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1 Introduction

By a classifiable theory we shall mean a theory which is superstable, without
the dimensional order property, which has prime models over pairs. In order
to define what we mean by unique decomposition, we remind the reader of
several definitions and results. We adopt the usual conventions of stability
theory and work inside a large saturated model of a fixed classifiable theory
T ; for instance, if we write M ⊆ N for models of T , M and N we are thinking
of these models as elementary submodels of this fixed saturated models; so,
in particular, M is an elementary submodel of N . Although the results will
not depend on it, we will assume that T is countable to ease notation.

We do adopt one piece of notation which is not completely standard: if T
is classifiable, M0 ⊆ Mi for i = 1, 2 are models of T and M1 is independent
from M2 over M0 then we write M1⊕M0

M2 for the prime model over M1∪M2.

Definition 1.1 1. If M ⊆ N are models of T then M ⊆na N if whenever
ϕ(x) ∈ L(M) such that ϕ(N) \ M is non-empty and F ⊆ M is any
finite set then ϕ(M) \ acl(F ) is non-empty.
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2. We write M ⊆ℵ1
N and say that M is a relatively ℵ1-saturated sub-

structure of N if, whenever A and B are countable subsets of M and
N respectively, there is B′ in M with the same type as B over A.

3. If M0 ⊆ M ⊆ N then M is an M0-component of N if the weight of
tp(M/M0) is 1 and M is maximal with respect to domination over M0

i.e. if M ⊆ X ⊆ N and M dominates X over M0 then M = X.

The following Theorem from [1] explains the importance of components
in classifiable theories.

Theorem 1.2 If T is classifiable and N is a model of T with M ⊆na N
then N is prime and minimal over any maximal M-independent collection of
M-components of N .

Keeping the notation of the previous Theorem, we will call such a max-
imal collection of M-components an M-component decomposition of N or
simply a component decomposition of N if the intended M is clear from con-
text. The question we wish to address in this paper is, under what general
circumstances is the component decomposition unique?

Definition 1.3 Let T be a classifiable theory.

1. If M ⊆na N then we say that N has a unique decomposition over M if
whenever C1 and C2 are component decompositions of N over M there
is a bijection f : C1 → C2 such that for C ∈ C1, C is isomorphic to
f(C) over M ; we say that these two component decompositions are
M-isomorphic.

2. A substructure notion for T , ⊆∗, is a relation between pairs of models
of T such that

(a) if M ⊆∗ N then M ⊆na N and,

(b) if M0 ⊆∗ Mi for i = 1, 2, M1 and M2 are independent over M0

and
N = M1 ⊕M0

M2 then Mi ⊆∗ N for i = 1, 2.

3. We say that a classifiable theory T has unique decompositions with
respect to a substructure notion ⊆∗ if whenever M ⊆∗ N are models of
T then N has a unique decomposition over M
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Remark: ⊆na is a substructure notion for any superstable theory; see the
appendices of [2].

Example: T = Th(Z, +) does not have unique decompositions with respect
to ⊆na. To see this, suppose that N is a saturated model of T of cardinality
greater than 2ℵ0 and M is any countable submodel. The M-components of
N are of the form 〈M, a〉 for any element a ∈ N \ M . Let J be a maximal
M-independent collection of representatives of cosets of the connected com-
ponent not realized in M ; note that since M is countable, J is of cardinality
2ℵ0 . Fix a ∈ J . Let I be a maximal M-independent collection of realizations
of the connected component in N ; I has cardinality greater than 2ℵ0 .

The first component decomposition is the collection of subgroups gener-
ated by M and b for any b ∈ I ∪ J . The second component decomposition
is the collection of subgroups generated by M and b ∈ (a + I) ∪ J where
a + I = {a + c : c ∈ I}. Simply by considering the size of I, one sees that
the two component decompositions are not M-isomorphic.

On the other hand, in Chapter XIII of [3], the following Theorem is
proved.

