
GALOIS COHOMOLOGY

Lawrence C. Washington

In these lectures, we give a very utilitarian description of the Galois cohomology needed in Wiles’ proof. For a
more general approach, see any of the references.

First we fix some notation. For a field K, let K̄ be a separable closure of K and let GK =Gal(K̄/K). For a prime
p, let Gp = GQp

, where Qp is the field of p-adic numbers, and let Ip ⊂ Gp be the inertia group.
Let G be a group, usually either finite or profinite, and let X be an abelian group on which G acts. Such an X

will be called a G-module. If there are topologies to consider, we assume the action is continuous, though we shall
mostly ignore continuity questions except to say that all maps, actions, etc. are continuous when they should be.

§1. H0, H1, and H2.

We start with
H0(G,X) = XG = {x ∈ X|gx = x for all g ∈ G}.

For example, GK acts on K̄× and
H0(GK , K̄

×) = K×.

For another example, let µn denote the group of n-th roots of unity. Then

H0(GQ, µn) = {±1} if 2|n, = 1 if 2 ∤ n.

Occasionally, for a finite group G, we will need the modified Tate cohomology group

Ĥ0(G,X) = XG/Norm(X),

where Norm(x) =
∑

g∈G gx (if X is written additively). For example, if X is an abelian group of odd order on which

Gal(C/R) acts, then Norm(X) ⊇ 2(XG) = XG, so Ĥ0(Gal(C/R), X) = 0.

We now skip H1(G,X) in order to give a brief description of H2(G,X). Define

H2(G,X) = cocycles/coboundaries,

where a cocycle is a map (of sets) f : G×G→ X satisfying

δf = f(g1, g2g3)− f(g1g2, g3) + g1 · f(g2, g3)− f(g1, g2) = 0,

and where f is a coboundary if there is a map h : G→ X such that

f(g1, g2) = g1 · h(g2)− h(g1g2) + h(g1) = δh.

This definition might seem a little strange; we will give a slightly different form of it later after we define H1(G,X).
Here is an example. Let p be an odd prime and let G = Gp. Let a, b ∈ Q×

p with a not a square. Define

f(g1, g2) =b if g1
√
a = −

√
a and g2

√
a = −

√
a

=1 otherwise.

It is easy to check that f : Gp × Gp → Q×
p satisfies the cocycle condition, hence yields an element of H2(Gp, Q

×
p ).

Suppose b is a norm from Qp(
√
a), so b = x2 − ay2 for some x, y ∈ Qp. Let h(g) = x + y

√
a if g

√
a = −√a and

h(g) = 1 otherwise. Then
f(g1, g2) = (g1h(g2))h(g1)/h(g1g2),

so the element of H2 we obtain is trivial. Conversely, it can be shown that if this element is trivial, then b is a norm
from Qp(

√
a). Recall the Hilbert symbol (a, b)p, which equals 1 if b is a norm from Qp(

√
a) and equals −1 otherwise.

Thus the above cohomology class we obtain is essentially the same as the Hilbert symbol. We also have (a, b)p = 1
if and only if x21 − ax22 − bx23 + abx24 = 0 has a non-zero solution in Qp. Equivalently, (a, b)p = 1 if and only if the
generalized quaternion algebra Qp[i, j, k], with i

2 = a, j2 = b, k2 = −ab, ij = k, etc., is isomorphic to the algebra
of two-by-two matrices over Qp (rather than being a division algebra). In general, H2(GK , K̄

×) is known as the
Brauer group and classifies central simple algebras over the field K. We will need the following result.
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Proposition 1. Let p be a prime number. Then H2(Gp, Q̄
×
p ) ≃ Q/Z.

This result is an important result in local class field theory. For a proof, see [Se]. In our example, the cohomology
class of f is 0 if (a, b)p = 1 and is 1

2 mod Z if (a, b)p = −1.
We now turn our attention to H1, which is the most important for us. Define

H1(G,X) = cocycles/coboundaries,

where a cocycle is a map f : G → X satisfying f(g1g2) = f(g1) + g1 f(g2) (a “crossed homomorphism”) and where
f is a coboundary if there exists x ∈ X such that f(g) = gx− x.

