Borel complexity of complete, first order theories (status report)

Chris Laskowski
University of Maryland

$2^{\text {nd }}$ Vaught's conjecture conference
UC-Berkeley
3 June, 2015

Recall：

－$X_{L}=\{$ all L－structures with universe $\omega\}$ ．
－S_{∞} induces the logic action on X_{L} ．
－From Sam＇s talk：A Borel subset $Y \subseteq X_{L}$ is invariant under this action iff $Y=\operatorname{Mod}(\Phi)$ for some $\Phi \in L_{\omega_{1}, \omega}$ ．

Theorem（Friedman－Stanley）

With respect to Borel reducibility，among all pairs $\left(\operatorname{Mod}(\Phi), \cong_{\Phi}\right)$ ， there is a maximum Borel degree．

Definition

We say \cong_{ϕ} is Borel complete if it is Borel equivalent to this maximum degree.

Examples: (Friedman-Stanley) The following classes of structures $\left(\operatorname{Mod}(\Phi), \cong_{\Phi}\right)$ are all Borel complete:

- Directed graphs;
- Symmetric graphs;
- Linear orders;
- Fields;
- Subtrees of $\omega^{<\omega}$.

Throughout the whole of this talk, T will denote a complete, first order theory in a countable language.

- Interested in the Borel complexity of $\left(\operatorname{Mod}(T), \cong{ }_{T}\right)$.

Jumps: Suppose T is a complete L-theory. Let $L^{+}=L \cup\{E\}$ and T^{+}be the theory specifying:

- E is an equivalence relation with infinitely many classes;
- Each E-class is a model of T.

Then $\cong\left(T^{+}\right)$is Borel equivalent to the jump $\left(\cong_{T}\right)^{+}$.

Friedman-Stanley tower: Let

- \cong_{0} be id (ω) [Think: Countably many non-isomorphic models.]
- \cong_{1} be id $\left(2^{\omega}\right)$ [Countable sets of integers, i.e., reals]
- \cong_{2} be $\left(\cong_{1}\right)^{+}$[Countable sets of reals]

In general, given \cong_{α}, let

- $\cong_{\alpha+1}$ be the jump $\left(\cong_{\alpha}\right)^{+}$(i.e., 'countable sets of \cong_{α} ')

Note: $\cong_{T}<_{B} \cong_{0}$ iff T has finitely many models.
Of special note: \cong_{2} is 'Countable sets of reals.'

Fundamental Dichotomy: Is \cong_{T} (as a subset of $\operatorname{Mod}(T) \times \operatorname{Mod}(T))$ Borel or properly $\boldsymbol{\Sigma}_{1}^{1}$?

Fundamental Dichotomy: Is \cong_{T} (as a subset of $\operatorname{Mod}(T) \times \operatorname{Mod}(T))$ Borel or properly $\boldsymbol{\Sigma}_{1}^{1}$?
Easy: If \cong_{T} is Borel complete, then \cong_{T} is properly $\boldsymbol{\Sigma}_{1}^{1}$

Fundamental Dichotomy: Is \cong_{T} (as a subset of $\operatorname{Mod}(T) \times \operatorname{Mod}(T))$ Borel or properly $\boldsymbol{\Sigma}_{1}^{1}$?
Easy: If \cong_{T} is Borel complete, then \cong_{T} is properly $\boldsymbol{\Sigma}_{1}^{1}$
Note: Until recently, all known examples of \cong_{T} properly $\boldsymbol{\Sigma}_{1}^{1}$ were Borel complete, hence \geq_{B} every $\cong_{T^{\prime}}$.

This led me (and maybe others) to think of every instance of \cong_{T} properly $\boldsymbol{\Sigma}_{1}^{1}$ as being $>_{B} \cong_{T^{\prime}}$ whenever $\cong_{T^{\prime}}$ is Borel.

This is not always the case!

Effect of standard model-theoretic operations:

Effect of standard model-theoretic operations:

- Borel complexity is ill-behaved under reducts.
- There are complete $T_{0} \subseteq T_{1} \subseteq T_{2}$ (in languages $\left.L_{0} \subseteq L_{1} \subseteq L_{2}\right)$ such that $\operatorname{Mod}\left(T_{0}\right)$ is \aleph_{0}-categorical, $\operatorname{Mod}\left(T_{1}\right)$ is Borel complete, and $\operatorname{Mod}\left(T_{2}\right)$ has countably many models.
- Naming (or deleting) constants is only partially understood.

