〈N∗
η , aη : η ∈ I〉 is an (ℵǫ,P)-decomposition inside M that

is a blow up of d.

‘Blowing down’ a decomposition is more delicate and requires two tech-
nical Lemmas, Lemma 3.12 and Lemma 3.13 that assert the existence of
ℵǫ-submodels of a given ℵǫ-saturated structure with certain properties.

Lemma 5.7 Suppose that M is ℵǫ-saturated and d = 〈Nη, aη : η ∈ I〉 is
a prime (ℵǫ,P)-decomposition inside M . For any ℵǫ-saturated N0 � N〈〉

such that for every η ∈ SuccI(〈〉), either tp(aη/N〈〉) does not fork over N0

or tp(aη/N〈〉 is regular and non-orthogonal to N0. Then there is a prime
(ℵǫ,P)-decomposition d0 inside M with N d0

〈〉 = N0 such that d is a blow up
of d0.

Proof. Choose an enumeration 〈ηi : i < i∗〉 of I as in the proof of
Lemma 5.6. That is, η0 = 〈〉, ηi ⊳ ηj implies i < j, and ηi ∈ SuccI(〈〉) if and
only if 1 ≤ i < α∗ for some α∗ ≤ i∗.

Put N0
η0

= N0. For 1 ≤ i < i∗ we inductively construct N0
ηi
to satisfy:

• N0
ηi
� Nηi and N0

ηi ⌣
N0

(η−
i

)

N1
η−i

• Nηi is ℵǫ-prime over N0
ηi
∪Nη−i

• aηi ∈ N0
ηi
and N0

ηi
is ℵǫ-prime over N0

ηi
∪ {aηi}.
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To accomplish this, for each 1 ≤ i < α∗, use Lemma 3.13 to define N0
ηi

(where M1 = N0, M = Nηi). We can take N0
ηi
to be the N there, and we can

take a∗ to be aηi . Similarly, for α∗ ≤ i < i∗ we apply Lemma 3.12, where M
is taken to be Nη−i

, M1 is N
0
η−i
, M2 is Nη−−

i
, a is aηi , and taking N0

ηi
to be the

N produced there.

Definition 5.8 Suppose M is ℵǫ-saturated and
(

B

A

)

∈ ΓP(M). We say that

an ǫ-finite subset W ⊆ M has a base W0 ⊆ W respecting
(

B

A

)

if A ⊆ W0,
W0 ⌣

A
B, and W is dominated by B over W0.

Lemma 5.9 If d = 〈Nη, aη : η ∈ I〉 is a (ℵǫ,P)-decomposition inside M over
(

B

A

)

and V ⊆
⋃

η∈I Nη is ǫ-finite, then there is an ǫ-finite W with V ⊆ W

and W \ V ⊆ N〈〉 that has a base W0 ⊆ W ∩N〈〉 respecting
(

B

A

)

.

Proof. Without loss, we may assume A ⊆ V . It follows from the defi-
nition of an (ℵǫ,P)-decomposition inside M over

(

B

A

)

that B⌣
A
N〈〉 and that

B dominates
⋃

η∈I Nη and hence V over N〈〉. As both B and V are ǫ-finite,
it follows from superstability that there is an ǫ-finite C ⊆ N〈〉 such that
BV ⌣

C
N〈〉. So B dominates V over C. Again, without loss, A ⊆ C. Take

W = V ∪ C. Then W0 := W ∩N〈〉 is a base respecting
(

B

A

)

.

Lemma 5.10 Suppose W ⊆ M is ǫ-finite and has a base W0 ⊆ W respecting
(

B

A

)

and that N � M is ℵǫ-prime over ∅, W0 ⊆ N , with N ⌣
A
B. Then there

is N [B] � M that is ℵǫ-prime over N ∪ B such that W ⊆ N [B] and such
that the two-element sequence 〈N,N [B]〉 is an (ℵǫ,P)-decomposition inside
M over

(

B

A

)

(taking a〈0〉 to be B).

Proof. As A,B,W are all ǫ-finite, N ⌣
A
B, W dominated by B over W0,

and the fact that tp(W/acl(W0∪B)) is stationary, it follows that tp(W/NB)
is ℵǫ-isolated. Thus, W ⊆ N [B] for some ℵǫ-prime model over N ∪ B.
Checking that the two element sequence is an (ℵǫ,P)-decomposition inside
M over

(

B

A

)

is routine.
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Proposition 5.11 If M is ℵǫ-saturated,
(

B

A

)

∈ ΓP(M), and the ǫ-finite set

W ⊆ M has a base W0 ⊆ W respecting
(

B

A

)

, then there is an (ℵǫ,P)-

decomposition d of M over
(

B

A

)

with W0 ⊆ N d

〈〉 and W ⊆ N d

〈0〉. Moreover, if

d0 is any (ℵǫ,P)-decomposition of M over
(

B

A

)

, then d can be chosen so that
PP(d,M) = PP(d0,M).

Proof. Suppose d0 = 〈Nη, aη : η ∈ I〉 is given. As dcl(a〈0〉) = dcl(B),
we may assume that a〈0〉 = B. Thus, B⌣

A
N〈〉. Choose a finite D ⊆ N〈〉 such

that A ⊆ D and W ⌣
DB

N〈〉B. By e.g., 1.18(9) of [Sh401] there is N1 � N〈〉

that is ℵǫ-prime over ∅, N1
⌣
A
D, and N〈〉 is ℵǫ-prime over N1 ∪D.

As for non-forking, we claim that the set {B,W0, N
1} is independent over

A. To see this, first recall that B⌣
A
W0 since W0 is a base respecting

(

B

A

)

.

As well, B⌣
A
N〈〉 since d is over

(

B

A

)

. Thus, B⌣
D
N〈〉. Thus, by our choice

of D and forking calculus, W0B⌣
D
N〈〉, so W0B⌣

D
N1 since N1 � N〈〉. But

now, as N1
⌣
A
D, we have N1

⌣
A
BW0 which gives the independence.

By Lemma 5.7, there is an (ℵǫ,P)-decomposition d1 inside M over
(

B

A

)

with N d1

〈〉 = N1. By Lemma 5.3(4) d1 is an (ℵǫ,P)-decomposition of M over
(

B

A

)

, so by Lemma 5.4 PP(d0,M) = PP(d1,M).
Next, let N2 � M be ℵǫ-prime over N1 ∪ W0. As B⌣

N1
W0, and the

ℵǫ-isolation of N1 we have N2
⌣
N1

B. Thus, by Lemma 5.6 there is a (ℵǫ,P)-

decomposition d2 insideM over
(

B

A

)

with N d2

〈〉 = N2. Again, by Lemma 5.3(4)

d2 is an (ℵǫ,P)-decomposition ofM over
(

B

A

)

and by Lemma 5.4 PP(d1,M) =
PP(d2,M).

Put N := N2. Clearly, W0 ⊆ N and we showed B⌣
N1

N . But, as B and

N1 are independent over A, B⌣
A
N . So, by Lemma 5.10 there is N [B] � M ,

ℵǫ-prime over N ∪ B, such that W ⊆ N [B] and 〈N,N [B]〉 is an (ℵǫ,P)-
decomposition inside M over

(

B

A

)

.
Finally, by Lemma 4.17 there is an (ℵǫ,P)-decomposition d3 of M over

(

B

A

)

end extending 〈N,N [B]〉. As N d3

〈〉 = N = N d2

〈〉 we conclude by Lemma 5.5

that PP(d3,M) = PP(d2,M). Thus, PP(d3,M) = PP(d0,M) and we finish.