Before continuing, we write the cocycle conditions in a different form that perhaps seems more natural. For a
2-cocycle f , let F (a, b, c) = a · f(a−1b, a−1c), where a, b, c ∈ G. Then F (ga, gb, gc) = g · F (a, b, c) and the cocycle
condition becomes

F (a, b, c)− F (a, b, d) + F (a, c, d)− F (b, c, d) = 0.

For a 1-cocycle f , let F (a, b) = a · f(a−1b). Then F (ga, gb) = g · F (a, b) and the cocycle condition reads

F (a, b)− F (a, c) + F (b, c) = 0.

We can even describe H0 in this manner: a 0-cocycle is a map f from the one point set to X, hence simply an
element x of X, that satisfies gx − x = 0. If we let F (a) = ax, then F (ga) = g · F (a) and F (a) − F (b) = 0 for all
a, b ∈ G. In all three cases, the coboundary condition says that F is the coboundary of a function from the next
lower dimension. For example, the function F for a 2-coboundary is of the form H(a, b) − H(a, c) + H(b, c) for a
function H satisfying H(ga, gb) = g ·H(a, b) (explicitly, H(a, b) = a · h(a−1b) in the above notation). It should now
be clear how to define higher cohomology groups Hn(G,X) for n ≥ 3. With one exception, we will not need these
higher groups, and in this one exception, the element we need will be 0; therefore, we may safely ignore them for the
present exposition.

A fundamental fact that will be used quite often is the following. Suppose

0→ A→ B → C → 0

is a short exact sequence of G-modules. Then there is a long exact sequence of cohomology groups (write Hr(X) for
Hr(G,X) )

0→ H0(A)→ H0(B)→ H0(C)→ H1(A)→ H1(B)→ H1(C)→ H2(A)→ · · · .
The proof is a standard exercise in homological algebra.

Let’s return to H1(G,X). Suppose the action of G is trivial, so gx = x for all g and x. Then cocycles are simply
homomorphisms G→ X. A coboundary f(g) = gx− x is the 0-map. Therefore we have proved the useful fact that

H1(G,X) = Hom(G,X) if the action of G is trivial.

Here “Hom” means (continuous) homomorphisms of groups. For example, let K be a field and let G = GK . Then
GK acts trivially on Z/2Z, so H1(GK ,Z/2Z) = Hom(GK ,Z/2Z), which corresponds to the separable quadratic (or
trivial) extensions of K; namely, if f is a non-trivial homomorphism, then the fixed field of the kernel of f is a
quadratic extension. The trivial homomorphism corresponds to the trivial extension K/K.

Suppose now that G is a finite cyclic group: G =< g > with gn = 1. The cocycle relation yields by induction that

f(gi) = (1 + g + g2 + · · ·+ gi−1)f(g).

Therefore f(1) = f(gn) =Norm(f(g)). The cocycle condition easily implies that f(1) = 0, so f(g) is in the kernel of
Norm. Any such choice for f(g) yields a cocycle via the above formula. A coboundary corresponds to f(g) = (g−1)x
for some x ∈ X. Therefore

H1(G,X) ≃ (Kernel of Norm)/(g − 1)X for a finite cyclic group G.

