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Abstract

For a countable, weakly minimal theory T , we show that the Schröder-
Bernstein property (any two elementarily bi-embeddable models are iso-
morphic) is equivalent to each of the following:

1. For any U -rank-1 type q ∈ S(acleq(∅)) and any automorphism f of
the monster model C, there is some n < ω such that fn(q) is not almost
orthogonal to q ⊗ f(q)⊗ . . .⊗ fn−1(q);

2. T has no infinite collection of models which are pairwise elementar-
ily bi-embeddable but pairwise nonisomorphic.

We conclude that for countable, weakly minimal theories, the Schröder-
Bernstein property is absolute between transitve models of ZFC.

1 Introduction
We are concerned with the following property of a first-order theory T :

Definition 1.1. A theory T has the Schröder-Bernstein property, or the SB prop-
erty, if any two elementarily bi-embeddable models of T are isomorphic.

Our motivation is to find some nice model-theoretic characterization of the
class of complete theories with the SB property. This property was first studied
in the 1980’s by Nurmagambetov in [6] and [7] (mainly within the class of ω-
stable theories). In [7], he showed:

Theorem 1.2. If T is ω-stable, then T has the SB property if and only if T is
nonmultidimensional.

One of the results from the thesis of the first author ([3]) was:

Theorem 1.3. If a countable complete theory T has the SB property, then
T is superstable, nonmultidimensional, and NOTOP, and T has no nomadic
types; that is, there is no type p ∈ S(M) such that there is an automorphism
f ∈ Aut(M) for which the types {fn(p) : n ∈ N} are pairwise orthogonal.

∗The second author is partially supported by NSF grants DMS-0600217 and DMS-0901336.
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In particular, any countable theory with the SB property must be classifiable
(in the sense of Shelah). Within classifiable theories, the SB property seems to
form a new dividing line distinct from the usual dichotomies in stability theory.

In this note, we investigate the SB property for weakly minimal theories
(that is, theories in which the formula “x = x” is weakly minimal). We prove
the following characterization, confirming a special case of a conjecture of the
first author (from [3]):

Theorem 1.4. If T is countable and weakly minimal, then the following are
equivalent:

1. T has the SB property.
2. For any U -rank-1 type q ∈ S(acleq(∅)) and any automorphism f of the

monster model C, there is some n < ω such that fn(q) is not almost orthogonal
to q ⊗ f(q)⊗ . . .⊗ fn−1(q).

3. T has no infinite collection of models which are pairwise elementarily
bi-embeddable but pairwise nonisomorphic.

The proof of Theorem 1.4 uses some geometric stability theory to reduce to
the case where p is the generic type of an infinite definable group, and then a
Dushnik-Miller style argument can be used to construct witnesses to the failure
of the SB property whenever condition 2 fails.

A corollary is that for countable, weakly minimal theories, the SB property
is invariant under forcing extensions of the universe of set theory:

Corollary 1.5. Among countable weakly minimal theories, the SB property is
absolute between transitive models of ZFC containing all the ordinals.

Proof. First, note that for a countable theory T , condition (2) of Theorem 1.4
is equivalent to the following statement:

For any countable modelM of T , any 1-type q ∈ S(M), and any f ∈ Aut(M),
there is an n < ω such that fn(q) is not almost orthogonal to q ⊗ f(q)⊗ . . .⊗
fn−1(q).

Using this, it follows that among countable theories, condition (2) is a (light-
face) Π1

1 property. So the corollary follows from the Shoenfield Absoluteness
Theorem for Π1

2 relations (Theorem 98 of [5]).

Corollary 1.6. If T is any countable weakly minimal theory and T ′ ⊇ T is
the expansion by new constants with one new constant naming each element of
acleqT (∅), then T ′ has the SB property.

Proof. T ′ trivially satisfies condition 2 of Theorem 1.4 (and is still countable
and weakly minimal).

After discussing some preliminaries in section 2, we show in section 3 that
the SB property is incompatible with the existence of a definable group with
a sufficiently “generic” automorphism (Theorem 3.13). In section 4, we give
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another criterion for the failure of SB (Theorem 4.8) and finish with a proof of
Theorem 1.4.

We would like to thank the anonymous referee for his or her careful reading
of this paper.

2 Preliminaries
We follow the usual conventions of stability theory, as explained in [8].

First, by the canonicity of Shelah’s eq-construction, it is straightforward to
see:

Fact 2.1. If T is any theory, then T has the SB property if and only if T eq
does.

For the rest of this paper, we will assume that T = T eq for all the
theories T we consider.

A technical advantage of working with weakly minimal theories is that mod-
els are easy to construct:

Lemma 2.2. If T is weakly minimal, M |= T , and A ⊆ C, then

acl(M ∪A) |= T.

Proof. By the Tarski-Vaught test, it is enough to check that any consistent
formula ϕ(x; b) over acl(M ∪ A) in a single free variable has a realization in
acl(M ∪A). If ϕ(x; b) has a realization a ∈ acl(b), then we are done. Otherwise,
by weak minimality of T , any realization a of the formula is independent from
b. Let p = stp(b). Then

C |= ∀x
[
ϕ(x; b)↔ dpyϕ(x; y)

]
,

and the formula dpyϕ(x; y) is definable over acl(∅), so it is realized in M .

The next lemma is true in any theory (not only weakly minimal ones).