We are finally ready to prove our main Theorem.
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Theorem 5.12 Suppose that M is ℵǫ-saturated and
(

B

A

)

∈ ΓP(M). Then
PP(d1,M) = PP(d2,M) for any two prime (ℵǫ,P)-decompositions d1, d2 of
M over

(

B

A

)

.

Proof. Suppose d1 = 〈Nη, aη : η ∈ I〉. By symmetry, it suffices to
prove that every p ∈ PP(d1,M) is in PP(d2,M). Fix such a p and choose
η ∈ I \ {〈〉} such that p 6⊥ Nη but p ⊥ Nη− . Choose q ∈ S(Nη) regular such
that p 6⊥ q and choose a finite V ⊆ Nη on which q is based and stationary. By
Lemma 5.9 there is an ǫ-finite W such that V ⊆ W ⊆ M that has a subset
W0 = W∩N〈〉 respecting

(

B

A

)

. Note that since p ⊥ N〈〉 we have p ⊥ W0, hence
q ⊥ W0. By applying Proposition 5.11 to W and d2, we get that there is a
prime (ℵǫ,P)-decomposition d

∗ of M over
(

B

A

)

with PP(d
∗,M) = PP(d2,M).

But, by construction, there is a type parallel to q (and hence non-orthogonal
to p) in S(N d2

〈0〉). As well, since B dominates W over W0 and B⌣
A
N〈〉 we

have W ⌣
W0

N〈〉. As q is based on W and q ⊥ W0, we have that q (and hence

p) is orthogonal to N〈〉. Thus, p ∈ PP(d
∗,M) = PP(d2,M).

The previous Theorem inspires the following definition.

Definition 5.13 For M ℵǫ-saturated and
(

B

A

)

∈ ΓP(M), PP(
(

B

A

)

,M) =
PP(d,M) for some (equivalently for every) prime (ℵǫ,P)-decomposition d

of M over
(

B

A

)

.

Corollary 5.14 Suppose that M is ℵǫ-saturated,
(

B

A

)

∈ ΓP(M), and that
d = 〈Nη, aη : η ∈ I〉 is a prime, (ℵǫ,P)-decomposition of M satisfying (1) N〈〉

is ℵǫ-prime over A; (2) B⌣
A
N〈〉; and (3) N〈0〉 is ℵǫ-prime over N〈〉∪B. Then,

for every p ∈ S(M) ∩ P, p ∈ PP(
(

B

A

)

,M) if and only if 〈0〉 E η(p), where
η(p) is the unique E-minimal η ∈ I satisfying p 6⊥ Nη (see Corollary 4.12).

Proof. Given d = 〈Nη, aη : η ∈ I〉 as above, let X = {ν ∈ I \ {〈〉} :
¬(〈0〉 E ν} and let I0 = I \ X. The conditions on d ensure that d0 :=
〈Nη, aη : η ∈ I0〉 is a prime, (ℵǫ,P)-decomposition of M above

(

B

A

)

. Thus,
by Theorem 5.12, for any p ∈ S(M) ∩P we have

p ∈ PP(

(

B

A

)

,M) ⇔ p ∈ PP(d0,M) ⇔ 〈0〉 E η(p)

The following characterization is analogous to Claim 1.24 of [Sh401].
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Proposition 5.15 Assume that M1 � M2 are ℵǫ-saturated and
(

B

A

)

∈ ΓP(M1).
Then the following are equivalent:

1. No p ∈ PP(
(

B

A

)

,M1) is realized in M2;

2. There is a prime (ℵǫ,P)-decomposition of M1 above
(

B

A

)

that is also a

prime (ℵǫ,P)-decomposition of M2 above
(

B

A

)

; and

3. Every prime (ℵǫ,P)-decomposition of M1 above
(

B

A

)

is also a prime

(ℵǫ,P)-decomposition of M2 above
(

B

A

)

.

Proof. (3) ⇒ (2) is immediate since prime (ℵǫ,P)-decompositions of
M1 over

(

B

A

)

exist.
(2) ⇒ (1): Let d = 〈Nη, aη : η ∈ I〉 be a prime (ℵǫ,P)-decomposition

of M1 above
(

B

A

)

and assume that there is e ∈ M2 \ M1 such that p =
tp(e/M1) ∈ PP(d,M1). Choose η ∈ I to be ⊳-minimal such that p 6⊥ Nη.
Note that 〈0〉 E η. By Fact 2.3(4) and because Nη,M1,M2 are ℵǫ-saturated,
we can replace e by the realization of a non-orthogonal regular type that
satisfies e⌣

Nη

M1. As e ∈ Cη(M2), {aν : ν ∈ SuccI(η)} is not maximal Nη-

independent subset of Cη(M2), so d is not a prime (ℵǫ,P)-decomposition of
M2 above

(

B

A

)

.
(1) ⇒ (3): Let d = 〈Nη, aη : η ∈ I〉 be a prime (ℵǫ,P)-decomposition of

M1 above
(

B

A

)

, and assume that it is not a prime (ℵǫ,P)-decomposition ofM2.
Then, by Definition 4.16, there is η ∈ I \ {〈〉} such that {aν : ν ∈ SuccI(η)}
is not a maximal, Nη-independent subset of Cη(M2). As both Nη and M2 are
ℵǫ-saturated, this implies that there is e ∈ Cη(M2) such that tp(e/Nη) ∈ P,
but e⌣

Nη

{aν : ν ∈ SuccI(η)}. By Lemma 4.17(5), d P-exhausts M1 over
(

B

A

)

so e⌣
Nη

M1. Thus, p = tp(e/M1) is an element of PP(
(

B

A

)

,M1) that is realized

in M2.

For pairs
(

B1

A1

)

and
(

B2

A2

)

from Γ(M), we consider two ways in which
(

B2

A2

)

can extend
(

B1

A1

)

, corresponding to the former having ‘more information’ or
‘appearing higher up in a P-decomposition.’

First, write
(

B1

A1

)

≤a

(

B2

A2

)

if both are from Γ(M), A1 ⊆ A2, B1 ⊆ B2,

B1 ⌣
A1

A2, and B2 dominated by B1 over A2. Intuitively, think of
(

B2

A2

)

as

being a ‘better approximation’ of (N,N ′, a).
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The next approximation, which should be thought of as ‘stepping up in
the tree’ is given by

(

B1

A1

)

≤b

(

B2

A2

)

if and only if A2 = B1, and tp(B2/A2) is
regular and is orthogonal to A1.

Finally, let ≤∗ be the transitive closure of ≤a ∪ ≤b.

Proposition 5.16 Fix an ℵǫ-saturated modelM and
(

B1

A1

)

,
(

B2

A2

)

from ΓP(M).

1. If
(

B1

A1

)

≤a

(

B2

A2

)

, then PP(
(

B1

A1

)

,M) = PP(
(

B2

A2

)

,M);

2. If
(

B1

A1

)

≤b

(

B2

A2

)

, then PP(
(

B2

A2

)

,M) is a proper subset of PP(
(

B1

A1

)

,M)

3. If
(

B1

A1

)

≤∗
(

B2

A2

)

then PP(
(

B2

A2

)

,M) ⊆ PP(
(

B1

A1

)

,M);

4. If A1 = A2 (whose common value we denote by A) tp(B1/A), tp(B2, A)
are both regular, and B1 ⌣/

A
B2, then PP(

(

B1

A

)

,M) = PP(
(

B2

A

)

,M).

5. If A1 = A2 = A and B1 ⌣
A
B2, then the sets PP(

(

B1

A

)

,M) and PP(
(

B2

A

)

,M)

are disjoint.

