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Everything begins with the work of Robert Vaught.

Fix T , a complete theory in a countable language. Call T small if
Sn(∅) is countable for each n.

A dichotomy:

If T is not small, then there is a perfect set of complete types,
hence I (T ,ℵ0) = 2ℵ0 [in fact, a perfect set of pairwise
non-isomorphic models].

If T is small, then T has a countable, saturated model and a
prime model, which is also the unique countable atomic
model.
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Lω1,ω

Lω1,ω is the extension of first-order logic, where we allow countable
conjunctions and disjunctions in the recursive definition of
formulas.
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Lω1,ω is the extension of first-order logic, where we allow countable
conjunctions and disjunctions in the recursive definition of
formulas.

Note: Both Upward and Downward Löwenheim-Skolem theorems
fail! Ex: (R,+, ·, 0, 1).
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conjunctions and disjunctions in the recursive definition of
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Lω1,ω

Lω1,ω is the extension of first-order logic, where we allow countable
conjunctions and disjunctions in the recursive definition of
formulas.

Note: Both Upward and Downward Löwenheim-Skolem theorems
fail! Ex: (R,+, ·, 0, 1).

Upward LS is DOOMED

However... DLS can be recovered by restricting to reasonable
countable fragments.
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The precise definition of a fragment is not important, only that:
For all countable Γ ⊆ Lω1,ω there is a reasonable countable ∆
satisfying Γ ⊆ ∆ ⊆ Lω1,ω.
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The precise definition of a fragment is not important, only that:
For all countable Γ ⊆ Lω1,ω there is a reasonable countable ∆
satisfying Γ ⊆ ∆ ⊆ Lω1,ω.

If ∆ is a reasonable countable fragment, then for any
L-structure M, there is a countable M ′ �∆ M.
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Moreover...
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Moreover...

Definition (Keisler)

Let ∆ be any reasonable countable fragment of Lω1,ω.

A set T ⊆ ∆ of sentences is consistent if there is a model
M |= T ;

A consistent set T ⊆ ∆ is ∆-complete if T decides ψ for
every ∆-sentence ψ.

A complete ∆-n-type p(x) with respect to T is a maximal
consistent (w.r.t. T ) set of ∆-formulas with at most
(x1 . . . , xn) free.

A ∆-complete theory T is small if Sn(T ,∆) is countable for
all n ≥ 1.
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Theorem (Keisler)

Let ∆ be any reasonable countable fragment of Lω1,ω and let T be
∆-complete.

If T is not small, then there is a perfect set contained in
Sn(T ,∆) for some n [hence a perfect set of pairwise
non-isomorphic models];

If T is small, then there is a unique (up to isomorphism)
∆-prime model, which is also the unique countable, ∆-atomic
model.
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Definition (Morley)

An Lω1,ω-sentence Φ is scattered if Sn(Φ,∆) is countable for every
(reasonable) countable fragment ∆.
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Definition (Morley)

An Lω1,ω-sentence Φ is scattered if Sn(Φ,∆) is countable for every
(reasonable) countable fragment ∆.

Scatteredness does not depend on our choice of ‘reasonable’.
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Definition (Morley)

An Lω1,ω-sentence Φ is scattered if Sn(Φ,∆) is countable for every
(reasonable) countable fragment ∆.

Scatteredness does not depend on our choice of ‘reasonable’.

Proposition

TFAE for a sentence Φ of Lω1,ω:

1 Φ is scattered;

2 Mod(Φ) does not contain a perfect set of pairwise
non-isomorphic models.
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Polish space of L-structures

Fix a (countable) vocabulary L with at least one binary relation or
function symbol.

XL = {all L-structures M with universe ω}

Basic open sets Uϕ(m) = {M ∈ XL : M |= ϕ(m)}.
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Fix a (countable) vocabulary L with at least one binary relation or
function symbol.

XL = {all L-structures M with universe ω}

Basic open sets Uϕ(m) = {M ∈ XL : M |= ϕ(m)}.

Then:

XL is a standard Borel space;

For any Φ ∈ Lω1,ω, Mod(Φ) is a Borel subset of XL;

The isomorphism relation ∼=Φ is a Σ1
1-subset of XL × XL

(M ∼= N iff ∃f ( . . . )).
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Polish space of L-structures

Fix a (countable) vocabulary L with at least one binary relation or
function symbol.

XL = {all L-structures M with universe ω}

Basic open sets Uϕ(m) = {M ∈ XL : M |= ϕ(m)}.

