Borel complexity of complete, first order theories (status report)

Chris Laskowski University of Maryland

2nd Vaught's conjecture conference UC-Berkeley 3 June, 2015

Chris Laskowski University of Maryland

Recall:

- $X_L = \{ \text{all } L \text{-structures with universe } \omega \}.$
- S_{∞} induces the logic action on X_L .
- From Sam's talk: A Borel subset Y ⊆ X_L is invariant under this action iff Y = Mod(Φ) for some Φ ∈ L_{ω1,ω}.

Theorem (Friedman-Stanley)

With respect to Borel reducibility, among all pairs $(Mod(\Phi), \cong_{\Phi})$, there is a maximum Borel degree.

イロト イポト イヨト イヨト

Chris Laskowski University of Maryland

Definition

We say \cong_{Φ} is Borel complete if it is Borel equivalent to this maximum degree.

Examples: (Friedman-Stanley) The following classes of structures $(Mod(\Phi), \cong_{\Phi})$ are all Borel complete:

イロト イ団ト イヨト イヨト 三日

- Directed graphs;
- Symmetric graphs;
- Linear orders;
- Fields;
- Subtrees of $\omega^{<\omega}$.

Chris Laskowski University of Maryland

Throughout the whole of this talk, T will denote a complete, first order theory in a countable language.

• Interested in the Borel complexity of $(Mod(T), \cong_T)$.

Jumps: Suppose T is a complete L-theory. Let $L^+ = L \cup \{E\}$ and T^+ be the theory specifying:

イロト 不得下 イヨト イヨト 二日

- E is an equivalence relation with infinitely many classes;
- Each *E*-class is a model of *T*.

Then $\cong_{(T^+)}$ is Borel equivalent to the jump $(\cong_T)^+$.

Friedman-Stanley tower: Let

• \cong_0 be $id(\omega)$ [Think: Countably many non-isomorphic models.]

<ロ> < ()</p>

- \cong_1 be $id(2^{\omega})$ [Countable sets of integers, i.e., reals]
- \cong_2 be $(\cong_1)^+$ [Countable sets of reals]

In general, given \cong_{α} , let

• $\cong_{\alpha+1}$ be the jump $(\cong_{\alpha})^+$ (i.e., 'countable sets of \cong_{α} ')

Note: $\cong_T <_B \cong_0$ iff T has finitely many models. Of special note: \cong_2 is 'Countable sets of reals.'

Chris Laskowski University of Maryland

Fundamental Dichotomy: Is $\cong_{\mathcal{T}}$ (as a subset of $Mod(\mathcal{T}) \times Mod(\mathcal{T})$) Borel or properly Σ_1^1 ?

æ

イロト イポト イヨト イヨト

Chris Laskowski University of Maryland

Fundamental Dichotomy: Is $\cong_{\mathcal{T}}$ (as a subset of $Mod(\mathcal{T}) \times Mod(\mathcal{T})$) Borel or properly Σ_1^1 ? Easy: If $\cong_{\mathcal{T}}$ is Borel complete, then $\cong_{\mathcal{T}}$ is properly Σ_1^1 .

イロト イポト イヨト イヨト

3

Chris Laskowski University of Maryland

Fundamental Dichotomy: Is $\cong_{\mathcal{T}}$ (as a subset of $Mod(\mathcal{T}) \times Mod(\mathcal{T})$) Borel or properly Σ_1^1 ?

Easy: If $\cong_{\mathcal{T}}$ is Borel complete, then $\cong_{\mathcal{T}}$ is properly $\boldsymbol{\Sigma}_1^1$.

Note: Until recently, all known examples of $\cong_{\mathcal{T}}$ properly Σ_1^1 were Borel complete, hence \geq_B every $\cong_{\mathcal{T}'}$.

This led me (and maybe others) to think of every instance of $\cong_{\mathcal{T}}$ properly Σ_1^1 as being $>_B \cong_{\mathcal{T}'}$ whenever $\cong_{\mathcal{T}'}$ is Borel.

イロト 不得下 イヨト イヨト 二日

This is not always the case!