Proof. (1) LetN〈〉 � M be ℵǫ-prime over ∅ withA2 ⊆ N〈〉 andB2 ⌣
A2

N〈〉.

Let N〈〉 be ℵǫ-prime over N〈〉 ∪ B2, let a〈0〉 = B2, and let d = 〈Nη, aη :

η ∈ I〉 be a prime (ℵǫ,P)-decomposition of M over
(

B2

A2

)

end extending
〈N〈〉, N〈0〉〉. It follows easily by the forking calculus that d is also a prime

(ℵǫ,P)-decomposition of M over
(

B1

A1

)

. Thus, two applications of Theo-
rem 5.12 yield

PP(

(

B2

A2

)

,M) = PP(d,M) = PP(

(

B1

A1

)

,M)

(2) Given A1 ⊆ B1 = A2 ⊆ B2 ⊆ M with tp(B2/A2) ⊥ A1, first choose an
ℵǫ-prime N〈〉 � M containing A1 with B2⌣

A1

N〈〉. Note that tp(B2/A2) ⊥ N〈〉.

Let a〈〉 be an arbitrary element of N〈〉, let a〈0〉 := A2, and choose N〈0〉 � M
to be ℵǫ-prime over N〈〉 ∪ A2, with N〈0〉 ⌣

N〈〉A2

B2. Also, choose N〈0,0〉 � M to

be ℵǫ-prime over N〈0〉 ∪ B2 and let a〈0,0〉 := B2.
Let d0 be the three-element prime (ℵǫ,P)-decomposition 〈Nη, aη : η ∈

{〈〉, 〈0〉, 〈0, 0〉}〉 inside M above
(

B1

A1

)

. Next, by ‘collapsing’, let d′0 = 〈N ′
η, a

′
η :
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η ∈ {〈〉, 〈0〉}〉 be the two-element prime (ℵǫ,P)-decomposition inside M
above

(

B2

A2

)

, where N ′
〈〉 := N〈0〉, a

′
〈〉 := a〈0〉, N

′
〈0〉 := N〈0,0〉, and a′〈0〉 := a〈0,0〉.

Next, choose a prime (ℵǫ,P)-decomposition d
′ = 〈N ′

η, a
′
η : η ∈ I ′〉 of

M above
(

B2

A2

)

end extending d
′
0. It follows immediately from Theorem 5.12

that PP(
(

B2

A2

)

,M) = PP(d
′,M), so to obtain the inclusion PP(

(

B2

A2

)

,M) ⊆

PP(
(

B1

A1

)

,M) it suffices to construct a prime (ℵǫ,P)-decomposition d = 〈Nη, aη :

η ∈ J〉 inside M over
(

B1

A1

)

such that, for any p ∈ S(M) ∩ P, if p 6⊥ N ′
η but

p ⊥ N ′
η− for some η ∈ I ′ with 〈0〉 E η′, there is η ∈ J such that 〈0〉 E η,

p 6⊥ Nη, but p ⊥ Nη− .
We accomplish this as follows: Recall that Nη, aη were defined for η ∈

{〈〉, 〈0〉, 〈0, 0〉} above. Let J ′ ⊆ I ′ be {〈〉} ∪ {η ∈ I ′ : 〈0〉 E η}, and define a
function h with domain J ′ by h(η) := 〈0〉ˆη if η 6= 〈〉. That is, the function
h is ‘undoing’ the collapse given above. Let J = {〈〉, 〈0〉} ∪ {h(η : η ∈ J ′}),
and for each η ∈ J ′, put Nh(η) := N ′

η and ah(η) := a′η. Then d := 〈Nη, aη :

η ∈ J〉 is a prime (ℵǫ,P)-decomposition inside M above
(

B1

A1

)

, and for any
p ∈ PP(d

′,M), if p 6⊥ N ′
η for some η ∈ J ′, then p 6⊥ Nh(η). Thus, d is as

required.
To show that the inclusion is strict, choose any regular type q ∈ S(N〈0〉)

that is non-orthogonal to tp(B2/N〈0〉). It is easy to check that the non-forking

extension of q to S(M) is an element of PP(
(

B1

A1

)

,M) \ PP(
(

B2

A2

)

,M).
(3) follows immediately from (1) and (2).
(4) By symmetry, it suffices to show that PP(

(

B2

A

)

,M) ⊆ PP(
(

B1

A

)

,M), so

fix a regular type p ∈ S(M) ∩P \ PP(
(

B1

A

)

,M). We will eventually produce

a prime (ℵǫ,P)-decomposition d2 inside M over
(

B2

A

)

with the property that
p 6⊥ Nη for some η satisfying ¬(〈0〉 E η), which suffices by Lemma 4.17(4)
and Theorem 5.12.

We begin by choosing an ℵǫ-prime (over ∅) N〈〉 � M that contains A, but
B1B2 ⌣

A
N〈〉. Note that B1 and B2 are domination equivalent over N〈〉.

Let a〈〉 ∈ N〈〉 be arbitrary, let N1 be ℵǫ-prime over N〈〉 ∪ B1, and let
a〈0〉 := B1. Then d1 := 〈Nη, aη : η ∈ {〈〉, 〈0〉}〉 is a two-element prime

(ℵǫ,P)-decomposition inside M over
(

B1

A

)

. Let d
′
1 = 〈Nη, aη : η ∈ I〉 be a

prime (ℵǫ,P)-decomposition of M over
(

B1

A

)

end extending d1. Next, let d
∗
1 =

〈Nη, aη : η ∈ J〉 be a prime (ℵǫ,P)-decomposition of M end extending d
′
1.

Let H = {η ∈ J : ¬(〈0〉 E η)}. Then H is a subtree of J , whose intersection
with I is {〈〉}. Furthermore, as p ∈ P, it follows from Corollary 4.12 that
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p 6⊥ Nη for some η ∈ J . However, since p 6∈ PP(
(

B1

A

)

,M), it follows from
Theorem 5.12 that p 6∈ PP(d

′
1,M), hence p 6⊥ Nη for some η ∈ H.

But now, choose N2 � M to be ℵǫ-prime over N〈〉∪B2. Let d2 := 〈Nη, aη :
η ∈ H〉ˆ(N2, B2). As B1 and B2 are domination equivalent over N〈〉, it is

easily checked that d2 is a prime (ℵǫ,P)-decomposition inside M over
(

B2

A

)

.
Let d∗2 = 〈Nη, aη : η ∈ I2〉 be any prime (ℵǫ,P)-decomposition inside M end
extending d2. But, as p 6⊥ Nη for some η ∈ H, it follows from independence
that p ⊥ Nν for any ν ∈ I2 satisfying 〈0〉 E ν. Thus, p 6∈ PP(

(

B2

A

)

,M) by
Theorem 5.12 again.

(5) Let N〈〉 � M be ℵǫ-prime over A with N〈〉⌣
A
B1B2 and choose an

ǫ-finite B0 ∈ N〈〉 arbitrarily. For ℓ = 1, 2, choose N〈ℓ〉 to be ℵǫ-prime over
N〈〉 ∪ Bℓ. Clearly,

d
′ := {(N〈〉, B0), (N〈0〉, B1), (N〈1〉, B1)}

is a three element, prime (ℵǫ,P)-decomposition insideM . By Lemma 4.15(2)
there is a prime, (ℵǫ,P)-decomposition d = 〈Nη, aη : η ∈ I〉 of M end extend-
ing d

′. It is easily checked that d satisfies the hypotheses of Corollary 5.14, as
does the modification formed by exchanging the roles of 〈0〉 and 〈1}. Thus,
for any p ∈ S(M) ∩ P, we have p ∈ PP(

(

B1

A

)

,M) if and only if 〈0〉 E η(p),

and that p ∈ PP(
(

B2

A

)

,M) if and only if 〈1〉 E η(p). As the elements 〈0〉 and

〈1〉 are incompatible, it follows that the sets PP(
(

B1

A

)

,M) and PP(
(

B2

A

)

,M)
are disjoint.