Theorem 1.4 If T is classifiable and non-multidimensional then T has unique
decompositions with respect to relative ℵ1-saturation.

To make the statement of the following Proposition easier, let us say
that for a classifiable theory, if M ⊆na N then we say that N has unique
components over M if whenever
M ⊆ Mi, P ⊆ N , N = M1 ⊕M P = M2 ⊕M P and Mi is an M-component of
N then M1 is isomorphic to M2 over M .

Proposition 1.5 Suppose that T is a classifiable theory.

1. If ⊆∗ is a substructure notion then T has unique decompositions with
respect to ⊆∗ iff whenever M ⊆∗ N , N has unique components over
M .

2. Suppose that M ⊆na N and N has unique components over M then N
has a unique decomposition over N .
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Proof: Suppose that T has unique decompositions with respect to ⊆∗; we
adopt the notation of the paragraph preceding the Proposition. Let N ′ be the
prime model over |P |+-many P -independent copies of N over P . Now N ′ has
two decompositions over M ; one which involves |P |+-many M-independent
copies of M1 and one which involves the same number of M-independent
copies of M2. It follows then, since T has unique decompositions, that M1 is
isomorphic to M2 over M .

To prove the other direction and the second part of the Proposition, we
make use of the following fact:

Fact 1.6 Suppose that X is a closed subset of some pregeometry and I and
J are two bases of X. Then there is a bijection f : I → J such that for any
a ∈ I, J ∪{a} \ {f(a)} is a basis for X and for any b ∈ J , I ∪{b} \ {f−1(b)}
is a basis for X.

So if C1 and C2 are two decompositions of N over M then by applying the
fact, there is a bijection f : C1 → C2 such that for any C ∈ C1, {C} ∪ C2 \
{f(C)} is a decomposition of N . If P is the prime model over C2 \ {f(C)}
inside N then since N = C ⊕M P = f(C) ⊕M P , by assumption, C is
isomorphic to f(C) over M which proves that N has a unique decomposition
over M . 2

2 The main theorem

Suppose that M ⊆ N . We now describe a game between two players. For
the first move, Player A fixes a countable subset of M , C, and then chooses
a countable set A1 ⊆ N and Player B responds by choosing B1 ⊆ M and
a C-elementary map f1 : A1 → B1. After the nth play of the game, Player
I will have chosen a countable set An ⊆ N and Player B will have chosen
Bn ⊆ M and a C-elementary map fn : An → Bn. For the (n+1)st move
then Player A chooses a countable subset of N , An+1 ⊇ An and Player B
responds with Bn+1 and an elementary map fn+1 : An+1 → Bn+1 extending
fn. If Player B can always make a legal move then B wins. If Player B has
a winning strategy for this game then we write M ⊆∗ N .

For a arbitrary model N , an ⊆∗-substructure is in general quite large.
However, if M is ℵ1-saturated then M ⊆∗ N for any model N of which it is an
elementary submodel. Moreover, we will see later in this section that models
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of classifiable, shallow theories have reasonably small ⊆∗-substructures. The
main theorem of this section is

Theorem 2.1 Suppose that T is a countable, classifiable theory and M ⊆∗

N . Then N has a unique decomposition over M .

Proof: By Proposition 1.5, it suffices to prove that if M and M
′

are two
P0-components of N such that P0 ⊆∗ N and there is P , P0 ⊆ P ⊆ N such
that N = M ⊕P0

P = M
′
⊕P0

P then M ∼= M
′
over P0.

So fix M, M
′
, P0, P and N and elements a ∈ M and a′ ∈ M

′
which

dominate M and M
′

over P0 respectively. Choose M0 ⊆na P0 such that
a and a′ are independent from P0 over M0. Let M and M ′ be the M0-
components dominated over M0 by a and a′ inside M and M

′
respectively.

