1. (14 points = 7+7) (a) Solve \(y \equiv 9x + 1 \pmod{26} \) for \(x \) to get \(x \equiv 3(y - 1) \pmod{26} \). The ciphertext 19, 1, 16 becomes 2, 0, 19, which is \textit{cat}.
(b) Use \(n = 1, 2, 3 \) to get the equations

\[
1 \equiv 0 + 0 + c_2, \quad 1 \equiv 0 + c_1 + c_2, \quad 0 \equiv c_0 + c_1 + c_2.
\]

These yield \(c_2 \equiv 1 \), \(c_1 \equiv 0 \), \(c_0 \equiv 1 \). The recurrence is \(x_{n+3} \equiv x_n + x_{n+2} \). The next four elements of the sequence are 1, 0, 0, 1.

2. (11 points = 7+4) (a) Take any random number, for example 3, for the slope. Use the line \(y \equiv 5 + 3x \pmod{7} \). Give \(A \) the point (1, 1), give \(B \) the point (2, 4), give \(C \) the point (3, 0), and give \(D \) the point (4, 3).
(b) With only one share, all 7 secrets are still possible.

3. (20 points = 12+8) (a) (1) Vigenère: yes; (2) Hill cipher: yes; (3) RSA (with a 300-digit \(n \)): no; (4) DES: no
(b) \(23154^2 \equiv 1234^4 \equiv 1 \pmod{n} \) but \(23154 \not\equiv \pm 1 \pmod{n} \). Therefore, \(\gcd(23154^2 - 1, n) \) gives a factor of \(n \). (If you’re wondering, or if you’re not, \(n = 137 \cdot 421 \).

4. (14 points: 7+7) (a) \(x \equiv y \pmod{p - 1} \) means \(x = y + (p - 1)k \) for some \(k \). Therefore, \(m^x = m^y(m^{p-1})^k \equiv m^y(1)^k \equiv m^y \pmod{p} \), by Fermat’s theorem.
(b) Eve knows \(e \) and \(p \), so she finds \(d \) with \(de \equiv 1 \pmod{p - 1} \). Then \(c^d \equiv m^{ed} \equiv m \pmod{p} \), so Eve obtains \(p \).

5. (10 points: 7+3) \(v_1 \equiv \beta^{f(r)s} \equiv \alpha^{af(r)} \alpha^{ks} \equiv \alpha^{af(r)+m-af(r)} \equiv \alpha^m \equiv v_2 \pmod{p} \).
(b) Eve takes \(k = 1, r = \alpha, s = m_1 \).

6. (11 points = 7+4) (a) \(s^e \equiv k^{-e}s_1^e \equiv k^{-e}m_1^{ed} \equiv k^{-e}m_1 \equiv m \pmod{n} \).
(b) \(\gcd(k, n) = 1 \) is used because we compute \(k^{-1} \pmod{n} \).

7. (10 points) The remaining steps are

3. Peggy sends \(R_1 \) and \(R_2 \) to Victor.
4. Victor checks that \(R_1 + R_2 = B \).
5. Victor asks for \(r_1 \) or \(r_2 \). Call it \(r_i \).
6. Peggy sends \(r_i \) to Victor.
7. Victor checks that \(r_iA = R_i \) for that \(i \).
8. They repeat all the above steps at least 9 more times (for a total of at least 10).

8. (10 points) Eve makes a list of the hash values of each of the \(2^{20} \) good contracts and another list of the hash values of the \(2^{20} \) bad contracts. Since there are \(2^{30} \) possible hash values, \(2^{20} \) is much larger than \(\sqrt{2^{30}} = 2^{15} \), there should be a match. This means that Alice’s signature on a good contract is also valid as a signature of some bad document.