Lemma 2.3. Suppose that T has an infinite collection of models which are pair-
wise nonisomorphic and pairwise elementarily bi-embeddable, and a ∈ acl(∅).
Then the expansion Ta := Th(C, a) with a new constant naming a does not
have the SB property. In fact, Ta also has an infinite collection of pairwise
nonisomorphic, pairwise bi-embeddable models.

Proof. Let {Mi : i < ω} be an infinite collection of models of T , pairwise
nonisomorphic and pairwise bi-embeddable, and let n be the number of distinct
realizations of tp(a). Then we claim that among any n + 2 of the Mi’s – say,
M0, . . . ,Mn+1 – there are two that are bi-embeddable as models of Ta. To see
this, first pick elementary embeddings fk : M0 → Mk and gk : Mk → M0 for
every k with 1 ≤ k ≤ n+1. Without loss of generality, every map fk ◦gk fixes a,
since we can replace fk by (fk ◦gk)i ◦fk for some i such that (fk ◦gk)i+1(a) = a.
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By the pigeonhole principle, there must be two distinct k, ` ≤ n + 1 such that
gk and g` map a onto the same element a′. Thus fk(a′) = f`(a

′) = a, and so
the maps

fk ◦ g` : M` →Mk

and
f` ◦ gk : Mk →M`

both fix a. Since Mk �M`, they are not isomorphic as models of Ta either.

3 Weakly minimal groups
In this section, we consider the relation between weakly minimal groups in a
countable language and the SB property. We show that if T is any weakly mini-
mal theory in which there is a definable weakly minimal abelian group with a cer-
tain kind of “generic” automorphism, then T does not have the SB property. One
of the key lemmas is a variation of the Baire category theorem (Lemma 3.10).

Fact 3.1. ([8]) If (G; ·, . . .) is an ∅-definable weakly minimal group, then G has
an ∅-definable abelian subgroup H of finite index.

Throughout this section, we assume that (G; +) is a weakly minimal abelian
group which is ∅-definable in the countable theory T . The group G is equipped
with all the definable structure induced from T , which may include additional
structure that is not definable from the group operation alone. Fact 3.1 shows
the assumption that G is abelian is not too strong.

We make the following additional assumptions:
1. G is saturated. We identify the set of all strong types over 0 with the set

of points in G := G/G◦, and we refer to subsets X of G as being dense, open,
etc. if the corresponding subsets of the Stone space are.

2. The connected component G◦ is the intersection of the ∅-definable groups
G0 > G1 > G2 > . . ., each of which is a subgroup of G of finite index.

3. Gi+1 6= Gi. (This assumption will be justified later.)
We let Aut(G) denote the group of all elementary bijections from G to G

(not just the group of all group automorphisms), and we let Aut(G) be the
group of all group automorphisms of G which are induced by maps in Aut(G).

We recall some important facts about the definable structure of a weakly
minimal group G. The forking relation between generic elements is controlled by
the action of the division ring D of definable quasi-endomorphisms of G (see [8]).
Any nonzero quasi-endomorphism d ∈ D is represented by a definable subgroup
Sd ≤ G×G which is an “almost-homomorphism,” that is, the projection of Sd
onto the first coordinate is a subgroup of finite index and the cokernel {g ∈
G : (0, g) ∈ Sd} is finite. In our context, we may take Sd to be acl(0)-definable
or even 0-definable, so D is countable. From this point on, we fix some such
0-definable Sd representing each d ∈ D; the particular choice of Sd will not turn
out to matter for our purposes.
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If d ∈ D\{0} and H is any subgroup of acl(0) containing ker(Sd)∪coker(Sd),
then Sd naturally induces an injective map Sd from a subgroup of K ≤ G/H
of finite index into G/H; by extension, we think of this as d itself acting on K,
and write this map as “dH ” or simply “d.”

Note that G is a Polish group under the Stone topology. (The fact that the
cosets of the groups Gi/G◦ form a base for the topology ensures that the space
is separable.) Condition 3 implies that G is perfect (i.e. there are no isolated
points). We will repeatedly use the fact that any ϕ ∈ Aut(G) (or indeed any
image of an elementary embedding from G into itself) is continuous with respect
to this topology.
Example 3.2. Let G be the direct product of ω copies of the cyclic group Zp,
with its definable structure given by the group operation + and unary predicates
for each of the subgroups Hi consisting of all elements of g whose ith coordinate
is zero. Then if we let Gi be the intersection of the groups H0, . . . ,Hi−1, we
are in the situation above, with D ∼= Fp. Note that although |Aut(G)| = 2ℵ0 ,
every ϕ ∈ Aut(G) has the property that ϕp−1 = id, so in the terminology of
Definition 3.6 below, every automorphism is unipotent.

Now suppose that H is a finite 0-definable subgroup of G. Then if GH
denotes G/(G◦ + H), we can quotient by the projection map π : G → GH to
define a topology on GH . A crucial observation for what follows is that GH is
still a perfect Polish group. (If GH had an isolated point, then (H + G◦)/G◦

would be an open set on G – which is impossible if H is finite, since G itself is
perfect.)

Some more notation: fix some finite 0-definable H ≤ G. If ϕ ∈ Aut(G),
then ϕ∗H : GH → GH is the corresponding automorphism of GH . We may write
this as simply “ϕ∗” if H is understood. If g is an element of G or G, then gH is
its image in G/(G◦ + H) under the natural quotient projection. If d ∈ D and
there is some 0-definable Sd representing d such that coker(Sd) ⊆ H, then d∗H
(or d∗) is the corresponding partial function on GH . Note that in computing
d∗H , the particular choice of Sd representing d only affects the domain of d∗H ;
two different choices of Sd result in partial maps on GH which agree on their
common domain, and this common domain is a subgroup of GH of finite index.
This motivates the following:

Definition 3.3. If f1 and g2 are two group homomorphisms from open sub-
groups K1,K2 ≤ GH into GH , then we write “f1 =∗ f2” if there is some open
subgroup K ′ of K1 ∩K2 such that f1 � K ′ = f2 � K ′.