Corollary 5.17 Suppose that M is ℵǫ-saturated and that d = 〈Nη, aη : η ∈
I〉 is any weak P-decomposition inside M . Choose any incomparable nodes
η1, η2 ∈ I. If, for each ℓ = 1, 2, Aℓ ⊆ N−

ηℓ
is ǫ-finite on which tp(aηℓ/N

−
ηℓ
)

is based and stationary and Bℓ = acl(Aℓ ∪ {aηℓ}), then the sets PP(
(

B1

A1

)

,M)

and PP(
(

B2

A2

)

,M) are disjoint.

Proof. As η1 and η2 are incomparable, neither one is 〈〉, so let µ de-
note the meet η−1 ∧ η−2 . By incomparability again, there are distinct ordinals
α1 6= α2 such that µˆ〈α1〉 E η1, while µˆ〈α2〉 E η2. Choose an ǫ-finite
E ⊆ Mµ over which both types tp(aµˆ〈αℓ〉/Mµ) are based and stationary, and
let Cℓ = acl(aµˆ〈αℓ〉 ∪ E) for each ℓ. As C1 ⌣

E
C2 it follows from Proposi-

tion 5.16(5) that the sets PP(
(

C1

E

)

,M) and PP(
(

C2

E

)

,M) are disjoint. But,
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by Proposition 5.16(3) PP(
(

Bℓ

Aℓ

)

,M) ⊆ PP(
(

C1

E

)

,M) for each ℓ and the result
follows.

Proposition 5.18 Suppose that M is ℵǫ-saturated and p1 ∈ S(A1), p2 ∈
S(A2) are non-orthogonal, trivial, regular types over ǫ-finite subsets of M .
If, for ℓ = 1, 2, Iℓ is a maximal, Aℓ-independent subset of pℓ(M), then there
are cofinite subsets Jℓ ⊆ Iℓ and a bijection h : J1 → J2 such that

PP(

(

c

A1

)

,M) = PP(

(

h(c)

A2

)

,M)

for every c ∈ J1.

Proof. Let D = A1 ∪ A2. For ℓ = 1, 2, let Jℓ := {c ∈ I1 : c⌣
Aℓ

D} and

let qℓ denote the non-forking extension of pℓ to S(D). Then Jℓ is a cofinite
subset of Iℓ and is a maximal, D-independent subset of qℓ(M). As the regular
types are trivial and non-orthogonal, p1 and p2 are not almost orthogonal, so
as M is ℵǫ-saturated, we have that for every c ∈ q1(M), there is c′ ∈ q2(M)
such that c1 ⌣/

D
c2. It follows that there is a unique bijection h : J1 → J2

satisfying c⌣/
D
h(c) for each c ∈ J1. Thus, PP(

(

c

A1

)

,M) = PP(
(

h(c)
A2

)

,M) by

Clauses (1) and (4) of Proposition 5.16.

6 Decompositions and non-saturated models

Until this point, we have been looking at various flavors of decompositions
of ℵǫ-saturated models. It would be desirable to see what effect these results
have on understanding decompositions of arbitrary models. In the first sub-
section, given an arbitrary model M and a sufficiently saturated elementary
extensionM∗, one can produce an (ℵǫ,P)-decomposition d = 〈Mη, aη : η ∈ I〉
of M∗ that ‘enumerates M as slowly as possible.’ In particular, given any
ǫ-finite A ⊆ M , there is a finite subtree J ⊆ I, an elementary submodel
MJ � M∗ that is ℵǫ-prime over

⋃

η∈J Mη, and an ǫ-finite B, A ⊆ B ⊆ M
that satisfy M ⌣

B
MJ .

In the second subsection, we obtain a weak uniqueness result for P-
decompositions of unsaturated modelsM satisfying certain constraints. Whereas
these conditions seem contrived, Theorem 6.19 plays a major role in [3].
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6.1 Large extensions of weak decompositions

As usual, we assume that P is a set of stationary, regular types closed under
isomorphism and non-orthogonality, and we assume that our theory T is
superstable with P-NDOP.

Definition 6.1 Suppose that M � M∗ are given, with M arbitrary, but M∗

sufficiently saturated. A prime (ℵǫ,P)-decomposition d
∗ = 〈Nη, aη : η ∈ I〉

of M∗ respects M if there is a continuous, elementary chain 〈Mα : α ≤ α∗〉
of ℵǫ-saturated elementary substructures of M∗ with

⋃

α≤α∗ Mα = M∗; a
sequence 〈dα : α ≤ α∗〉 of prime (ℵǫ,P)-decompositions of Mα with dα∗ = d

∗;
and a sequence 〈aα : α ≤ α∗〉 of elements from M∗ that satisfy the following
constraints:

1. M0 = N〈〉 and the sets M and M0 are independent;

2. If β ≤ α then dα end extends dβ with dγ =
⋃

dα for γ a limit ordinal;

3. The trees Iα indexing the decompositions dα satisfy |Iα+1 \ Iα| ≤ 1 for
each α < α∗;

4. If Iα+1\Iα = {η}, thenNη is ℵǫ-prime overNη−∪{aα} andNη ⌣
N

η−aα

MMα.

Lemma 6.2 Suppose that M � M∗, where M∗ is saturated and ||M∗|| >
||M || + 2|T |. Then a prime (ℵǫ,P)-decomposition d

∗ of M∗ respecting M
exists.

Proof. We recursively construct sequences 〈Mα〉, 〈dα〉 and 〈aα〉 with
the additional constraint of ||Mα|| < ||M∗|| for each α < α∗ as follows. First,
choose N〈〉 � M∗ to be ℵǫ saturated with N〈〉⌣M , let M0 = N〈〉, I0 = {〈〉},

and d0 = 〈N〈〉〉. For α ≤ α∗ a limit ordinal, simply take unions.
Next, fix an enumeration 〈ci : i < λ〉 of M∗ with λ = ||M∗|| and the

elements of M forming an initial segment and assume that Mβ and dβ have
been defined. Let c∗ be the least element of M∗ that is not an element of
Mβ. There are now two cases, depending on tp(c∗/Mβ).

Case 1: tp(c∗/Mβ) ⊥ Pactive.

In this case, choose a regular type q ∈ S(Mβ) non-orthogonal to tp(c
∗/Mβ).

As M∗ is saturated, choose an element aβ ∈ M∗ realizing q with aβ ⌣/
Mβ

c∗. Let
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dβ+1 = dβ, and let Mβ+1 � M∗ be ℵǫ-prime over Mβ ∪ {aβ} and satisfying
Mβ+1 ⌣

Mβaβ

M .

Case 2: tp(c∗/Mβ) 6⊥ Pactive.