Throughout most of model theory (e.g., showing $I\left(T, \aleph_{0}\right)=2^{\aleph_{0}}$ or the configurations determining the spectrum $I(T, \kappa)$ for $\left.\kappa>\aleph_{0}\right)$, naming or deleting finitely many constants is free.

- Naming (or deleting) constants is only partially understood.

Throughout most of model theory (e.g., showing $I\left(T, \aleph_{0}\right)=2^{\aleph_{0}}$ or the configurations determining the spectrum $I(T, \kappa)$ for $\left.\kappa>\aleph_{0}\right)$, naming or deleting finitely many constants is free.

Open: Can Borel completeness be gained or lost by naming a constant?

- Naming (or deleting) constants is only partially understood.

Throughout most of model theory (e.g., showing $I\left(T, \aleph_{0}\right)=2^{\aleph_{0}}$ or the configurations determining the spectrum $I(T, \kappa)$ for $\left.\kappa>\aleph_{0}\right)$, naming or deleting finitely many constants is free.

Open: Can Borel completeness be gained or lost by naming a constant?

Best result so far:

Proposition (Rast)

Let T be complete, and $T(c)$ an expansion formed by naming a constant. Then \cong_{T} is Borel if and only if $\cong_{T(c)}$ is Borel.

Naming or deleting infinitely many constants is hopeless.

Naming or deleting infinitely many constants is hopeless.
Ulrich: Let M denote the (unique) countable random graph, and let $\left(M, c_{n}\right)_{n \in \omega}$ be any expansion such that $c_{i} \neq c_{j}$ for distinct i, j. Then $\operatorname{Th}(M)$ is \aleph_{0}-categorical, while $\operatorname{Th}\left(\left(M, c_{n}\right)_{n \in \omega}\right)$ is Borel complete.

Naming or deleting infinitely many constants is hopeless.
Ulrich: Let M denote the (unique) countable random graph, and let $\left(M, c_{n}\right)_{n \in \omega}$ be any expansion such that $c_{i} \neq c_{j}$ for distinct i, j. Then $\operatorname{Th}(M)$ is \aleph_{0}-categorical, while $\operatorname{Th}\left(\left(M, c_{n}\right)_{n \in \omega}\right)$ is Borel complete.

A later example will give a complete theory T such that \cong_{T} is properly $\boldsymbol{\Sigma}_{\mathbf{1}}^{\mathbf{1}}$, but for any model M, the isomorphism relation $\cong_{E I(M)}$ of the elementary diagram of M is Borel.

Only general result to date.
Marker: If T is not small, then $\cong_{2} \leq_{B} \cong_{T}$, i.e., 'countable sets of reals' Borel reduce to $(\operatorname{Mod}(T), \cong T)$.

Only general result to date.
Marker: If T is not small, then $\cong_{2} \leq_{B} \cong_{T}$, i.e., 'countable sets of reals' Borel reduce to $(\operatorname{Mod}(T), \cong T)$.
Paradigm: 'Independent unary predicates' $L=\left\{U_{n}: n \in \omega\right\}, T$ says 'Every finite boolean combination of $\pm U_{n}$ is consistent.'

Complete 1-types correspond to branches through $2^{<\omega}$ (i.e., reals) and for each branch, one can choose how many elements realize it.
o-minimal theories

Theorem (Rast/Sahota)

If T is o-minimal, then \cong_{T} is one of the following:

- $<_{B} \cong_{0}$ (finitely many models);
- Borel equivalent to \cong_{1} (reals);
- Borel equivalent to \cong_{2} (countable sets of reals);
- Borel complete.

Note: The proof of this theorem would have been massively simpler if one could name a constant!