Definition 3.4. 1. If D0 ⊆ D is finite, then H is good for D0 if H is a finite
0-definable subgroup of G containing coker(Sd) for every d ∈ D0.

2. If q ∈ D[x], then H is good for q if H is good for the set of coefficients of
q.

Definition 3.5. If X ⊆ G, then we say that g + G◦ is in the D-closure of X,
or clD(X), if there are:

1. Elements h1 +G◦, . . . , hn +G◦ of X,
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2. Elements d1, . . . , dn of D, and
3. A subgroup H ≤ G which is good for {d1, . . . , dn},
such that gH = (d1)∗H(h1H) + . . .+ (dn)∗H(hnH).
The set X ⊆ G is D-closed if X = clD(X).

If q = Σi≤ndix
i is a polynomial in x over D, and H ≤ G is good for q, then

q∗Hϕ := Σi≤n(di)
∗
H ◦ (ϕ∗H)i.

Note that q∗H is a continuous group map from a finite-index subgroup of GH
into GH , and that (q + r)∗H =∗ q∗H + r∗H and (q · r)∗H =∗ q∗H ◦ r∗H .

Definition 3.6. 1. ϕ ∈ Aut(G) is unipotent if there is some nonzero n ∈ ω
such that ϕn = id.

2. ϕ ∈ Aut(G) is weakly generic if for every q(x) ∈ D[x] \ {0} and every
H ≤ G which is good for q, the map q∗Hϕ is not identically zero on its
domain.

3. ϕ ∈ Aut(G) is everywhere generic if for every q(x) ∈ D[x] \ {0}, for every
H ≤ G which is good for q, and for every nonempty open U ⊆ dom(q∗Hϕ),
the map q∗Hϕ � U is not identically zero.

Proposition 3.7. If ϕ ∈ Aut(G) is weakly generic, then ϕ is everywhere
generic.

Proof. Suppose that ϕ is not everywhere generic, as witnessed by q ∈ D[x]\{0},
H, and a nonempty open U ⊆ dom(q∗Hϕ) such that q∗Hϕ � U is identically zero.
Say q = xm · q0, where q0 has a nonzero constant term; then since (ϕ∗H)m

is an injective group homomorphism, (q0)∗Hϕ � (ϕ∗H)m(U) is identically zero
and (ϕ∗H)m(U) is open; so we may assume that x does not divide q. Write
q = dkx

k + . . . + d0, where di ∈ D. Since d0 6= 0, it follows that if r =
d−10 dkx

k − . . .− d−10 d1x, then there is some nonempty open V ⊆ GH such that
(d−10 )∗(V ) ⊆ U and r∗Hϕ � V = idV .

Without loss of generality, V = (g + Gn + H)/(G◦ + H) for some g ∈ G
and some n < ω, and (shrinking V if necessary) we may also assume that
(Gn +H)/(G◦ +H) ⊆ dom(r∗Hϕ). For any h ∈ (Gn +H)/(G◦ +H), there are
g1, g2 ∈ V such that h = g1+g2, so it follows that r∗Hϕ � (Gn+H)/(G◦+H) is the
identity map. For any ` ∈ ω, the map (r`)∗Hϕ induces a group homomorphism
from a subgroup of G/(Gn + H) into G/(Gn + H), and since G/(Gn + H) is
finite, there are numbers ` < m < ω such that the image of (r` − rm)∗Hϕ is
contained in (Gn +H)/(G◦+H). Let s = (r`− rm)2. Note that since x divides
r, the polynomial s is nonzero, but s∗Hϕ is identically zero on its domain; so ϕ
is not weakly generic.

Question 3.8. If Aut(G) contains a non-unipotent element, does Aut(G) nec-
essarily contain a weakly generic element?
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Definition 3.9. Let S be a Polish space. A continuous function f : Sk → S
is nondegenerate if there is some i (1 ≤ i ≤ k) such that for any elements
ai, . . . , ai−1, ai+1, . . . , ak ∈ S, the function

fa(x) = f(a1, . . . , ai−1, x, ai+1, . . . , ak)

is a homeomorphism.

The next lemma is a version of the Baire category theorem. (To get the
usual Baire category theorem, let f0 : S → S be the identity map.)

Lemma 3.10. Suppose that S is a perfect Polish space and 〈fi : i ∈ ω〉 is a
countable collection of continuous, nondegenerate functions, with fi : Sk(i) → S,
and 〈H` : ` ∈ ω〉 is a collection of nowhere dense subsets of S. Then there
is a nonempty perfect set of elements 〈aσ : σ ∈ 2ℵ0〉 of S such that for ev-
ery i, ` ∈ ω and every set

{
σ1, . . . , σk(i)

}
of k(i) distinct elements of 2ℵ0 ,

fi(aσ1
, . . . , aσk(i)

) /∈ H`.