In this case, choose a regular type q ∈ S(Mβ)∩Pactive non-orthogonal to
tp(c∗/Mβ). By Corollary 4.12, there is a unique η ∈ Iβ such that q 6⊥ Nη, but
q ⊥ Nη− (if η 6= 〈〉). Without loss, we may assume that q does not fork over
Nη. As M

∗ is saturated, we can choose an element aβ ∈ M∗ realizing q with
aβ ⌣/

Mβ

c∗. Let γ be the least ordinal such that ν := ηˆ〈γ〉 6∈ Iβ. Choose Nν �

M∗ to be ℵǫ-prime over Nη ∪ {aβ} and satisfying Nν ⌣
Nη∪{aβ}

MMβ. As Nη is

ℵǫ-saturated, it follows by Fact 2.3(2) that Nν ⌣
Nη

Mβ. Choose Mβ+1 � M∗ to

be ℵǫ-prime over Mβ ∪Nν and satisfying Mβ+1 ⌣
MβNν

M . Let Iβ+1 = Iβ ∪{ν},

let Let dβ+1 = dβˆ〈Nν〉, and let Mβ+1 � M∗ be ℵǫ-prime over Mβ ∪Nν .
Note that in either case, R∞(c∗/Mβ+1) < R∞(c∗/Mβ), so by continuing

in this fashion, c∗ will be contained in Mβ+k for some finite k.

Suppose that M � M∗, and that d∗ is a prime (ℵǫ,P)-decomposition of
M∗ respecting M , as witnessed by the sequences 〈Mα〉, 〈dα〉, 〈aα〉. Let (⋆)α
denote the statement:

For all finite sets A ⊆ M , B ⊆ Mα, and finite subtree t ⊆ Iα,
there is a finite set A∗ ⊆ M containing A and a finite subtree
t∗ ⊆ Iα containing t such that tp(B/

⋃

{Nρ : ρ ∈ t∗}) is ℵǫ-
isolated and M ⌣

A∗
{Nρ : ρ ∈ t∗}B.

Lemma 6.3 (⋆)α holds for all α ≤ α∗.

Proof. We prove this by induction on α. For α = 0, this is imme-
diate since M0 = N〈〉 and is independent from M over ∅, hence over any
finite subset of M . For α a non-zero limit ordinal, this follows easily from
superstability.

For the successor case, fix α = β + 1 and assume that (⋆)β holds. The
verification of (⋆)α splits into two cases, depending on whether or not Iβ is
extended. Here, we discuss the case where Iα = Iβ ∪ {ν} and leave the other
(easier) case to the reader. So Nν is ℵǫ-prime over Nν− ∪ {aβ}, Nν ⌣

N
ν−

Mβ,

and Mα is ℵǫ-prime over both sets
⋃

{Nρ : ρ ∈ Iα} and Mβ ∪Nν .
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Towards verifying (⋆)α, fix finite sets A ⊆ M , B ⊆ Mα, and a finite
subtree t ⊆ Iα. Begin by choosing finite sets Cν ⊆ Nν and Cβ ⊆ Mβ such
that

stp(B/CβCν) ⊢ stp(B/MβNν)

Without loss, we may assume aβ ∈ Cν and Cη ∪ Cβ ⊆ B.
Next, by superstability choose finite sets D ⊆

⋃

{Nρ : ρ ∈ Iβ} and
A′ ⊆ M containing A such that

Cν ⌣
DA′

⋃

{Nρ : ρ ∈ Iβ}M

. Similarly, choose finite sets Eβ ⊆ Mβ and A′′ ⊆ M containing A′ such that

B ⌣
EβA

′′
MβM

Without loss, we may assume D ⊆ Eβ, ν ∈ t, and D ⊆
⋃

{Nρ : ρ ∈ s}, where
s := t \ {ν}.

Now apply (⋆)β to the triple (A′′, Eβ, s) and get a finite set A∗ ⊆ M and
a finite tree s∗ ⊆ Iβ. Let t

∗ := s∗∪{ν}. We claim that (A∗, t∗) are as desired
in the statement of (⋆)α.

Claim 1: B/
⋃

{Nρ : ρ ∈ t∗} is ℵǫ-isolated.

To see this, first note that Cβ ⊆ Mβ is ℵǫ-isolated over
⋃

{Nρ : ρ ∈ s∗}.
Since Mβ ⌣

N
ν−

Nν and Nν− is ℵǫ-saturated, it follows that Cβ is ℵǫ-isolated

over
⋃

{Nρ : ρ ∈ t∗} as well. Also, Cν ⊆ Nν , so it follows immediately
that CβCν/

⋃

{Nρ : ρ ∈ t∗} is ℵǫ-isolated as well. But, as stp(B/CβCν) ⊢
stp(B/

⋃

{Nρ : ρ ∈ t∗}, the result follows.

Claim 2: M ⌣
A∗

N0NνB, where N0 :=
⋃

{Nρ : ρ ∈ s∗}.

First, it follows from our application of (⋆)β that M ⌣
A∗

N0Eβ. We next

consider Cν . By the definition of Eβ and A′′ we have Cν ⌣
EβA

′′
MβM . So, by

monotonicity, we have Cν ⌣
EβA

∗
N0M , hence Cν ⌣

EβA
∗N0

M . Thus, the transi-

tivity of non-forking yields

M ⌣
A∗

N0EβCν
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Finally, our choice of Nν gives Nν ⌣
N

ν−aβ

MβM . But aβ ∈ Cν ⊆ Nν , so

Nν ⌣
N

ν−Cν

N0EβA
∗M . As Nν− ⊆ N0, monotonicity yields

M ⌣
N0EβA

∗
Nν

and we finish by quoting the transitivity of non-forking.

Proposition 6.4 Suppose that M � M∗ with M∗ saturated and ||M∗|| >
||M ||+2|T |. If d∗ is a prime (ℵǫ,P)-decomposition of M∗ respecting M , then
for every finite A ⊆ M and every finite subtree t ⊆ Id∗, there is a finite set
A∗ ⊆ M containing A, a finite subtree t∗ ⊆ Id∗ extending t, and Mt∗ � M∗

that is ℵǫ-prime over
⋃

{Nρ : ρ ∈ t∗} such that A ⊆ Mt∗, but M ⌣
A∗

Mt∗.

Proof. Fix finite A ⊆ M and t ⊆ Id∗ . IfM
∗ = Mα∗ , then applying (⋆)α∗

to the triple (A,A, t) yields a finite set A∗ ⊆ M containing A and t∗ such
that tp(A/

⋃

{Nρ : ρ ∈ t∗}) is ℵǫ-isolated and M ⌣
A∗

{Nρ : ρ ∈ t∗}. Thus, as

M∗ is saturated, we can find Mt∗ � M∗ containing A that is both ℵǫ-prime
over

⋃

{Nρ : ρ ∈ t∗} and is independent from M over A∗.

6.2 A weak uniqueness theorem for P-decompositions

The goal of this subsection is Theorem 6.19, which is used in [3]. As we only
seek a sufficient condition, the statements and assumptions in Theorem 6.19
are inelegant at best. Additionally, throughout this subsection we assume

T is totally transcendental with P-NDOP and P = Pactive

The assumption of the theory T being totally transcendental is only used
in Lemma 6.7, and one could easily imagine it being replaced by much weaker
assumptions. We begin with a standard fact about superstable theories.

Lemma 6.5 Suppose that p ∈ S(A) is stationary and that J is an infinite,
A-independent set of realizations of p. Let B ⊇ A ∪ J , let p′ ∈ S(B) denote
the non-forking extension of p, and let C ⊇ B be constructible over B. Then
p′ has a unique extension to S(C).
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Definition 6.6 Given any model M , a Pr-decomposition d = 〈Mη, aη : η ∈
I〉 inside M is a weak P-decomposition insideM with the additional property
that tp(aν/Mν−) ∈ P (hence is regular) for every ν ∈ I \ {〈〉}. d is a Pr-
decomposition of M if, in addition, for every η ∈ I, {aν : ν ∈ Succ(η)}
is a maximal Mη-independent set of realizations of types in P. A Pr-
decomposition of M is P-finitely saturated if, for every ǫ-finite A ⊆ M and
b ∈ M such that tp(b/A) ∈ P, there is some η ∈ I such that tp(b/A) 6⊥ Mη.

