The rise and fall of uncountable models

Chris Laskowski University of Maryland

2nd Vaught's conjecture conference UC-Berkeley 2 June, 2015

• (□) ► < □</p>

Chris Laskowski University of Maryland

Recall: Every counterexample Φ to Vaught's Conjecture is scattered.

æ

Image: A math a math

Chris Laskowski University of Maryland

Recall: Every counterexample Φ to Vaught's Conjecture is scattered.

If a countable fragment $\Delta \subseteq L_{\omega_1,\omega}$ is sufficiently nice, then Morley proved:

Fact (Poor-man's compactness)

Suppose $T \subseteq \Delta$ is:

• finitely satisfiable; and,

• For every valid disjunction $\bigvee \Gamma \in \Delta$, $T \models \theta$ for some $\theta \in \Gamma$.

THEN T is satisfiable.

Chris Laskowski University of Maryland

Suppose Φ is a counterexample to VC. Call a sentence large if it is satisfied in uncountably many countable models.

Definition

A minimal counterexample is a counterexample Φ such that for every $\Psi \in L_{\omega_1,\omega}$, exactly one of $\Phi \wedge \Psi$, $\Phi \wedge \neg \Psi$ is large.

Chris Laskowski University of Maryland

For every counterexample Φ , there is a minimal counterexample $\Phi' \models \Phi$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Chris Laskowski University of Maryland

For every counterexample Φ , there is a minimal counterexample $\Phi' \models \Phi$.

Proof: Suppose not.

Chris Laskowski University of Maryland

For every counterexample Φ , there is a minimal counterexample $\Phi' \models \Phi$.

Proof: Suppose not.

Choose a sufficiently nice, countable fragment Δ such that $\Phi \in \Delta$ and for every $\Phi' \models \Phi$, if $\Phi' \in \Delta$, then there is some $\Psi \in \Delta$ such that both $\Phi' \land \Psi$ and $\Phi' \land \neg \Psi$ are large.

For every counterexample Φ , there is a minimal counterexample $\Phi' \models \Phi$.

Proof: Suppose not.

Choose a sufficiently nice, countable fragment Δ such that $\Phi \in \Delta$ and for every $\Phi' \models \Phi$, if $\Phi' \in \Delta$, then there is some $\Psi \in \Delta$ such that both $\Phi' \land \Psi$ and $\Phi' \land \neg \Psi$ are large.

Let $\{\bigvee \Gamma_i\}$ enumerate the countable! set of valid disjunctions in Δ .

For every counterexample Φ , there is a minimal counterexample $\Phi' \models \Phi$.

Proof: Suppose not.

Choose a sufficiently nice, countable fragment Δ such that $\Phi \in \Delta$ and for every $\Phi' \models \Phi$, if $\Phi' \in \Delta$, then there is some $\Psi \in \Delta$ such that both $\Phi' \land \Psi$ and $\Phi' \land \neg \Psi$ are large.

Let $\{\bigvee \Gamma_i\}$ enumerate the countable! set of valid disjunctions in Δ .

Using 'Poor-man's compactness' construct a perfect tree $\{T_{\eta} : \eta \in 2^{\omega}\}$ of satisfiable, pairwise contradictory subsets of Δ . [Each finite approximation $\bigwedge T_{\nu}$ will be large. Dovetail 'contradictory' and 'deciding $\bigvee \Gamma_i$ ' along each branch.] Suppose Φ is a minimal counterexample to VC. Then:

- Φ is scattered; and
- For every Ψ , exactly one of $\Phi \land \Psi$, $\Phi \land \neg \Psi$ is large.

Suppose Φ is a minimal counterexample to VC. Then:

- $\bullet~\Phi$ is scattered; and
- For every Ψ , exactly one of $\Phi \land \Psi$, $\Phi \land \neg \Psi$ is large.

For each fragment Δ , let $T_{\Delta} = \{ \Psi \in \Delta : \Phi \land \Psi \text{ is large} \}.$

Chris Laskowski University of Maryland

Suppose Φ is a minimal counterexample to VC. Then:

- Φ is scattered; and
- For every Ψ , exactly one of $\Phi \land \Psi$, $\Phi \land \neg \Psi$ is large.

For each fragment Δ , let $T_{\Delta} = \{ \Psi \in \Delta : \Phi \land \Psi \text{ is large} \}.$

- Each T_{Δ} is Δ -complete.
- Thus: There is a unique Δ -prime model $M_{\Delta} \models T_{\Delta}$.
- Furthermore: $\Delta_1 \subseteq \Delta_2$ implies $T_{\Delta_1} \subseteq T_{\Delta_2}$, so
- There is a Δ_1 -elementary map $f_{1,2}: M_{\Delta_1} \to M_{\Delta_2}$.