Since under these circumstances M = M ⊕M0
P0 and M

′
= M ′ ⊕M0

P0, it
suffices to prove the following technical lemma

Lemma 2.2 Suppose N = M ⊕M0
P = M ′ ⊕M0

P where M0 is a countable
model,
M0 ⊆na M, M ′ ⊆ N and M0 ⊆na P0 ⊆∗ P ⊆ N . Then M ⊕M0

P0
∼=P0

M ′ ⊕M0
P0.

Before we begin the proof, we remind the reader of the following termi-
nology.

Definition 2.3 Suppose that M ⊆na N where N is a model of T . Then a
tree decomposition of N over M consists of a tree I, with ordering , of
height at most ω and a family of models Mη for η ∈ I such that

1. if 〈〉 is the root of I then M〈〉 = M ,

2. whenever η ν in I, Mη ⊆na Mν ⊆na N and wt(Mν/Mη) = 1,

3. for any η ∈ I, {Mν : ν− = η} is independent over Mη where ν−

represents the predecessor of ν, and

4. if η ν µ in I then Mµ/Mν ⊥ Mη.

Such a decomposition is called a countable decomposition if Mη is count-
able for all η ∈ I.
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Any tree of models which satisfies the last two conditions of the above
definition is called a normal tree of models. One important consequence
of being a normal tree of models is that the indexed family of models is
independent with respect to the underlying tree ordering.

The following is proved in [1].

Theorem 2.4 If T is classifiable and M ⊆na N then N is prime and mini-
mal over any maximal tree decomposition over M .

Proof of technical Lemma 2.2:

We first produce a tree I with ordering and, for η ∈ I, countable models
Cη, C

′
η, Dη, D

′
η and Pη such that

1. if η µ then Cη ⊆na Cµ ⊆ M , C ′
η ⊆na C ′

µ ⊆ M ′ and Pη ⊆ P ; if 〈〉 is
the root of I then C〈〉 = C ′

〈〉 = P〈〉 = M0,

2. {Cη : η ∈ I} and {C ′
η : η ∈ I} are normal trees of models, M is prime

over CI and M ′ is prime over C ′
I ,

3. Mη is the prime model over CηDηPη as well as the prime model over
C ′

ηD
′
ηPη,

4. Cη is domination equivalent to C ′
η over Mη− ,

5. Dη = CIη
for some countable, downward closed subset of {µ ∈ I : µ 6

η} and

6. D′
η ⊆ M ′ and C ′

η is independent from D′
η over C ′

η− .

The above data is produced by starting with countable decompositions of
M and M ′ and then working upwards, by induction, to produce the required
models. In fact, {Cη : η ∈ I} and {Cη : η ∈ I} can be decompositions
of M and M ′ respectively except that possibly, for an η ∈ I which has no
successors, the weight of tp(Cη/Cη−) may not be one due to the presence
of non-trivial types; similarly for the C ′

η’s. The Dη and D′
η play a purely

auxillary role simply to guarantee the existence of Mη.
Now pick P ∗

η ⊆ P0 and an M0-elementary map fη : Pη → P ∗
η inductively

such that if η ν then fν extends fη. We can do this because P0 ⊆
∗ P .

Now pick inductively C∗
η , D∗

η and an elementary map gη, extending fη

such that gη fixes Cη and Dη and gη(C
′
η) = C∗

η , gη(D
′
η) = D∗

η and if ν η

6



then gν extends gη. Let M∗
η be the prime model over CηDηP

∗
η (equivalently

the prime model over C∗
ηD

∗
ηP

∗
η ). Let hη = gη C′

η
.

We will show that
⋃
{hη : η ∈ I} is elementary. Since {C ′

η : η ∈ I} is
a normal tree and hη is elementary for each η, it suffices to show that for
every ν ∈ I, {C∗

η : η− = ν} is independent over C∗
ν . To see this, note that

{Cη : η− = ν} is independent over M∗
ν . Now for any η such that η− = ν,

Cη is domination equivalent to C ′
η over Mν . Since gη is elementary, Cη is

domination equivalent to C∗
η over M∗

ν . It follows then that {C∗
η : η− = ν} is

independent over M∗
ν . But C ′

η is independent from Mη− over C ′
η− and so we

conclude that {C∗
η : η− = ν} is independent over C∗

ν .