As notation, given a Pr-decomposition d = 〈Mη, aη : η ∈ I〉 of M , let
I ′ = I \ {〈〉}. For each η ∈ I ′, let pη = tp(aη/Mη−) and fix an ǫ-finite
Aη ⊆ Mη− over which pη is based and stationary. We let PP

(

aη
Aη

)

abbreviate

PP(
(

acl(Aηaη)
Aη

)

,C). Note that by Proposition 5.16(1), PP

(

aη
Aη

)

= PP

(

aη
A′

η

)

for

any ǫ-finite A′
η ⊆ Mη− on which pη is based and stationary.

Let Cη := {ρ ∈ I ′ : ρ− = η− and pρ = pη} and let Jη := {aρ : ρ ∈ Cη}.

Lemma 6.7 Fix any Pr-decomposition d = 〈Mη, aη : η ∈ I〉 of M and
choose any η ∈ I ′ for which Cη is infinite. Denote pη, Aη, Cη, Jη by p,A,C, J ,
respectively. For any b ∈ C realizing p|A, if b⌣

A
Mη−J then b⌣

A
M .

Proof. Fix any element b such that b⌣
A
Mη−J . Let D :=

⋃

{Mρ : ρ ∈

C} and let E :=
⋃

{Mν : ν ∈ I}. First, as J is infinite,

tp(b/Mη−J) ⊢ tp(b/D)

by Lemma 6.5. Next, tp(b/D) ⊢ tp(b/E) by the independence of the tree,
orthogonality, and the non-forking calculus. Next, form a maximal, contin-
uous elementary chain of submodels 〈Mα : α < β〉 of M such that M0 is
constructible over E, and given Mα, Mα+1 is constructible over Mα ∪ {bα}
for some bα such that tp(bα/Mα) is regular. (Here is where we use the as-
sumption that T is totally transcendental.) Clearly, the maximality of the
sequence implies that the union is all of M . However, by Lemma 6.5 and the
fact that tp(bα/Mα) ⊥ P (which follows from P = Pactive) we conclude that

tp(b/E) ⊢ tp(b/M)

That b⌣
A
M follows by the transitivity of non-forking.
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Lemma 6.8 Suppose that d = 〈Mη, aη : η ∈ I〉 is a Pr-decomposition of M
and there is q ∈ P and η ∈ max(I ′) such that q 6⊥ Mη, but q ⊥ Mη−. Then,
for any ν ∈ I,

ν ⊳ η if and only if q ∈ PP

(

aν
Aν

)

Proof. First, assume that ν ⊳ η. Let d0 := 〈Mδ, aδ : ν− E δ E η〉. As
in the proof of Lemma 5.6, we can blow up d0 to a sequence d

∗
0 := 〈M∗

δ , aδ :
ν− E δ E η〉, where d

∗
0 is an (ℵǫ,P)-decomposition inside C, with q 6⊥ M∗

η ,

but q ⊥ M∗
η− . Thus, q ∈ PP

(

aν
Aν

)

by its definition and Lemma 4.17(3).

Conversely, assume by way of contradiction that q ∈ PP

(

aν
Aν

)

but ¬(ν ⊳η).
As ν 6= η and η ∈ max(I ′), ν and η are incomparable. However, since
q ∈ PP

(a
η−

A
η−

)

from above, it follows from Corollary 5.17 that ν and η− are

comparable. Thus, η− ⊳ ν. But then, as q ⊥ Mη− and Mη ⌣
M

η−

aνMν− , it

follows that q is orthogonal to any chain starting with Mν− and aν .

Definition 6.9 Suppose S ⊆ P. A Pr-decomposition d = 〈Mη, aη : η ∈ I〉
(inside C) supports S if, for every q ∈ S, there is a (unique) η(q) ∈ max(I ′)
such that q 6⊥ Mη(q), but q ⊥ Mη(q)− . If d supports S, we let

• Field(S) := {η(q) ∈ max(I ′) : q ∈ S}; and

• IS := {ν ∈ I : ν ⊳ η for some η ∈ Field(S)}.

Lemma 6.10 Suppose S ⊆ P and fix a Pr-decomposition d = 〈Mη, aη : η ∈
I〉 (inside C) that supports S. Then:

1. If ν ∈ IS, then tp(aν/Mν−) is trivial;

2. for ν ∈ I ′, ν ∈ IS if and only if PP

(

aν
Aν

)

∩ S 6= ∅; and

3. if, for all δ ∈ IS, there is a single ǫ-finite A∗ ⊆ Mδ such that tp(aν/Mδ)
is based and stationary on A∗ for every ν ∈ SuccIS(δ), then for any
ν ∈ SuccIS(δ) and any b ∈ C realizing tp(aν/A

∗), if PP

(

b

A∗

)

∩ S 6= ∅,
then b⌣

A∗
Mδ.
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Proof. (1) It follows immediately from the definition ofPr-decompositions
and IS that tp(aν/Mν−) ∈ P and has positive P-depth. Hence, the type is
trivial by Lemma 3.11.

(2) This is immediate from unpacking the definitions and Lemma 6.10.
(3) Choose A∗, δ, ν, and b as required. Choose r ∈ PP

(

b

A∗

)

∩S and look at
η(r) ∈ max(I ′). By Lemma 6.10, δ ⊳ η(r). Choose µ ∈ SuccIS(δ) satisfying
µ ⊳ η(r). By our choice of A∗ and Lemma 6.10 again, r ∈ PP

(

aµ
A∗

)

, so by
Proposition 5.16(5), b⌣/

A∗
aµ But then, as tp(b/A∗) is a trivial regular type, b

is domination equivalent to aµ over A∗. Since aµ ⌣
A∗

Mδ, we conclude that the

same holds for b.

Definition 6.11 Fix S ⊆ P and a model M . A Pr-decomposition d =
〈Mη, aη : η ∈ I〉 of M is S-reasonable if

1. d is P-finitely saturated and supports S;

2. for each η ∈ I ′:

(a) Cη ∩ IS is infinite;

(b) pρ = pη iff pρ 6⊥ pη for every ρ ∈ I ′ such that ρ− = η−; and

(c) If b ∈ C and tp(b/Aη) = pη|Aη
and PP

(

b

Aη

)

∩S 6= ∅, then b⌣
Aη

Mη− .

Definition 6.12 A weak bijection between two infinite sets I and J is a
bijection h : I ′ → J ′, where I ′, J ′ are cofinite subsets of I, J , respectively.

As notation, for η ∈ IS \ {〈〉}, let JS
η = {aρ : ρ ∈ Cη ∩ IS}.

Proposition 6.13 Fix a set S ⊆ P and a model M . For ℓ = 1, 2, let
dℓ = 〈Mηℓ , aηℓ : ηℓ ∈ Iℓ〉 be two S-reasonable Pr-decompositions of M . For
any ηℓ ∈ ISℓ , choose η3−ℓ ∈ I3−ℓ such that pη1 6⊥ pη2. There is a weak bijection

h : JS
η1

→ JS
η2

satisfying PP

(

a

Aη1

)

= PP

(

h(a)
Aη2

)

for each a ∈ dom(Jη1).

Proof. For definiteness, assume we have that η1 ∈ IS1 . Let E = Aη1 ∪
Aη2 . For ℓ = 1, 2, let pℓ ∈ S(E) be parallel to pηℓ , let J

′
ℓ = {a ∈ Jηℓ : a ⌣

Aηℓ

E},

and let

JS
ℓ = {a ∈ J ′

ℓ : PP

(

a

Aηℓ

)

∩ S 6= ∅},
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which is a cofinite subset of JS
ηℓ
. In particular, JS

1 6= ∅ since Cη1 ∩ IS is
infinite. As well, choose a maximal E-independent set J∗

ℓ of realizations of
pℓ in C extending Jℓ. As p1 and p2 are non-orthogonal trivial regular types,
it follows from Proposition 5.18 that there is a unique bijection h : J∗

1 → J∗
2

satisfying h(a)⌣/
E
a for each a ∈ J∗

1 .