Proof. First, we set some notation. Let O be the set of all nonempty open
subsets of S. A condition is a function F : D → O, where D is some finite,
downward-closed subset of 2<ω, such that

1. If s_〈0〉, s_〈1〉 ∈ D, then F (s_〈0〉) ∩ F (s_〈1〉) = ∅; and
2. If s is an initial segment of t, then F (t) ⊆ F (s).
Given two conditions F, F ′, we write F ≤ F ′ if dom(F ) ⊆ dom(F ′) and for

any s ∈ dom(F ), F ′(s) ⊆ F (s).
A viable triple is an ordered triple 〈i, `, (s1, . . . , sk)〉 such that i, ` ∈ ω, the

sj ’s are pairwise incompatible elements of 2<ω, and k = k(i). Let{
〈i(t), `(t), (st1, . . . , stk(t))〉 : t ∈ ω

}
be an enumeration of all viable triples.

We construct an increasing sequence of conditions 〈F (t) : t < ω〉 by induction
on t. As a base case, let F (0) be the function with domain {〈〉} such that
F (〈〉) = S. For the induction step, suppose that we have picked F (t).
Claim 3.11. We can pick F (t+ 1) ≥ F (t) such that

{st1, . . . , stk(t)} ⊆ dom(F (t+ 1))

and
fi(t)(F (t+ 1)(st1), . . . , F (t+ 1)(stk(t))) ∩H`(t) = ∅.

Proof. First, since S is perfect, we can pick a condition F ′ ≥ F (t) such that
{st1, . . . , stk(t)} ⊆ dom(F ′). By the fact that fi(t) is nondegenerate and H`(t)

is nowhere dense, there is a tuple (a1, . . . , ak(t)) such that am ∈ F ′(stm) and
fi(t)(a1, . . . , ak(t)) /∈ H`(t). Pick an open neighborhood U of fi(t)(a1, . . . , ak(t))
such that U ∩ H`(t) = ∅. By continuity, f−1i(t)(U) is open, and it contains
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(a1, . . . , ak(t)). Therefore, there is a condition F (t + 1) ≥ F ′ such that am ∈
F (t+ 1)(stm) and

fi(t)(F (t+ 1)(st1), . . . , F (t+ 1)(stk(t))) ⊆ U,

so this F (t+ 1) works.

Pick F (t+ 1) by induction as in the Claim. Note that it follows that⋃
t∈ω

dom(F (t)) = 2<ω,

since every s ∈ 2<ω is in a viable triple. For any σ ∈ 2ω, let

F̂ (σ) =
⋂
{F (t)(σ � m) : t ∈ ω and σ � m ∈ dom(F (t))}.

It follows from the properties of the conditions F (t) that F̂ (σ) is always well-
defined and nonempty and that if σ 6= τ , then F̂ (σ) ∩ F̂ (τ) = ∅. Finally, pick
elements aσ ∈ F̂ (σ) for every σ ∈ 2ω. The fact that these aσ’s work follows
from the way we enumerated the viable triples and the Claim above.

We need one more simple lemma before proving the main theorem of this
section.

Lemma 3.12. Suppose that T is any stable theory, M |= T , θ(x) is a weakly
minimal formula over ∅ in T , and A ⊆ θ(C). Then if M ′ = acl(M ∪ A) and
M ′ |= T ,

θ(M ′) ⊆ acl(θ(M) ∪A).

Proof. Suppose b ∈ θ(M ′) and b ∈ acl(M ∪{a1, . . . , an}), where ai ∈ A and n is
minimal. Minimality of n implies that {a1, . . . , an} is independent over M and
b is interalgebraic with an over M ∪{a1, . . . , an−1}. Note that tp(ba1 . . . an/M)
is finitely satisfiable in θ(M), and therefore

ba1 . . . an |̂
θ(M)

M.

So
U(ba1 . . . an/θ(M)) = U(ba1 . . . an/M) = n,

and therefore b is interalgebraic with an over θ(M) ∪ {a1, . . . , an−1}.

Theorem 3.13. Suppose that T is weakly minimal and countable, and that G
is a weakly minimal abelian group which is ∅-definable in T . If Aut(G) contains
a weakly generic map ϕ, then T has an infinite collection of pairwise noniso-
morphic, pairwise elementarily bi-embeddable models.
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Proof. First we note that if Aut(G) contains a weakly generic map, then G
must be infinite, so we can pick the definable subgroups G0 > G1 > . . . so that
Gi+1 6= Gi. This justifies assumption 3 at the beginning of the section and
implies that G is a perfect topological space.

The key to our proof is that we can use the fact that |Aut(G)| = 2ℵ0 to
construct bi-embeddable models M and N of T via chains of length 2ℵ0 where
at each successor stage we kill one potential isomorphism between G(M) and
G(N). We call this a Dushnik-Miller type argument since it recalls the idea of
the proof of Theorem 5.32 in [1].

As usual, let D be the division ring of definable quasi-endomorphisms of
G. Fix a weakly generic ϕ ∈ Aut(G), which is also everywhere generic by
Proposition 3.7. Also pick some f ∈ Aut(C) such that f � G(C) = ϕ.

