1. (20 points $=10+10$) (a) H has collisions because $H(x+p)=H(x)$. But H is preimage resistant: Given y, it is hard to find any z with $h(z)=y$. In particular, it is hard to find z with $0 \leq z<p$ with $h(z)=y$.
(b) The line through the points is $y \equiv 3 x-1$. We need to solve $(3 x-1)^{2} \equiv \overline{x^{3}}+3 x$, which can be changed to $x^{3}-9 x^{2}+\cdots \equiv 0$. Then 9 is the sum of the roots: $9 \equiv 1+2+x$, so $x=6$. Then $y \equiv 3 x-1 \equiv 6$. Reflect across the x-axis to get $(6,-6)$, or $(6,5)$.
2. (20 points $=10+10$) (a) Peggy chooses any two values of r_{1} and r_{2}, computes $y_{1} \equiv g^{r_{1}}$ and $y_{2} \equiv g^{r_{2}}$. Then she follows the given procedure.
(b) Between 2 and 3, Victor needs to check that $y_{1} y_{2} \equiv h$.
3. (25 points $=10+10+5$) (a) There are $N=2^{100} \approx 10^{30}$ "birthdays" and $r=10^{10}$ people. The probability of a match is approximately $1-e^{-r^{2} / 2 N} \approx 1-e^{-5 \times 10^{-11}} \approx 0.00$.
(b) Eve makes two lists: (1) $D_{L_{1}}\left(D_{L_{1}}(c)\right)$ for all keys L_{1}, (2) $E_{L_{2}}\left(E_{L_{2}}(m)\right)$ for all keys L_{2}. A match yields a desired pair $\left(L_{1}, L_{2}\right)$. (A birthday attack could be used to make the lists shorter.)
(c) For these two choices of keys for DES (but not for most cryptosystems), encryption and decryption are the same, so $E_{K_{2}}\left(E_{K_{2}}(m)\right)=m$ and similarly for K_{1}. Therefore, the ciphertext equals the plaintext, so Eve doesn't need any attack to read future messages.
4. (35 points $=10+10+5+10$) (a) $h^{m} r^{r} \equiv g^{a m} g^{k r} \equiv g^{a m+k r} \equiv g^{s}$.
(b) Eve needs to solve $g^{s_{1}} \equiv h^{m_{1}} 2015^{2015}(\bmod p)$. This is a discrete \log problem, therefore probably hard. (Note: Eve does not need to produce s_{1} by the formula, so the fact she does not know k and a is not necessarily relevant. She only needs to find s_{1} that satisfies the verification equation.)
(c) $s \equiv a H(m)+k r, g^{s} \equiv h^{H(m)} r^{r}$.
(d) $R=k P=(x, y)$, and $s \equiv a m+k x(\bmod n)$, where n is the number of points on E; Verification: $s P=m Q+x R$.