Complete theories of linear orders with (countably many) unary predicates

Theorem (Rast)

If T is a complete theory of linear orders with unary predicates, then \cong_{T} is one of the following:

- $<_{B} \cong_{0}$ (finitely many models);
- Borel equivalent to \cong_{1} (reals);
- Borel equivalent to \cong_{2} (countable sets of reals);
- Borel complete.
ω-stable theories
Note: $T \omega$-stable implies T small $\left(S_{n}(\emptyset)\right.$ countable for each $\left.n\right)$

Theorem (L-Shelah)

If T is ω-stable and has eni-DOP or is eni-DEEP, then \cong_{T} is Borel complete.

Note: The proof of this would have been at least 10 pages shorter if one could name a constant!

Theorem (Rast, streamlining Koerwien)

For each ordinal $\alpha<\omega_{1}$, there is an ω-stable theory T_{α} such that $\cong_{\left(T_{\alpha}\right)}$ is Borel equivalent to \cong_{α} (the α 'th jump).
ω-stable theories (cont.)

Theorem (Koerwien+Ulrich)

There is an ω-stable, depth 2 theory K for which

- \cong_{K} is properly $\boldsymbol{\Sigma}_{1}^{1} B U T$
- \cong_{K} is NOT Borel complete.

Refining equivalence relations
Let $L=\left\{E_{n}: n \in \omega\right\}$ and consider L-theories T that say:

- Each E_{n} is an equivalence relation;
- E_{0} consists of a single class;
- Each E_{n+1} refines E_{n}, i.e., $E_{n+1}(a, b)$ implies $E_{n}(a, b)$.

In order to make T complete, need only say how many classes E_{n+1} partitions each E_{n}-class into.

Case 1: $R E F_{\omega}$ says: Each E_{n+1}-class partitions each E_{n}-class into infinitely many classes.

- $R E F_{\omega}$ is small, BUT
- $R E F_{\omega}$ is Borel complete.

Case 1: $R E F_{\omega}$ says: Each E_{n+1}-class partitions each E_{n}-class into infinitely many classes.

- $R E F_{\omega}$ is small, BUT
- $R E F_{\omega}$ is Borel complete.

Case 2: $R E F_{2}$ says: Each E_{n+1}-class partitions each E_{n}-class into 2 classes.

Theorem (L-Rast-Ulrich)

The isomorphism relation on $R E F_{2}$ is properly $\boldsymbol{\Sigma}_{1}^{1}$ but is not Borel complete.

Hybrids: Given $m \leq \omega$, let T_{m} be:

- For $n<m, E_{n+1}$ partitions each E_{n}-class into infinitely many classes;
- For $n \geq m, E_{n+1}$ partitions each E_{n}-class into 2 classes.

Then:

- T_{0} is $R E F_{2}, T_{\omega}$ is $R E F_{\omega}$;
- For all $m, \cong T_{m}$ is properly $\boldsymbol{\Sigma}_{1}^{1}$
- For all m, T_{m} is small;
$0 \cong_{T_{0}}<B \cong T_{1} \quad<B \cong T_{2}<B \cdots<B \cong T_{\omega}$.

Suppose $M=R E F_{2}$ is countable. Then the elementary diagram $E I(M)$ is essentially the same as 'Independent unary predicates.' In particular:

- $\cong_{E I(M)}$ is Borel equivalent to \cong_{2} (countable sets of reals);
- Thus, $\cong_{E I(M)}$ is Borel; BUT
- Its restriction to $L=\left\{E_{n}: n \in \omega\right\}$ is $R E F_{2}$ and $\cong_{R E F_{2}}$ is properly $\boldsymbol{\Sigma}_{1}^{\mathbf{1}}$

A final thought: It has become empirically clear that 'Vaught's conjecture for superstable T ' is much more involved than 'Vaught's conjecture for ω-stable T.'

A final thought: It has become empirically clear that 'Vaught's conjecture for superstable T ' is much more involved than 'Vaught's conjecture for ω-stable T.'

Fact: If T is superstable, but not ω-stable, then T is either not small, or else has a type of infinite multiplicity.

A final thought：It has become empirically clear that＇Vaught＇s conjecture for superstable T＇is much more involved than ＇Vaught＇s conjecture for ω－stable T ．＇

Fact：If T is superstable，but not ω－stable，then T is either not small，or else has a type of infinite multiplicity．
$R E F_{2}$ is the paradigm of a superstable theory with infinite multiplicity！