Effect of standard model-theoretic operations:

メロト メポト メヨト メヨト

æ

Chris Laskowski University of Maryland

Effect of standard model-theoretic operations:

- Borel complexity is ill-behaved under reducts.
 - There are complete $T_0 \subseteq T_1 \subseteq T_2$ (in languages $L_0 \subseteq L_1 \subseteq L_2$) such that $Mod(T_0)$ is \aleph_0 -categorical, $Mod(T_1)$ is Borel complete, and $Mod(T_2)$ has countably many models.

• Naming (or deleting) constants is only partially understood.

Throughout most of model theory (e.g., showing $I(T, \aleph_0) = 2^{\aleph_0}$ or the configurations determining the spectrum $I(T, \kappa)$ for $\kappa > \aleph_0$), naming or deleting finitely many constants is free.

イロト イポト イヨト イヨト

• Naming (or deleting) constants is only partially understood.

Throughout most of model theory (e.g., showing $I(T, \aleph_0) = 2^{\aleph_0}$ or the configurations determining the spectrum $I(T, \kappa)$ for $\kappa > \aleph_0$), naming or deleting finitely many constants is free.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Open: Can Borel completeness be gained or lost by naming a constant?

• Naming (or deleting) constants is only partially understood.

Throughout most of model theory (e.g., showing $I(T, \aleph_0) = 2^{\aleph_0}$ or the configurations determining the spectrum $I(T, \kappa)$ for $\kappa > \aleph_0$), naming or deleting finitely many constants is free.

Open: Can Borel completeness be gained or lost by naming a constant?

Best result so far:

Proposition (Rast)

Let T be complete, and T(c) an expansion formed by naming a constant. Then \cong_T is Borel if and only if $\cong_{T(c)}$ is Borel.

イロト イ団ト イヨト イヨト 三日

Chris Laskowski University of Maryland

Naming or deleting infinitely many constants is hopeless.

イロト イ理ト イヨト イヨト

æ

Chris Laskowski University of Maryland

Naming or deleting infinitely many constants is hopeless.

Ulrich: Let M denote the (unique) countable random graph, and let $(M, c_n)_{n \in \omega}$ be any expansion such that $c_i \neq c_j$ for distinct i, j. Then Th(M) is \aleph_0 -categorical, while $Th((M, c_n)_{n \in \omega})$ is Borel complete.

Chris Laskowski University of Maryland

Naming or deleting infinitely many constants is hopeless.

Ulrich: Let M denote the (unique) countable random graph, and let $(M, c_n)_{n \in \omega}$ be any expansion such that $c_i \neq c_j$ for distinct i, j. Then Th(M) is \aleph_0 -categorical, while $Th((M, c_n)_{n \in \omega})$ is Borel complete.

A later example will give a complete theory T such that \cong_T is properly Σ_1^1 , but for any model M, the isomorphism relation $\cong_{El(M)}$ of the elementary diagram of M is Borel.

Only general result to date.

Marker: If T is not small, then $\cong_2 \leq_B \cong_T$, i.e., 'countable sets of reals' Borel reduce to $(Mod(T),\cong_T)$.

イロト イポト イヨト イヨト

3

Chris Laskowski University of Maryland

Only general result to date.

Marker: If T is not small, then $\cong_2 \leq_B \cong_T$, i.e., 'countable sets of reals' Borel reduce to $(Mod(T),\cong_T)$.

Paradigm: 'Independent unary predicates' $L = \{U_n : n \in \omega\}, T$ says 'Every finite boolean combination of $\pm U_n$ is consistent.'

Complete 1-types correspond to branches through $2^{<\omega}$ (i.e., reals) and for each branch, one can choose how many elements realize it.

o-minimal theories

Theorem (Rast/Sahota)

If T is o-minimal, then \cong_T is one of the following:

- $<_B \cong_0$ (finitely many models);
- Borel equivalent to \cong_1 (reals);
- Borel equivalent to \cong_2 (countable sets of reals);
- Borel complete.

Note: The proof of this theorem would have been massively simpler if one could name a constant!

イロト イポト イヨト イヨト

Complete theories of linear orders with (countably many) unary predicates

Theorem (Rast)

If T is a complete theory of linear orders with unary predicates, then \cong_T is one of the following:

イロト イポト イヨト イヨト

- $<_B \cong_0$ (finitely many models);
- Borel equivalent to \cong_1 (reals);
- Borel equivalent to \cong_2 (countable sets of reals);
- Borel complete.