Since G is separable, |Aut(G)| ≤ 2ℵ0 . Therefore we can pick a sequence
{(hα, i(α), j(α)) : α < 2ℵ0} listing triples in Aut(G)× ω× ω in such a way that
for any α < 2ℵ0 ,

(A) i(α) < j(α), and
(B) For any i0 < j0 < ω and any h ∈ Aut(G), there is some β such that

α < β < 2ℵ0 and (hβ , i(β), j(β)) = (h, i0, j0).
Next, we will define models M `

α of T and subsets X`
α of G for every ` < ω

and α < 2ℵ0 by recursion on α < 2ℵ0 such that:

1. |M `
α ∪X`

α| ≤ |α|+ ℵ0;

2. M0
α �M1

α �M2
α � . . . and f(M `

α) ≺M `+1
α ;

3. If α < β, then M `
α ≺M `

β and X`
α ⊆ X`

β ;

4. G(M `
α) ∩X`

α = ∅;

5. If α < β, then at least one of the following holds:

(C) There is some a ∈ G(M
i(α)
β ) such that hα(a) ∈ Xj(α)

β ; or

(D) There is some b ∈ G(M
j(α)
β ) such that h−1α (b) ∈ Xi(α)

β .

Once we have the models M `
α, we can let M ` =

⋃
α<2ℵ0 M

`
α. The M `’s are

pairwise bi-embeddable (via inclusions and iterates of f), and properties 4 and
5 ensure that if ` 6= k then there is no h ∈ Aut(C) mapping G(M `) onto G(Mk),
so a fortiori there is no such h mapping M ` onto Mk. Thus {M ` : ` < ω} will
be the models we are looking for.

For the base case α = 0, we can pick some countable M |= T such that
f(M) ⊆ M and let M `

0 = M and X`
0 = ∅. At limit stages we take unions, and

there are no problems. So we only have to deal with the successor stage, and
suppose we have M `

α and X`
α as above.

To set some more notation, if Z ⊂ G and H ≤ G, then we let

ZH =
{
h ∈ GH : ∃g ∈ G [g +G◦ ∈ Z and h = g + (G◦ +H)]

}
.

Here are two possible situations which we will consider:

9



(∗) There is a nonempty clopen subgroup K ≤ G with the following property:
for every q(x) ∈ D[x] such that x|q, every nonempty open U ⊆ K, and every
finite 0-definable H ≤ G which is good for q, there is a g ∈ UH such that either
g /∈ dom(q∗Hϕ) or (hα)∗H(g) 6= q∗Hϕ(g).

(†) For every q(x) ∈ D[x], every nonempty open U ⊆ G, and every finite
0-definable H ≤ G which is good for q, there is a g ∈ UH such that either
g /∈ dom(q∗Hϕ) or (h−1α )∗H(g) 6= q∗Hϕ(g).
Claim 3.14. Either (∗) holds or (†) holds (or possibly both).

Proof. The failure of (†) gives us a nonempty open U ⊆ G, a q(x) ∈ D[x], and
H ≤ G which is good for q such that for every g ∈ UH , (h−1α )∗H(g) = q∗Hϕ(g).
Let K be the subgroup of G generated by U . The continuity of the group
operation implies that K is open, in fact clopen, and since (h−1α )∗H and q∗Hϕ are
both homomorphisms from GH into itself,

(h−1α )∗H � KH = q∗Hϕ � KH . (1)

Let K ′ = h−1α (K), so K ′ is another clopen subgroup of G. By the failure of (∗),
there is an r(x) ∈ D[x] such that x|r, some nonempty open V ⊆ K ′, and some
H ′ ≤ G good for r such that for every g ∈ VH ,

(hα)∗H′(g) = r∗H′ϕ(g). (2)

Note that equations 1 and 2 remain true if we replace either H or H ′ with
any larger finite 0-definable subgroup of G, such as Ĥ := H + H ′. For any
g ∈ (hα)∗

Ĥ
(VĤ), note that

g ∈ (hα)∗
Ĥ

(K ′
Ĥ

) = KĤ ,

and so by equations 1 and 2,

g = (hα)∗
Ĥ

(
(h−1α )∗

Ĥ
(g)
)

= (r · q)∗
Ĥ
ϕ(g).

Note that since x|(r · q), the polynomial r · q − 1 is nonzero, so we have a
contradiction to the fact that ϕ is everywhere generic.

Now we return to the main proof and argue by cases.
Case 1: (∗) holds.
Fix a nonempty clopen K ≤ G witnessing (∗).

Claim 3.15. There is an element a ∈ K such that
(E) For any b ∈ G(M

j(α)
α ), any q ∈ D[x] such that x|q, and any H ≤ G

which is good for q, if aH ∈ dom(q∗Hϕ), then

(hα)∗H(aH)− q∗Hϕ(aH) 6= bH ;

and
(F) For any c ∈ clD(

⋃
`<ω(G(M `

α) ∪ X`
α)), any nonzero q ∈ D[x], and any

H ≤ G good for q, if aH ∈ dom(q∗Hϕ), then

q∗Hϕ(aH) 6= cH .
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Proof. For any q ∈ D[x] and any H ≤ G which is good for q, we define two
subgroups Kq,H and K ′q,H of K as follows. If x|q, then let

Kq,H = π−1H [ker((hα)∗H − q∗Hϕ)] ∩K,

where πH : G → GH is the natural projection map. Note that (hα)∗H − q∗Hϕ is
a continuous group map, so its kernel is a closed subgroup of GH , and therefore
Kq,H is a closed subgroup of G. If x does not divide q, we let Kq,H = {0}. By
assumption (∗), Kq,H is always nowhere dense. If q 6= 0, then let

K ′q,H = π−1H [ker(q∗Hϕ)] ∩K,

and if q = 0, then let K ′q,H = {0}. As before, K ′q,H is a closed subgroup of G,
and the genericity of ϕ implies that K ′q,H is nowhere dense.