Every counterexample Φ to VC has an uncountable model N with the property that every sentence true in N is large.

æ

Chris Laskowski University of Maryland

Every counterexample Φ to VC has an uncountable model N with the property that every sentence true in N is large.

We may assume Φ is a minimal cx. Construct a continuous increasing sequence $\{\Delta_{\alpha}\}$ of countable fragments.

Every counterexample Φ to VC has an uncountable model N with the property that every sentence true in N is large.

We may assume Φ is a minimal cx. Construct a continuous increasing sequence $\{\Delta_{\alpha}\}$ of countable fragments.

For each $\alpha < \omega_1$, let M_{α} be a prime model of $T_{\Delta_{\alpha}}$, and construct a commuting system of maps $f_{\alpha,\beta} : M_{\alpha} \to M_{\beta} \ (\alpha < \beta)$.

Every counterexample Φ to VC has an uncountable model N with the property that every sentence true in N is large.

We may assume Φ is a minimal cx. Construct a continuous increasing sequence $\{\Delta_{\alpha}\}$ of countable fragments.

For each $\alpha < \omega_1$, let M_{α} be a prime model of $T_{\Delta_{\alpha}}$, and construct a commuting system of maps $f_{\alpha,\beta} : M_{\alpha} \to M_{\beta} \ (\alpha < \beta)$.

Let *N* be a direct limit of the system $\{M_{\alpha}, f_{\alpha,\beta}\}$.

Every counterexample Φ to VC has an uncountable model N with the property that every sentence true in N is large.

We may assume Φ is a minimal cx. Construct a continuous increasing sequence $\{\Delta_{\alpha}\}$ of countable fragments.

For each $\alpha < \omega_1$, let M_{α} be a prime model of $T_{\Delta_{\alpha}}$, and construct a commuting system of maps $f_{\alpha,\beta} : M_{\alpha} \to M_{\beta} \ (\alpha < \beta)$.

Let *N* be a direct limit of the system $\{M_{\alpha}, f_{\alpha,\beta}\}$.

To show N is uncountable, at each α , choose $\Delta_{\alpha+1}$ to contain the (small) Scott sentence Φ_{α} of M_{α} . As $M_{\alpha}, M_{\alpha+1}$ disagree on Φ_{α} , $M_{\alpha+1}$ properly extends M_{α} .

<ロト < @ ト < 臣 ト < 臣 ト 三 の < 0</p>

Chris Laskowski University of Maryland

Harrington: Let Φ be any counterexample to VC. For every $\beta < \omega_2$, there is a model $N_\beta \models \Phi$ of cardinality \aleph_1 , whose $L_{\omega_2,\omega}$ -Scott rank is at least β .

Chris Laskowski University of Maryland

Harrington: Let Φ be any counterexample to VC. For every $\beta < \omega_2$, there is a model $N_\beta \models \Phi$ of cardinality \aleph_1 , whose $L_{\omega_2,\omega}$ -Scott rank is at least β .

Corollary: There are at least \aleph_2 non-isomorphic models of size \aleph_1 .

Harrington: Let Φ be any counterexample to VC. For every $\beta < \omega_2$, there is a model $N_\beta \models \Phi$ of cardinality \aleph_1 , whose $L_{\omega_2,\omega}$ -Scott rank is at least β .

Corollary: There are at least \aleph_2 non-isomorphic models of size \aleph_1 .

Aside: Makkai proved that there are also models of size \aleph_1 which are $L_{\omega_1,\omega}$ -equivalent to a countable model.

Harrington: Let Φ be any counterexample to VC. For every $\beta < \omega_2$, there is a model $N_\beta \models \Phi$ of cardinality \aleph_1 , whose $L_{\omega_2,\omega}$ -Scott rank is at least β .

Corollary: There are at least \aleph_2 non-isomorphic models of size \aleph_1 .

Aside: Makkai proved that there are also models of size \aleph_1 which are $L_{\omega_1,\omega}$ -equivalent to a countable model.

What about complete, first-order T?

Harrington: Let Φ be any counterexample to VC. For every $\beta < \omega_2$, there is a model $N_\beta \models \Phi$ of cardinality \aleph_1 , whose $L_{\omega_2,\omega}$ -Scott rank is at least β .

Corollary: There are at least \aleph_2 non-isomorphic models of size \aleph_1 .

Aside: Makkai proved that there are also models of size \aleph_1 which are $L_{\omega_1,\omega}$ -equivalent to a countable model.

What about complete, first-order T?