Let M∗ be prime over C∗
I and contained in N̂ = M ⊕M0

P0. It is clear
that M∗ is independent from P0 over M0 and so it suffices to show that if
C∗

I ⊆ M∗ ⊆ M̂ ⊆ N̂ and M̂ is independent from P0 over M0 then M∗ = M̂ .
If not, by standard arguments, one can find a b ∈ N̂ and η ∈ I such that
tp(b/C∗

η ) is orthogonal to C∗
η− , or η is the root of I, and b is independent

from M∗ over C∗
η .

Let’s handle the case when η is the root of I first. In this case, b is inde-
pendent from C

∗
η = {C∗

µ : µ− = η} over M0. Moreover, bC
∗
η is independent

from P0 over M0. Since C
∗
η is domination equivalent to {Cµ : µ− = η} over

M0 and the latter dominates M over M0, if follows that b is independent
from MP0 over M0 which implies that b ∈ M0 which is a contradiction.

So now we are assuming that η is not the root of I. By construction, C∗
η

is independent from M∗
η− over C∗

η− . We know that Cη is independent from
{Cµ : µ 6 η}P0 over M∗

η− . Now since Cη is domination equivalent to C∗
η over

M∗
η− , we get by transitivity that C∗

η is independent from {Cµ : µ 6 η}P0 over
C∗

η− . Let N1 be contained in N and prime over {Cµ : µ η} ∪ M∗
η ∪ P0 and

N2 be contained in N and prime over {Cµ : µ 6 η} ∪ Cη ∪ P0. Let Nη be
prime over M∗

η P0.
Suppose for a moment that tp(c/C∗

η) is any type orthogonal to C∗
η− . From

above we get that c is independent from {Cµ : µ 6 η}P0 over C∗
η and so, in

particular,
c ⌣| Nη

C∗
η

and
c ⌣| N2

Nη

We apply this to obtain that bC
∗
η is independent from N2 over Nη and bC

∗
η

is independent from Nη over C∗
η where C

∗
η = {C∗

µ : µ− = η}. Since b and

C
∗
η are independent over C∗

η , it follows that C
∗
η is independent from bN2 over

7



Nη. C
∗
η and N1 are domination equivalent over Nη so it follows that b is

independent from N̂ over N2; b is independent from N2 over C∗
η so b ∈ C∗

η

which is a contradiction. 2

Corollary 2.5 Any countable, classifiable theory T has unique decomposi-
tions with respect to ⊆∗.

The following corollary is interesting and appears to be new.

Corollary 2.6 If T is superstable without the dimensional order property
then the class of ℵ1-saturated models of T has unique decompositions; that
is, if M ⊆ N are both ℵ1-saturated models of T then N has a unique decom-
position over M .

Proof: By our earlier remark, any ℵ1-saturated model is a ⊆∗-substructure
of any model of which it is a substructure; by the main Theorem, the result
follows immediately. 2

Definition 2.7 Suppose that A = {Mi : i ∈ I} and B = {Nj : j ∈ J} are
increasing families of models which are independent with respect to trees I
and J respectively. We say that A and B are isomorphic as labelled trees via
a system of maps {fi : i ∈ I} if there is an order isomorphism ν : I → J so
that fi : Mi → Nν(i) is an isomorphism and fi Mj

= fj whenever j ≤ i.

Definition 2.8 Suppose that N has a countable decomposition P = {Nη :
η ∈ I}.

1. We say that N is homogeneous with respect to P if whenever J and
J ′ are countable downward closed subsets of I so that {Nη : η ∈ J}
is isomorphic to {Nη : η ∈ J ′} via a collection of elementary maps F
then for any countable downward closed K, J ⊆ K ⊆ I then there is a
downward closed K ′, J ′ ⊆ K ′ ⊆ I so that {Nη : η ∈ K} is isomorphic
to {Nη : η ∈ K ′} as labelled trees via a collection of elementary maps
which extends F .