So by Lemma 3.10 applied to the nondegenerate map (x, y) 7→ x− y, there
is a collection 〈aσ : σ < 2ℵ0〉 of elements of K such that for any two distinct
σ, τ < 2ℵ0 , aσ − aτ does not lie in any of the groups Kq,H or K ′q,H . Now since

|clD

(⋃
`<ω

(G(M `
α) ∪X`

α)

)
| < 2ℵ0 ,

for any q ∈ D[x] there are fewer than 2ℵ0 choices of σ < 2ℵ0 such that aσ belongs
to theKq,H -coset or theK ′q,H -coset of some element of clD(

⋃
`<ω(G(M `

α)∪X`
α)).

Since the cofinality of 2ℵ0 is uncountable, there is some σ < 2ℵ0 such that for
any q ∈ D[x] and any h ∈ clD(

⋃
`<ω(G(M `

α) ∪X`
α)), aσ − h /∈ (Kq,H ∪K ′q,H).

Let a = aσ; this works.

Pick a as in the Claim above and pick g ∈ G(C) such that g + G◦ = a. If
` ≤ i(α), then we let

M `
α+1 = acl(M `

α ∪ {fn(g) : n < ω}),

and if ` > i(α), we let

M `
α+1 = acl(M `

α ∪ {fn(g) : (`− i(α)) ≤ n < ω}).

If ` 6= j(α), the we let X`
α+1 = X`

α, and let Xj(α)
α+1 = X

j(α)
α ∪ {hα(a)}.

We check this works. Note that condition 5 (C) holds by definition, and
conditions 1 through 3 are automatic. For Condition 4, we first check that
G(M `

α+1) ∩X`
α = ∅. First note that by Lemma 3.12,

G(M `
α+1) = clD

(
G(M `

α) ∪ {ϕn(a) : n < ω}
)
.

So if Condition 4 fails, then there is some b ∈ G(M `
α), some q ∈ D[x], and some

H ≤ G good for q such that

bH + q∗Hϕ(gH) ∈ (X`
α)H ,

11



but since aH = gH , this contradicts condition (F) above. The only other way
that 4 could fail is if hα(a) ∈ G(M

j(α)
α+1 ), or equivalently (by Lemma 3.12), there

is some q ∈ D[x] such that x|q, some H ≤ G good for q, and some b ∈ G(M
j(α)
α )

such that
(hα(a))∗H = (hα)∗H(aH) = bH + q∗Hϕ(aH),

but this contradicts (E).
Case 2: (†) holds.
Exactly like in Case 1, we have:

Claim 3.16. There is an element b ∈ G such that
(E’) For any a ∈ G(M

i(α)
α ), any q ∈ D[x], and any H ≤ G which is good for

q, if bH ∈ dom(q∗Hϕ), then

(h−1α )∗H(b)− q∗Hϕ(bH) 6= aH ;

and
(F’) For any c ∈ clD(

⋃
`<ω(G(M `

α) ∪X`
α)), any nonzero q ∈ D[x], and any

H ≤ G good for q, if bH ∈ dom(q∗Hϕ), then

q(ϕ)(bH) 6= cH .

Then pick g ∈ G(C) such that g +G◦ = b, and let

M `
α+1 = acl(M `

α ∪ {fn(g) : n < ω}),

Nα+1 = acl(Nα ∪ {fn(h) : n < ω}),

let X`
α+1 = X`

α if ` 6= i(α), and let Xi(α)
α+1 = X

i(α)
α ∪

{
h−1α (b)

}
.

Just as before, it can be checked that these sets satisfy conditions 1 through
5.

Remark 3.17. Since for the base case of our construction, we let the models
M `

0 (for ` < ω) all be equal, it is worth pointing out why the models M ` we
eventually construct are not all equal. To see this, note that the identity map
from G to G will be listed (infinitely often) as some hα, and so the fact that f
has independent orbits implies that (∗) holds (with K = G). Thus at stage α,
we ensure that M i(α) 6= M j(α).

4 Weakly minimal theories
In this section, we return to the general context of weakly minimal theories
and prove Theorem 1.4. We assume throughout this section that T is a weakly
minimal theory (unless stated otherwise), and “a ∈ M ” means that a is in the
home sort ofM . These assumptions imply that for any a ∈M , the type tp(a/∅)
is minimal (that is, has U -rank 1), though it is not necessarily weakly minimal.

Definition 4.1. Let p ∈ S(A) be a minimal type.

12



1. The type p has bounded orbits over B if there is some n < ω such that
for every f ∈ Aut(C/B), there are i < j ≤ n such that f i(p) = f j(p).
Otherwise, p has unbounded orbits over B.

2. The type p has dependent orbits over B if for every f ∈ Aut(C/B), there
is an n < ω such that

fn(p) 6⊥a p⊗ f(p)⊗ . . .⊗ fn−1(p).

Otherwise, p has an independent orbit over B.

3. If p ∈ S(acl(∅)), then we say p has bounded orbits (or dependent orbits)
if it has bounded (dependent) orbits over ∅.

Remark 4.2. The minimal type p ∈ S(acl(∅)) has an independent orbit if and
only if there is an f ∈ Aut(C) such that for any choice of realizations 〈ai : i < ω〉
of the types f i(p), the set {ai : i < ω} is independent.

Question 4.3. 1. If p has unbounded orbits, then does p necessarily have an
independent orbit?

2. If p ∈ S(acl(∅)) has dependent orbits and g ∈ Aut(C), then does g(p) also
have dependent orbits?

Note that in the terminology above, if p is the generic type of a weakly min-
imal, locally modular group G defined over acl(∅), then Aut(G) does not have a
weakly generic element if and only if for every generic type q of G has dependent
orbits.