Chris Laskowski University of Maryland

ω -stable theories

Note: $T \ \omega$ -stable implies T small $(S_n(\emptyset) \text{ countable for each } n)$

Theorem (L-Shelah)

If T is ω -stable and has eni-DOP or is eni-DEEP, then \cong_T is Borel complete.

Note: The proof of this would have been at least 10 pages shorter if one could name a constant!

Theorem (Rast, streamlining Koerwien)

For each ordinal $\alpha < \omega_1$, there is an ω -stable theory T_α such that $\cong_{(T_\alpha)}$ is Borel equivalent to \cong_α (the α 'th jump).

・ロト ・聞ト ・ 臣ト ・ 臣ト

Chris Laskowski University of Maryland

 ω -stable theories (cont.)

Theorem (Koerwien+Ulrich)

There is an ω -stable, depth 2 theory K for which

イロト イポト イヨト イヨト

æ

- \cong_{K} is properly Σ_{1}^{1} BUT
- $\cong_{\mathcal{K}}$ is NOT Borel complete.

Chris Laskowski University of Maryland

Refining equivalence relations

Let $L = \{E_n : n \in \omega\}$ and consider *L*-theories *T* that say:

- Each *E_n* is an equivalence relation;
- E₀ consists of a single class;
- Each E_{n+1} refines E_n , i.e., $E_{n+1}(a, b)$ implies $E_n(a, b)$.

In order to make T complete, need only say how many classes E_{n+1} partitions each E_n -class into.

イロト イポト イヨト イヨト

Case 1: REF_{ω} says: Each E_{n+1} -class partitions each E_n -class into infinitely many classes.

3

- REF_{ω} is small, BUT
- REF_{ω} is Borel complete.

Chris Laskowski University of Maryland

Case 1: REF_{ω} says: Each E_{n+1} -class partitions each E_n -class into infinitely many classes.

- REF_{ω} is small, BUT
- REF_{ω} is Borel complete.

Case 2: REF_2 says: Each E_{n+1} -class partitions each E_n -class into 2 classes.

Theorem (L-Rast-Ulrich)

The isomorphism relation on REF_2 is properly Σ_1^1 but is not Borel complete.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Chris Laskowski University of Maryland

Hybrids: Given $m \leq \omega$, let T_m be:

• For *n* < *m*, *E*_{*n*+1} partitions each *E*_{*n*}-class into infinitely many classes;

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

• For $n \ge m$, E_{n+1} partitions each E_n -class into 2 classes. Then:

- T_0 is REF_2 , T_ω is REF_ω ;
- For all m, \cong_{T_m} is properly Σ_1^1
- For all *m*, *T_m* is small;
- $\bullet \cong_{T_0} <_B \cong_{T_1} <_B \cong_{T_2} <_B \cdots <_B \cong_{T_{\omega}}.$

Chris Laskowski University of Maryland

Suppose $M \models REF_2$ is countable. Then the elementary diagram El(M) is essentially the same as 'Independent unary predicates.' In particular:

- $\cong_{El(M)}$ is Borel equivalent to \cong_2 (countable sets of reals);
- Thus, $\cong_{EI(M)}$ is Borel; BUT
- Its restriction to $L = \{E_n : n \in \omega\}$ is REF_2 and \cong_{REF_2} is properly Σ_1^1

イロト 不得下 イヨト イヨト 二日

A final thought: It has become empirically clear that 'Vaught's conjecture for superstable T' is much more involved than 'Vaught's conjecture for ω -stable T.'

Chris Laskowski University of Maryland

A final thought: It has become empirically clear that 'Vaught's conjecture for superstable T' is much more involved than 'Vaught's conjecture for ω -stable T.'

Fact: If T is superstable, but not ω -stable, then T is either not small, or else has a type of infinite multiplicity.

Chris Laskowski University of Maryland

A final thought: It has become empirically clear that 'Vaught's conjecture for superstable T' is much more involved than 'Vaught's conjecture for ω -stable T.'

Fact: If T is superstable, but not ω -stable, then T is either not small, or else has a type of infinite multiplicity.

 REF_2 is the paradigm of a superstable theory with infinite multiplicity!