2. If M is prime over NJ for some J ⊆ I then M ⊆P
ℵ1

N if whenever
there is countable, downward closed J ′ ⊆ J and countable I ′, J ′ ⊆
I ′ ⊆ I there is a countable I ′′, J ′ ⊆ I ′′ ⊆ J such that {Nη : η ∈ I ′}
is isomorphic to {Nη : η ∈ I ′′} as labelled trees via a collection of
elementary maps which contains the identity maps on Nη for all η ∈ J ′.
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Proposition 2.9 1. If N is any model with decomposition P then there
is a model M , |M | ≤ 2ℵ0, such that M ⊆P

ℵ1
N .

2. If N is homogeneous with respect to P and M ⊆P
ℵ1

N then M ⊆∗ N .

Proof: The first is a routine union of chains argument and the second is
straightforward remembering that in N , any countable set is constructible
over a countable, downward closed part of P. 2

In [2], the following is critical.

Theorem 2.10 Suppose T is a countable, classifiable theory, M ⊆na Ni

and wt(Ni/M) = 1 for i = 1, 2, P is homogeneous with respect to P and
M ⊆P

ℵ1
P . Then if N1 ⊕M P ∼=P N2 ⊕M P then N1

∼=M N2.

Proof: The proof is identical to the proof to Lemma 2.2. 2

Theorem 2.11 Suppose that T is a countable, classifiable theory of depth d.
Then any model N has a ⊆∗-substructure of size at most d; in fact, if d is
an infinite successor ordinal then there is a ⊆∗-substructure of size d−1.

Proof: Fix any countable decomposition of N , P = 〈Mη : η ∈ I〉. We now
label the nodes of I by induction on depth; remember that I is well-founded.
For a node η of depth 0, label it by the isomorphism type of the chain of
models 〈Mη n : n ≤ l(η)〉. Note that there are at most 1 many such labels;
we call these labels of depth zero. For the sake of induction, say that Mη is
the witness for its label for any η of depth zero.

Now suppose we have labelled all nodes of depth less than α and have
assigned witnesses for every such label. Fix a node η of depth α. Define a
function f from the set of labels of depth less than α to ω ∪ {ω, ω1} where,
for a label L, f(L) is the number of immediate successors of η with label
L if this number is countable and ω1 otherwise. f will be the label for η
and will be a label of depth α. To obtain a witness for the label f , take Mη

together the union of all the witnesses of labels L which appear countably
often immediately above η and ℵ1-many witnesses for labels L which appear
uncountably often immediately above η. It is easy to check by induction that
the witness for the label η will have size at most α if α is finite and not zero,
or if α is an infinite limit ordinal. Otherwise, the witness will have size at
most α−1.
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In the end, let P′ = 〈Mη : η ∈ I0〉 be the witness for the label of the
root node and let M be prime over P′. It is straightforward to show that
M ⊆∗ N . 2

Remark: In fact, in the last Theorem, the M we found is slightly more than
an L∞,ω1

-substructure.

3 An example

This section is devoted to the proof of the following

Proposition 3.1 There is a countable, classifiable theory T of depth 3 which
fails to have unique decompositions with respect to relative ℵ1-saturation.

We shall describe the theory and a standard model of the theory simul-
taneously. To begin with, there is an index set P which we will treat as one
sort and a cover of this set Q which we will treat as a separate sort. Let π
represent a surjective map from Q to P . Moreover, there will be a free action
of P on each fibre of π.

In the standard model of the theory in question, we do the following: let
G be the free group on some infinite set of generators I. Let P = I ∪ I−1

where I−1 is the set of inverses of the elements in I in G. Let Q = P × G
and let π be the first projection from Q to P . For the action of P on Q, let
τ be defined by τ(p, (p′, g)) := (p′, pg).