If p ∈ S(acl(∅)) is minimal andM |= T , let “dim(p,M)” mean the dimension
of p(M) as a pregeometry.

Definition 4.4. An elementary map f : M → N between models of T is
called dimension-preserving if for any minimal p ∈ S(acl(∅)), dim(p,M) =
dim(f(p), N).

Theorem 4.5. If T is a weakly minimal theory, then two models M,N of T
are isomorphic if and only if there is a dimension-preserving map f : M → N .

Proof. Left to right is obvious, since any isomorphism is dimension-preserving.
For the converse, suppose that f : M → N is dimension-preserving.

If A ⊆ M , we say that A is type-closed (in M) if acl(∅) ⊆ A and whenever
a ∈ A, a′ ∈M , and stp(a′) = stp(a) is minimal, then a′ ∈ A.

If A ⊆ M and B ⊆ N , we call an elementary map g : A → B closed if its
domain is type-closed in M and its image is type-closed in N .

If A ⊆ C and p ∈ S(acl(∅)), then define k(p,A) ∈ ω to be the largest k (if
one exists) such that p(k) is almost orthogonal to tp(A/acl(∅)). Note that A
is independent from any Morley sequence in p of length at most k(p,A) (if it
exists), and A is independent from every Morley sequence in p if k(p,A) does
not exist.
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Claim 4.6. Suppose that A ⊆ M is type-closed, p ∈ S(acl(∅)) is minimal, and
k(p,A) exists. Then for any Morley sequence I0 ⊆ M in p of length k(p,A),
p(M) ⊆ acl(A ∪ I0).

Proof. By definition of k(p,A), there is some a |= p|I0 such that a 6 |̂
I0
A. Pick

such an a and a finite set A0 ∪ {c} ⊆ A such that I0a 6 |̂ A0c. We may assume
that the size of A0 ∪{c} is minimal, so that A0 is independent from any Morley
sequence in p of length k(p,A)+1. By the weak minimality of T and stationarity,
if q = stp(c), then any realization of p|I0 is interalgebraic over I0∪A0 with some
realization of q|A0. So any b ∈ p(M) \ acl(I0) is interalgebraic over A0 ∪ I0 with
some d ∈ q(M), and the fact that A is type-closed implies that d ∈ A.

It follows from Claim 4.6 (when k(p,A) = 0) that if A ⊆ M is type-closed,
then so is acl(A). Thus, any elementary h : acl(A)→ acl(B) extending a closed
map g : A→ B is closed.

Visibly, the restriction σ := f � acl(∅) is closed, and the union of an in-
creasing sequence of closed maps is closed. Thus, to conclude that M and
N are isomorphic, it suffices by Zorn’s Lemma and symmetry to show that if
g : A → B extending σ is closed, and p ∈ S(acl(∅)) is minimal, then there is a
closed h extending g, whose domain contains A ∪ p(M).

Fix such a g and p. Note that k(p,A) exists if and only if k(g(p), B) exists
and when they exist, they are equal. There are three cases:

Case 1: k(p,A) does not exist. Let I ⊆M be any maximal Morley sequence
in p, and J ⊆ N be any maximal Morley sequence in g(p). Since g extends σ, g
is dimension preserving, so |I| = |J |. Let j : I → J be any bijection. Then g∪ j
is elementary, and any elementary map h : acl(A ∪ I) → acl(B ∪ J) extending
g ∪ j will be closed.

Case 2: k(p,A) exists, but dim(p,M) ≤ k(p,A). Then again, dim(p,M) =
dim(g(p), N), and for any bijection j between bases for p(M) and g(p)(M),
there is a closed h : acl(AI)→ acl(BJ) extending g ∪ j.

Case 3: k(p,A) exists, and dim(p,M) > k(p,A). Let I0 ⊆ p(M) and J0 ⊆
g(p)(N) be Morley sequences of length k(p,A) in p and g(p), respectively, and
let j : I0 → J0 be any bijection. Again, g ∪ j is elementary and any elementary
h : acl(A∪ I0)→ acl(B ∪ J0) extending g ∪ j is closed. But p(M) ⊆ acl(A∪ I0)
and g(p)(M) ⊆ acl(B ∪ J0) by Claim 4.6, so any such h suffices.

Corollary 4.7. If T is weakly minimal and every minimal type p ∈ S(acl(∅))
has dependent orbits, then T has the SB property.

Proof. If M and N are models of such a theory and f : M → N and g : N →
M are elementary embeddings, then f must be dimension-preserving. So by
Theorem 4.5, M ∼= N .

The next result is from the first author’s thesis ([3]), where types as in the
hypothesis were called “nomadic.”
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Theorem 4.8. If T is stable and there is a stationary regular type p ∈ S(A)
and f ∈ Aut(C) such that the types {f i(p) : i < ω} are pairwise orthogonal,
then T has an infinite collection of models that are pairwise nonisomorphic and
pairwise not bi-embeddable.

Proof. Just for simplicity of notation, we will assume that T is countable and
superstable, but the same argument works in general if we lengthen our Morley
sequences a bit and replace the Faℵ0-prime models by Faκ-prime models for some
suitably large κ. We will use without proof some well-known facts about a-
prime models which are proved in section 1.4 of [8] and in chapter IV of [9] (in
the latter reference, they are called “Faℵ0-prime models”).