As aℓ ⌣
Aηℓ

E for ℓ = 1, 2 and every aℓ ∈ J∗
ℓ , by Proposition 5.16(1) we have

that

PP

(

a

Aη1

)

= PP

(

a

E

)

= PP

(

h(a)

E

)

= PP

(

h(a)

Aη2

)

for each a ∈ J∗
ℓ .

Claim. For every a ∈ JS
1 , h(a) ∈ JS

2 .

Proof of Claim: Choose any a ∈ JS
1 . We first find an element b ∈ Jη2

such that h(a)⌣/
E
b. Since a = aρ for some ρ ∈ IS1 satisfying ρ− = η−1 ,

PP

(

a

Aη1

)

∩ S 6= ∅. As the two sets are equal, PP

(

h(a)
Aη2

)

∩ S 6= ∅ as well. As

d2 is S-reasonable, this implies h(a) ⌣
Aη2

Mη−2
Next, we argue that h(a) must

fork with Jη2 over Mη−2
, because if this were not the case, then by Lemma 6.7

we would have h(a)⌣
E
M . But, as a⌣/

E
h(a), the fact that pη2 has weight one

would imply that a⌣
E
M , which is absurd since a ∈ M .

Thus, h(a) forks with Jη2 overMη−2
. By triviality, there is a unique b ∈ Jη2

such that h(a) ⌣/
M

η
−
2

b. However, as both h(a) and b are free from Mη−2
over

Aη2 , it follows that h(a) and b fork over Aη2 , completing the first part of our
argument.

Next, since h(a) realizes p2, it is free from E over Aη2 . As pη2 has weight
one, the last two statements imply that b is free from E over Aη2 as well.
Thus, b ∈ J ′

2. As well, we have that PP

(

a

E

)

= PP

(

b

E

)

, so the latter has
non-empty intersection with S. Thus, b ∈ JS

2 .
Finally, note that both h(a) and b are elements of J∗

2 that fork with each
other over E. Thus, h(a) = b by the E-independence of J∗

2 . So h(a) ∈ JS
2 ,

completing the proof of the Claim.

It follows from the Claim that JS
2 is non-empty. Once we know this, the

situation becomes symmetric, so by running the Claim backwards, h−1 maps
JS
2 into JS

1 . That is, the restriction of h to JS
1 is a bijection with JS

2 , which
completes the proof of the Proposition.
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We set some notation about partial maps between trees. Given a tree I,
a large subtree of I is a non-empty (downward closed) subtree J such that
for every η ∈ J , SuccI(η) \ J is finite. Given two trees J and K, an almost
embedding h from J to K has dom(h) a large subtree of J , range(h) ⊆ K,
h(〈〉J) = 〈〉K , and for all η, ν ∈ dom(h),

η ⊳ ν if and only if h(η) ⊳ h(ν)

The trees J and K are almost isomorphic if there is an almost embedding h
from J to K in which range(h) is a large subtree of K.

For J any tree and ν ∈ J , let JDν be the tree with root ν and universe
{η ∈ J : η D ν}. Given two trees J and K and ν ∈ J , µ ∈ K, an almost
embedding h from J to K over (ν, µ) is an almost embedding from JDν to
KDµ.

Finally, if J and K are trees indexing decompositions, we call a pair
(η, ν) ∈ J × K PP-equivalent if either η = 〈〉 = ν, or both η, ν 6= 〈〉 and
PP

(

aη
Aη

)

= PP

(

aν
Aν

)

. An almost PP-embedding from J to K is an almost

embedding h from J to K with the pair (η, h(η)) PP-equivalent for each
η ∈ dom(h). Note that if h is an almost PP-embedding and h(η) = ν,
then the restriction of h to JDη := {δ ∈ dom(h) : δ D η} is an almost
PP-embedding over (η, ν).

Given all of this notation, the proof of the following Corollary simply
involves successively iterating Proposition 6.13, using the fact that each de-
composition is P-finitely saturated.

Corollary 6.14 Fix a set S ⊆ P and a model M . For ℓ = 1, 2, suppose that
dℓ = 〈Mηℓ , aηℓ : ηℓ ∈ Iℓ〉 are S-reasonable Pr-decompositions of M with the
additional property that for each ℓ and νℓ ∈ Iℓ,

{p : there is ηℓ ∈ Succ(νℓ) such that pηℓ = p ∧ PP

(

aηℓ
Aηℓ

)

∩ S 6= ∅}

is finite. Then:

1. For ℓ = 1, 2, there is an almost PP-embedding h from ISℓ to IS3−ℓ; and

2. For ℓ = 1, 2 and any PP-equivalent pair (ηℓ, η3−ℓ) ∈ ISℓ × IS3−ℓ there is
an almost P-embedding from ISℓ to IS3−ℓ over (ηℓ, η3−ℓ).
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If we wish to conclude more, namely that the trees IS1 and IS2 are almost
isomorphic, then we need show that the almost embeddings given above pre-
serve lengths, i.e., that lg(h(η)) = lg(η) for every η ∈ dom(h). To accomplish
this, we need to put additional constraints on the shapes of the trees IS. The
conditions we require are severe, but will be easily satisfied in our construc-
tion in [3].

Definition 6.15 A two-coloring of a tree I is a sequence 〈Eη : η ∈ I〉 where
each Eη is an equivalence relation on Succ(η) with at most two classes, each
of which is infinite. (If Succ(η) = ∅, then of course Eη is empty as well.) A
node η ∈ I has uniform depth n if every branch of the tree IDη has length
exactly n. A node η often has unbounded depth if every large subtree J ⊆ IDη

has an infinite branch. A node η is an (m,n)-cusp if there are infinite sets
Am, An, B ⊆ Succ(η) such that

1. the set Am ∪ An is pairwise Eη-equivalent;

2. each δ ∈ Am has uniform depth m;

3. each ρ ∈ An has uniform depth n; and

4. each γ ∈ B is often unbounded.

A cusp is an (m,n)-cusp for some m 6= n.
Fix any function Φ : ω → ω. We say the two-colored tree I is Φ-proper

if, for every node η ∈ I,

1. either η has uniform depth n for some n, or else η often has unbounded
depth;

2. if η is an (m,n)-cusp, then lg(η) = Φ(m− n);

3. if Eη has two classes, then η is a cusp;

4. if J is a large subtree of I, η ∈ J is often unbounded, then there is a
cusp ν ∈ J with ν D η.

Note that if I is a two-colored tree satisfying the conditions above, then
for every γ ∈ I that is of any uniform depth k, there are a unique η, δ
satisfying δ E γ, η = δ−, η is a cusp, and δ has uniform depth n for some
n ≥ k.