Then:

XL is a standard Borel space;

For any Φ ∈ Lω1,ω, Mod(Φ) is a Borel subset of XL;

The isomorphism relation ∼=Φ is a Σ1
1-subset of XL × XL

(M ∼= N iff ∃f ( . . . )).

Whether ∼=Φ is Borel or not will be an important distinction!
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Isomorphisms of countable structures

For M,N countable, M ∼= N iff there is a back-and-forth system of
finite partial functions.
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Isomorphisms of countable structures

For M,N countable, M ∼= N iff there is a back-and-forth system of
finite partial functions.

Fix a countable M. A potential back-and-forth system F is a set of
finite, partial functions f : a→ b satisfying:

F is closed under restrictions;

If f : a→ b is in F, then qftp(a) = qftp(b); and

If σ ∈ Aut(M), then each restriction σ|a ∈ F.

Examples: All f : a→ b with:

qftp(a) = qftp(b) (i.e., no additional restrictions); OR

The first-order types tp(a) = tp(b); OR

For any reasonable fragment ∆, tp∆(a) = tp∆(b).
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Fix M and a potential back-and-forth system F. We define a
sequence of equivalence relations ∼α (α < ω1) that measure how
close F is to being a back-and-forth system.
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Fix M and a potential back-and-forth system F. We define a
sequence of equivalence relations ∼α (α < ω1) that measure how
close F is to being a back-and-forth system.

(M, a) ∼0 (M, b) iff f : a 7→ b ∈ F;

For λ limit, (M, a) ∼λ (M, b) iff (M, a) ∼α (M, b) for all
α < λ;

(M, a) ∼α+1 (N, b) iff
1 For all c ∈ M there is d ∈ M such that (M, ac) ∼α (M, bd);

AND
2 For all d ∈ M there is c ∈ M such that (M, ac) ∼α (M, bd).
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Scott heights

Note: If (M, a) ∼α+γ (M, b) then (M, a) ∼α (M, b).
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Scott heights

Note: If (M, a) ∼α+γ (M, b) then (M, a) ∼α (M, b).

Proposition

TFAE for any M, a, b and F:

1 {α < ω1 : (M, a) ∼α (M, b)} is uncountable;
2 For all α < ω1, (M, a) ∼α (M, b);

3 There is σ ∈ Aut(M) satisfying σ(a) = b.
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Scott heights

Note: If (M, a) ∼α+γ (M, b) then (M, a) ∼α (M, b).

Proposition

TFAE for any M, a, b and F:

1 {α < ω1 : (M, a) ∼α (M, b)} is uncountable;
2 For all α < ω1, (M, a) ∼α (M, b);

3 There is σ ∈ Aut(M) satisfying σ(a) = b.

Thus: For every M and F, there is a least α∗ = α∗(M,F) < ω1

such that for all a, b from M,

(M, a) ∼α∗ (M, b) iff there is σ ∈ Aut(M) with σ(a) = b.
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Scott heights

Note: If (M, a) ∼α+γ (M, b) then (M, a) ∼α (M, b).

Proposition

TFAE for any M, a, b and F:

1 {α < ω1 : (M, a) ∼α (M, b)} is uncountable;
2 For all α < ω1, (M, a) ∼α (M, b);

3 There is σ ∈ Aut(M) satisfying σ(a) = b.

Thus: For every M and F, there is a least α∗ = α∗(M,F) < ω1

such that for all a, b from M,

(M, a) ∼α∗ (M, b) iff there is σ ∈ Aut(M) with σ(a) = b.

When F consists of qftp-preserving partial maps,
α∗(M,F) := SH(M), the Scott height of M.
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Now suppose Φ ∈ Lω1,ω and F is any of the above.

Put: α∗(Φ,F) := sup{α∗(M,F) : M |= Φ}. We say Φ has bounded
Scott heights if α∗(Φ,F) < ω1 for some/every F.
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Now suppose Φ ∈ Lω1,ω and F is any of the above.

Put: α∗(Φ,F) := sup{α∗(M,F) : M |= Φ}. We say Φ has bounded
Scott heights if α∗(Φ,F) < ω1 for some/every F.

Proposition

Φ has bounded Scott heights if and only if ∼=Φ is Borel in XL × XL.
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Now suppose Φ ∈ Lω1,ω and F is any of the above.

Put: α∗(Φ,F) := sup{α∗(M,F) : M |= Φ}. We say Φ has bounded
Scott heights if α∗(Φ,F) < ω1 for some/every F.

Proposition

Φ has bounded Scott heights if and only if ∼=Φ is Borel in XL × XL.