Now there will be two additional sorts, P̂ and Q̂ which are covers of P
and Q respectively; ρP and ρQ will be surjective maps from P̂ to P and Q̂

to Q respectively. Furthermore, elements of P̂ and Q̂ will be “coloured” by
elements of 2ℵ0 . Finally there will be an action · of P̂ on Q̂.

In the standard model, these sorts are realized as follows: P̂ = P×2ℵ0 and
Q̂ = Q× 2ℵ0 . ρP and ρQ are the first projections onto P and Q respectively.
We define · by (p, η)·(q, µ) := (τ(p, q), η+µ) where the addition in the second
component is occurring co-ordinatewise modulo 2 in 2ℵ0 . We note then that
the two actions are compatible in the sense that

ρQ(p̂ · q̂) = τ(ρP (p̂), ρQ(q̂))

holds in the standard model.
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To obtain the “colours” on P̂ and Q̂ we introduce predicates Uη and Vη

for η ∈ 2<ω. In the standard model, for η ∈ 2<ω, Uη = {(p, µ) ∈ P̂ : η ⊆ µ}

and Vη = {(q, µ) ∈ Q̂ : η ⊆ µ}. For any model of the theory so far described,

we see that we can define the colour of an element of P̂ or Q̂ as follows: if
x ∈ P̂ then cP (x) = µ iff x ∈ Uµ n for all n ∈ ω. Similarly, if x ∈ Q̂ then
cQ(x) = µ iff x ∈ Vµ n for all n ∈ ω. We record the following relationship
between the colours that holds in the standard model (and any model of its
theory):

cQ(p̂ · q̂) = cP (p̂) + cQ(q̂)

Note also that in a saturated model of the theory described so far the maps
cP and cQ are onto 2ℵ0 .

The theory T will be the theory of the standard model describe above
with sorts P, Q, P̂ and Q̂ together with the functions π, ρP , ρQ, τ and · and
predicates Uη and Vη for every η ∈ 2<ω. It is left to the reader to verify that
this theory is classifiable and of depth 3.

We will construct models of T , N and a weight one extension N ′ such
that for any model N0 ⊆ N of cardinality less than 2 there are models M1

and M2 extending N0, independent from N over N0 such that N ′ is prime
(in fact algebraic) over Mi ∪ N for i = 1, 2 but such that M1 and M2 are
not isomorphic over N0. This will be enough to show the failure of unique
decompositions with respect to relative ℵ1-saturation.

We start by fixing some notation and terminology. For any model M
of T and any p ∈ P (M), we call the set {cP (p̂) : p̂ ∈ P̂ (M), ρP (p̂) = p},
the colours of p. Similarly, for any q ∈ Q(M), we call the set {cQ(q̂) : q̂ ∈

Q̂(M), ρQ(q̂) = q}, the colours of q. Let X0 = 2<ω and let B be a basis of
2ℵ0/X0 considered as a vector space over F2. It is easy to construct N so
that P (N) contains {cX : X ⊆ B} and that the colours of cX is exactly the
subspace of 2ℵ0 generated by X0 together with

⋃
X. For Q(N), we simply

fix a bX in the π-fibre above cX and it is easy to arrange that the colours of
bX are X0. The rest of N is filled out by virtue of the action of P on Q via
τ and by the action of P̂ on Q̂.

For N ′ we add a single element a to P (N) and arrange that in N ′ the
colours of a are X0. Now fix an element b in the π-fibre above a and arrange
that in N ′, the colours of b are X0. Now let N ′ be the closure of N, a and b
under the actions τ and ·.
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Now fix any elementary submodel N0 of N of cardinality less than 2. For
some X ⊆ B, cX 6∈ N0. Let M1 be the closure under the actions of N0, a and
b and let M2 be the closure under the actions of N0, a and b′ = τ(cX , b). It is
easy to see that either of M1 or M2 together with N generates N ′. However,
the colours of b′ are not the colours of any point in M1 and so M1 is not
isomorphic to M2 over N0.
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