Pick p and f as in the hypothesis. Since T is superstable, we may assume
that A is countable. Let Ai = f i(A) and pi = f i(p) (which is in S(Ai)), and let
B =

⋃
i<ω Ai. Pick sequences 〈Iji : i, j < ω〉 such that Iji is a Morley sequence

in pi|B of length ℵi+j+1 and
Iji |̂

B

⋃
k 6=i

Ijk.

For each j < ω, let Mj be an a-prime model over B ∪
⋃
i<ω I

j
i .

By using a-primeness and iterating the map f , it is straightforward to check
that the models 〈Mj : j < ω〉 are pairwise bi-embeddable. To prove they
are nonisomorphic, we set some notation. If p ∈ S(C) is a regular type and
C ⊆ M |= T , then dim(p,M) is the cardinality of a maximal Morley sequence
in p inside M ; as noted in section 1.4.5 of [8], this is well-defined for any model
M .
Claim 4.9. If q ∈ S(C) is any regular type and M is an a-prime model over C,
then dim(q,M) ≤ ℵ0.

Proof. This is a special case of Theorem IV.4.9(5) from [9].

Claim 4.10. If q ∈ S(C) is any regular stationary type over a countable set
C ⊆Mj , then either dim(q,Mj) ≤ ℵ0 or dim(q,Mj) ≥ ℵj+1.

Proof. Case 1: For some i < ω, q 6⊥ pi.
Pick some N which is a-prime over B∪C, and by primeness we may assume

N ≺Mj . Since N is an a-model, q|N is domination equivalent to pi|N , and so
dim(q|N,Mj) = dim(pi|N,Mj). If J ⊆ N is a maximal Morley sequence in pi,
then each c ∈ J forks with C over B, so |J | ≤ ℵ0; therefore dim(pi, N) ≤ ℵ0.
By Lemma 1.4.5.10 of [8],

dim(pi,Mj) = dim(pi, N) + dim(pi|N,Mj);

so since dim(pi,Mj) ≥ ℵi+j+1, we must have dim(pi|N,Mj) ≥ ℵi+j+1. So
dim(q,Mj) ≥ dim(q|N,Mj) = dim(pi|N,Mj) ≥ ℵj+1.

Case 2: For every i < ω, q ⊥ pi.
Pick some finite D ⊆ C such that q does not fork over D. If J ⊆ Mj is a

maximal Morley sequence in q, then by standard forking calculus we can find

15



a subset J̃ of J such that J̃ |̂
D
B, J̃ |̂

BD
Ij<ω, and |J \ J̃ | ≤ ℵ0. Since D is

finite, the modelMj is a-prime over B∪D∪Ij<ω, and so by Claim 4.9, |J̃ | ≤ ℵ0.
Therefore |J | ≤ ℵ0 and we are done.

If j < k < ω, then the nonisomorphism of Mj and Mk follows from the
previous claim plus:
Claim 4.11. dim(p,Mj) = ℵj+1.

Proof. Suppose J ⊆ Mj is a maximal Morley sequence in p. Without loss of
generality, J ⊇ Ij0 , so |J | ≥ ℵj+1. Since B is countable, there is a countable
J0 ⊆ J such that J1 := J \ J0 is independent over B. Since p is orthogonal
to every type pi for i > 0, J1 is independent over B ∪

⋃
0<i<ω I

j
i . So if J2 =

J1 \Ij0 , then J2 is Morley over B∪
⋃
i<ω I

j
i . But sinceMj is a-constructible over

B ∪
⋃
i<ω I

j
i , it follows (by Claim 4.9) that |J2| ≤ ℵ0, and thus |J | = ℵj+1.

Proof of Theorem 1.4: 2 ⇒ 1 was Corollary 4.7, and 1 ⇒ 3 is immediate.
All that is left is to show that if 2 fails then so does 3.

So suppose T has a minimal type p ∈ S(acl(∅)) with an independent orbit,
and say

p⊥a f(p)⊗ f2(p)⊗ . . .

where f ∈ Aut(C). Then p cannot be strongly minimal, so by Buechler’s di-
chotomy, p must be locally modular.

First suppose that p is nontrivial. If c is any realization of p, then each of
the types in {f i(p) : 1 ≤ i < ω} is non-almost-orthogonal over c to a generic
type q ∈ S(acl(∅)) of some weakly minimal, acl(∅)-definable group G (see [4]
or [8]). By Fact 3.1, we may assume that G is abelian. We temporarily add
constants to the language for the algebraic parameters used to define G so that
G is definable over ∅, and let T ′ be this expanded language. There must be some
finite power fk of f which fixes these parameters, so without loss of generality
f is still an automorphism in the language of T ′. It follows that q also has an
independent orbit, as witnessed by f again, and so G has an everywhere generic
automorphism. By Theorem 3.13, the theory T ′ has infinitely many pairwise
bi-embeddable, pairwise nonisomorphic models, and by Lemma 2.3, so does the
original theory T .

Finally, suppose that p is trivial. Then the types in {f i(p) : i < ω} are
pairwise orthogonal (see [2]). By Theorem 4.8, we are done. �

Remark 4.12. It seems that the Dushnik-Miller argument used in section 3 for
weakly minimal groups could also be applied to weakly minimal theories in which
there is a trivial type with an independent orbit, yielding a more uniform proof
of Theorem 1.4 which avoids the construction in the proof of Theorem 4.8. There
are some technical obstacles to doing this, however, so we have not included this
argument in the present write-up.
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