39



Lemma 6.16 Suppose that M,S, d1, d2 satisfy the assumptions of Corol-
lary 6.14 and additionally assume that both IS1 , I

S
2 , when two-colored by the

relations Eη defined by Eη(δ, ρ) iff δ− = η = ρ− and pδ = pρ, are Φ-proper
for the same function Φ. Then for every PP-equivalent pair (η, ν) ∈ IS1 × IS2 ,

1. η is often unbounded in IS1 if and only if ν is often unbounded in IS2 ;

2. for any n, η has uniform depth n if and only if ν has uniform depth n;

3. if lg(η) = lg(ν) and η has uniform depth n for some n, then any almost
PP-embedding over (η, ν) preserves lengths; and

4. if lg(η) ≤ lg(ν) and η is an (m,n)-cusp, then ν is also an (m,n)-
cusp, lg(η) = lg(ν), and for any almost PP-embedding h over (η, ν),
lg(h(δ)) = lg(δ) for all δ ∈ dom(h)∩Succ(η) of uniform depth m or n;

5. if lg(η) = lg(ν) then every almost PP-embedding over (η, ν) preserves
lengths; and

6. if lg(η) = lg(ν), then the number of Eη-classes in IS1 equals the number
of Eν-classes in IS2 .

Proof. (1) First assume that η is often unbounded. By Corollary 6.14(2),
choose an almost PP-embedding h from IS1 to IS2 over (η, ν). Choose a
strictly ⊳-increasing sequence 〈ηn : n ∈ ω〉 from dom(h) with η0 = η. Then
〈h(ηn) : n ∈ ω〉 is a strictly ⊳-increasing sequence in IS2 with h(η0) = ν. Thus,
ν cannot have any finite uniform depth, so it must be often unbounded by
properness. The converse is symmetric.

(2) Suppose that ν has uniform depth n. Then by (1), η has uniform
depth m for some m. Arguing as in (1), m ≤ n, since if we choose any
almost PP-embedding h from IS1 to IS2 over (η, ν), then the image of any
strictly ⊳-increasing sequence 〈ηi : i < m〉 with η0 = η would be a strictly
⊳-increasing sequence of length m over ν. But then, by symmetry, we would
also have n ≤ m, so n = m. The converse is symmetric.

(3) Suppose that h is any almost PP-embedding over (η, ν), where lg(η) =
lg(ν), η has uniform depth n. Then ν also has uniform depth n. So, every
maximal ⊳-increasing sequence extending η has length n, the image of any
such sequence under h is also a strictly ⊳-increasing sequence of length n, but
there is no strictly ⊳-increasing sequence of length more than n extending
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ν. Thus, h must map immediate successors to immediate successors, and
consequently preserve lengths.

(4) Suppose that η is an (m,n)-cusp and lg(η) ≤ lg(ν). Choose an
almost PP-embedding h from IS1 to IS2 over (η, ν). Choose Eη-equivalent
δ ∈ Succ(η) ∩ dom(h) of uniform depth m and ρ ∈ Succ(η) ∩ dom(h) of
uniform depth n. Choose µ ∈ IS2 and q ∈ S(M2

µ) such that pδ (which = pρ)
is non-orthogonal to q. By the definition of h, both h(δ), h(ρ) ∈ Succ(µ).
We argue that µ = h(η). To see this, first note that since h is ⊳-preserving,
h(η) ⊳ h(δ) and h(η) ⊳ h(ρ), so h(η) E µ. But, it follows from (2) that h(δ) is
uniformly of depth m and h(ρ) is uniformly of depth n. Thus, µ is an (m,n)-
cusp and hence lg(µ) = Φ(m−n) = lg(η). As we assumed that lg(η) ≤ lg(ν)
and h(η) = ν, we have that lg(µ) = lg(h(η)), hence µ = h(η) = ν. This
yields lg(ν) = lg(η). Finally, the argument above showed that h(δ) ∈ Succ(ν)
whenever δ ∈ dom(h) ∩ Succ(η) has uniform depth m or n.

(5) Assume that lg(η) = lg(ν) and fix any almost PP-embedding h from
IS1 to IS2 over (η, ν). Note that lg(h(µ)) ≥ lg(µ) for any µ ∈ dom(h) simply
because h is ⊳-preserving. We first consider the often unbounded nodes
µ ∈ dom(h). Specifically, we argue by induction on k that lg(h(µ)) = lg(µ)
for every often unbounded node µ ∈ dom(h) for which there is a cusp ζ D µ
with ζ ∈ dom(h) and lg(ζ) = lg(µ) + k.

When k = 0, this means that any such µ is itself a cusp, so lg(h(µ)) =
lg(µ) by (4). Next, assume that the statement holds for k, and choose µ ∈
dom(h) with some cusp ζ ∈ dom(h) with µ E ζ and lg(ζ) = lg(µ) + k + 1.
Choose ρ ∈ Succ(µ) with µ E ρ E ζ. Then lg(h(ρ)) = lg(ρ) by our inductive
assumption, so h(ρ) ∈ Succ(h(µ)), hence lg(h(µ)) = lg(µ) as well. Thus,
we have shown that lengths are preserved for all often unbounded nodes
µ ∈ dom(h).

Next, assume that γ ∈ dom(h) has uniform depth. By the remark fol-
lowing Definition 6.15, choose µ and δ such that µ is a cusp, µ = δ−, δ E γ,
and δ has uniform depth n for some n ≥ k. The last sentence of (4) im-
plies that lg(h(δ)) = lg(δ). Thus, lg(h(γ)) = lg(γ) follows from (3). So h is
length-preserving.

(6) As the hypotheses are symmetric, it suffices to prove that the num-
ber of Eη-classes is at most the number of Eν-classes. Using Corollary 6.14,
choose an almost PP-embedding h over (η, ν). By (5), h maps immedi-
ate successors of η to immediate successors of ν. As well, for each δ ∈
dom(h) ∩ Succ(η), pδ 6⊥ ph(δ). As non-orthogonality is an equivalence rela-
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tion on regular types, this implies that h maps Eη-classes to Eν-classes, and
maps distinct Eη-classes to distinct Eν-classes. As there are at most two
Eη-classes, the inequality follows.

Theorem 6.17 Fix a set S ⊆ P and a model M . For ℓ = 1, 2, suppose that
dℓ = 〈Mηℓ , aηℓ : η ∈ Iℓ〉 satisfy the hypotheses of Lemma 6.16. Then there is
an almost PP-isomorphism h from IS1 to IS2 .

Proof. Using Corollary 6.14, choose any almost PP-embedding h of IS1
to IS2 such that, for any δ ∈ dom(h), dom(h) ∩ Cδ is a cofinite subset of
Cδ and range(h) ∩ Ch(δ) is a cofinite subset of Ch(δ). From Lemma 6.16 we
know that h preserves levels and, for each node η ∈ dom(h), the number of
Eh(η)-classes is equal to the number of Eη-classes. It follows that range(h) is
a large subtree of IS2 , so h is an almost PP-isomorphism between IS1 and IS2 .

Finally, we exhibit an extreme case, whose hypotheses are satisfied in [3].

Definition 6.18 Fix S ⊆ P, a model M , and a function Φ : ω → ω. A
Pr-decomposition d = 〈Mη, aη : η ∈ I〉 of M is (S,Φ)-simple if

1. d supports S and P-finitely saturates M ;

2. for every η ∈ IS

(a) SuccIS(η) is empty or infinite, but Eη is trivial, i.e., pν = pµ for
all ν, µ ∈ SuccIS(η);

(b) η is either of some finite uniform depth or is a cusp; and

(c) if η is an (m,n)-cusp, then Φ(m− n) = lg(η).

Theorem 6.19 Fix a set S ⊆ P and a model M , and a function Φ : ω → ω.
If d1 and d2 are both (S,Φ)-simple Pr-decompositions of M , then the trees
IS1 and IS2 are almost PP-isomorphic.

Proof. Because of Theorem 6.17, we only need to verify that the hy-
potheses of Lemma 6.16 are satisfied for each of the decompositions. But
this is routine, once one notes that Clause 2(b) is satisfied because of the
triviality of Eη and Lemma 6.10(3).
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