Theorem (Morley)

Let Φ ∈ Lω1,ω be scattered. Then:

I (Φ,ℵ0) ≤ ℵ1 always; and

I (Φ,ℵ0) is countable if and only if ∼=Φ is Borel.
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Thus: Φ is a counterexample to Vaught’s conjecture if and only if
Φ is scattered, with unbounded Scott heights.
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Thus: Φ is a counterexample to Vaught’s conjecture if and only if
Φ is scattered, with unbounded Scott heights.

Discussion: What happened to first-order T??
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Thus: Φ is a counterexample to Vaught’s conjecture if and only if
Φ is scattered, with unbounded Scott heights.

Discussion: What happened to first-order T??

How can we ‘see’ Mod(T ) in XL? Where does the compactness
theorem fit in with all of this?
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Thus: Φ is a counterexample to Vaught’s conjecture if and only if
Φ is scattered, with unbounded Scott heights.

Discussion: What happened to first-order T??

How can we ‘see’ Mod(T ) in XL? Where does the compactness
theorem fit in with all of this?

Empirical fact: There are relatively few (known!) complete, first
order T so that ∼=T is not Borel (without being Borel complete).
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Thus: Φ is a counterexample to Vaught’s conjecture if and only if
Φ is scattered, with unbounded Scott heights.

Discussion: What happened to first-order T??

How can we ‘see’ Mod(T ) in XL? Where does the compactness
theorem fit in with all of this?

Empirical fact: There are relatively few (known!) complete, first
order T so that ∼=T is not Borel (without being Borel complete).

T = Th(Binary splitting, refining eq. relations) has ∼=T non-Borel.
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Given a complete, first-order T , have relatively few methods for
constructing models M |= T with large Scott height.
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Given a complete, first-order T , have relatively few methods for
constructing models M |= T with large Scott height.

If F is the potential back-and-forth system of complete types (i.e.,
tp(a) = tp(b)) then a model M is homogeneous if and only if
α∗(M,F) = 0.
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Given a complete, first-order T , have relatively few methods for
constructing models M |= T with large Scott height.

If F is the potential back-and-forth system of complete types (i.e.,
tp(a) = tp(b)) then a model M is homogeneous if and only if
α∗(M,F) = 0.

Indications of little we know:

Benda’s conjecture (1965): If 1 < I (T ,ℵ0) < ℵ0, must T have a
countable, universal, non-saturated model?
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Given a complete, first-order T , have relatively few methods for
constructing models M |= T with large Scott height.

If F is the potential back-and-forth system of complete types (i.e.,
tp(a) = tp(b)) then a model M is homogeneous if and only if
α∗(M,F) = 0.

Indications of little we know:

Benda’s conjecture (1965): If 1 < I (T ,ℵ0) < ℵ0, must T have a
countable, universal, non-saturated model?

Open (1989): If T is small and every countable universal model is
saturated, must every countable weakly saturated (realize all
n-types over ∅) model be saturated?
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Success stories: Restrict to classes C of complete, first order
theories T and prove that any T ∈ C satisfies Vaught’s conjecture.
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Success stories: Restrict to classes C of complete, first order
theories T and prove that any T ∈ C satisfies Vaught’s conjecture.

Mati Rubin proved that any complete theory T of linear orders is
either ℵ0-categorical or I (T ,ℵ0) = 2ℵ0 .
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Success stories: Restrict to classes C of complete, first order
theories T and prove that any T ∈ C satisfies Vaught’s conjecture.

Mati Rubin proved that any complete theory T of linear orders is
either ℵ0-categorical or I (T ,ℵ0) = 2ℵ0 .

Laura Mayer proved that any complete o-minimal theory has either
finitely many or else continuum many countable models.
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Mati Rubin proved that any complete theory T of linear orders is
either ℵ0-categorical or I (T ,ℵ0) = 2ℵ0 .

Laura Mayer proved that any complete o-minimal theory has either
finitely many or else continuum many countable models.

Shelah/Harrington/Makkai proved Vaught’s conjecture for
ω-stable theories.
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Success stories: Restrict to classes C of complete, first order
theories T and prove that any T ∈ C satisfies Vaught’s conjecture.

Mati Rubin proved that any complete theory T of linear orders is
either ℵ0-categorical or I (T ,ℵ0) = 2ℵ0 .

Laura Mayer proved that any complete o-minimal theory has either
finitely many or else continuum many countable models.

Shelah/Harrington/Makkai proved Vaught’s conjecture for
ω-stable theories.

In December, 1986 Harrington stated that “Vaught’s conjecture
for superstable theories is the major open problem in stability
theory.” Newelski and Buechler have made progress on this.
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