Baldwin: If T is a complete, first-order counterexample, then $I(T, \aleph_1) = 2^{\aleph_1}$.

Harrington: Let Φ be any counterexample to VC. For every $\beta < \omega_2$, there is a model $N_\beta \models \Phi$ of cardinality \aleph_1 , whose $L_{\omega_2,\omega}$ -Scott rank is at least β .

Corollary: There are at least \aleph_2 non-isomorphic models of size \aleph_1 .

Aside: Makkai proved that there are also models of size \aleph_1 which are $L_{\omega_1,\omega}$ -equivalent to a countable model.

What about complete, first-order T?

Baldwin: If T is a complete, first-order counterexample, then $I(T,\aleph_1) = 2^{\aleph_1}$. [Pf: T is not ω -stable! Look at spectra.]

Upshot: Models of size \aleph_1 of any counterexample are abundant.

イロト イヨト イヨト イヨト

2

Chris Laskowski University of Maryland

Digress:

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三国 - のへで

Chris Laskowski University of Maryland

Digress: Let $L = \{f_n(x, y), U_n(x, y)\}_{n \in \omega}$ and let K_0 be the class of all finite *L*-structures \mathfrak{A} satisfying:

- $\{U_n : n \in \omega\}$ partition A^2 ;
- If $U_n(a, b)$, then $f_m(a, b) = a$ for all $m \ge n$; and

Digress: Let $L = \{f_n(x, y), U_n(x, y)\}_{n \in \omega}$ and let K_0 be the class of all finite *L*-structures \mathfrak{A} satisfying:

- $\{U_n : n \in \omega\}$ partition A^2 ;
- If $U_n(a, b)$, then $f_m(a, b) = a$ for all $m \ge n$; and
- \bullet With respect to 'smallest substructure' ${\mathfrak A}$ has no independent subset of size 3.

Facts:

- K₀ has countably many isomorphism types and satisfies disjoint amalgamation.
- There is a Fraïsse limit M. Its Scott sentence θ has a proper elementary extension.

▲口> ▲圖> ▲注> ▲注> 三注

- Every model of θ is locally finite with respect to 'smallest substructure'.
- Every model of θ has no independent subset of size 3.

Thus: θ has models N of size \aleph_1 , yet every such N is maximal.

The point: Let X be any uncountable set, and $cl: \mathscr{P}(X) \to \mathscr{P}(X)$ a locally finite closure relation on X. Then:

- X has an independent subset of size 2.
- If X has a proper, uncountable cl-closed Y ⊆ X, then X has an independent subset of size 3.

Variant: Let $L^h = L \cup \{U, V, \pi\}$ and K_0^h are all 2-sorted, finite \mathscr{B} satisfying:

- The reduct of $U(\mathscr{B})$ to L is an element of K_0 ;
- $V(\mathscr{B})$ has no structure;
- $\pi: U(\mathscr{B}) \to V(\mathscr{B})$ a map (will be onto in the Fraïsse limit).

Variant: Let $L^h = L \cup \{U, V, \pi\}$ and K_0^h are all 2-sorted, finite \mathscr{B} satisfying:

- The reduct of $U(\mathscr{B})$ to L is an element of K_0 ;
- $V(\mathscr{B})$ has no structure;

• $\pi: U(\mathscr{B}) \to V(\mathscr{B})$ a map (will be onto in the Fraïsse limit).

Then K_h has a Fraïsse limit M_h with Scott sentence θ_h .

Variant: Let $L^h = L \cup \{U, V, \pi\}$ and K_0^h are all 2-sorted, finite \mathscr{B} satisfying:

- The reduct of $U(\mathscr{B})$ to L is an element of K_0 ;
- $V(\mathcal{B})$ has no structure;

• $\pi: U(\mathscr{B}) \to V(\mathscr{B})$ a map (will be onto in the Fraïsse limit).

Then K_h has a Fraïsse limit M_h with Scott sentence θ_h . Moreover:

- V(M_h) is absolutely indiscernible (every permutation of V(M_h) extends to an automorphism of M_h);
- $\pi: U(M_h) \rightarrow V(M_h)$ is onto;
- Every model of θ_h of size \aleph_1 is maximal (note: $|U(N)| \ge |V(N)|$).

So what ??

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三国 - のへで

Chris Laskowski University of Maryland

So what ??

Theorem (Baldwin-Friedman-Koerwien-L)

If there is a cx to VC Φ , then there is a cx to VC Φ^* with the property that every model of cardinality \aleph_1 is maximal.

Previously, Hjorth proved that if a cx to VC exists, then there is one with no model of size \aleph_2 .