As an example, consider a GR-module X of odd order. Let c be complex conjugation. Write X = 1+c
2 X ⊕ 1−c

2 X.

Note that 1−c
2 X is the kernel of Norm = 1 + c, and is also equal to (c − 1)X. Therefore H1(GR, X) = 0. More
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generally, it can be shown that if G and X are finite with relatively prime orders, then Hi(G,X) = 0 for all i > 0,

and also for i = 0 if we use the modified groups Ĥ0(G,X).
When G is infinite cyclic, or is the profinite completion of an infinite cyclic group, and X is finite, then there

is a similar description. Let g be a (topological) generator. Let x ∈ X be arbitrary. There are k, n > 0 such that
gnx = x and kx = 0. Define a cocycle by f(gi) = (1 + g + · · · + gi−1)x for i > 0. If i > j and i ≡ j mod kn, then
gj + · · · gi−1 is a multiple of 1 + gn + · · · + gn(k−1), which kills x. Therefore f(gi) depends only on i mod kn, so f
extends to a continuous cocycle on all of G. Since, as above, every cocycle must be of this form, we have

H1(G,X) ≃ X/(g − 1)X when G is (the profinite closure of) an infinite cyclic group and X is finite.

This result will be applied later to the case where F is a finite field and G =Gal(F̄/F), which is generated by the
Frobenius map.

Let L/K be a finite extension of fields with cyclic Galois group G generated by g. Then G acts on L×. The
famous Hilbert Theorem 90 says that if x ∈ L× has Norm 1 then x = gy/y for some y ∈ L×. This is precisely the
statement that H1(G,L×) = 0. More generally, we have

H1(Gal(L/K), L×) = 0

for any Galois extension of fields L/K ([Se]).
Let n ≥ 1 be prime to the characteristic of the field K and consider the exact sequence of GK -modules

1→ µn → K̄× → K̄× → 1

induced by the n-th power map. The long exact sequence of cohomology groups includes the portion

H0(GK , K̄
×)→ H0(GK , K̄

×)→ H1(GK , µn)→ H1(GK , K̄
×),

where the first map is the n-th power map. Since the last group is 0, we find that

H1(GK , µn) ≃ K×/(K×)n.

Explicitly, let a ∈ K× and fix an nth root α of a. Then g 7→ gα/α defines a cocycle and hence an element of
H1(GK , µn). When µn ⊆ K, H1(GK , µn) becomes Hom(GK , µn), which corresponds (in an obvious many to one
fashion) to cyclic extensions of K of degree dividing n, and α is a Kummer generator for this extension (and,
correspondingly, there are several Kummer generators mod nth powers for each extension). When n = 2, note that
Z/2Z and µ2 are isomorphic as GK -modules, and we find that H1(GK , µ2) classifies quadratic extensions of K,
though in a slightly different manner than H1(GK ,Z/2Z).

§2. Preliminary results.
Suppose H is a (closed) normal subgroup of a group G and X is a G-module. Then XH is a module for G/H in

the obvious way. A cocycle for G/H can also be regarded as a cocycle for G (“inflation”) by composing with the
map G → G/H. A cocycle for G can be regarded as a cocycle for H by restriction. Also, G/H acts on H1(H,X)
by the formula fg(h) = g · f(g−1hg), where f is a cocycle and g is a representative of a coset in G/H. An easy

calculation shows that if g′ is another representative of the coset of g then fg
′

and fg differ by a coboundary, so the
action is well-defined.

Proposition 2 (Inflation-Restriction). There is an exact sequence

0→ H1(G/H,XH)→ H1(G,X)→ H1(H,X)G/H → H2(G/H,XH)→ H2(G,X).

This is the exact sequence of terms of low degree in the Hochschild-Serre spectral sequence, hence is sometimes
referred to by that name. For a proof, and the definition of the map from H1 to H2, see [Sh].

For example, let p be a prime and let G = Gp. Let H = Ip = Gal(Q̄p/Q
unr
p ), where Qunr

p is the maximal unramified

extension of Qp, so Ip is the inertia subgroup of Gp, and Gp/Ip ≃ Gal(F̄p/Fp). The beginning of the above sequence
implies that

H1(Gp/Ip, X
Ip) ≃ Ker

(

H1(Gp, X)→ H1(Ip, X)
)

.

In other words, we can regard H1(Gp/Ip, X
Ip) as the subgroup of H1(Gp, X) consisting of those cohomology classes

that become trivial when restricted to the inertia subgroup; hence, we call these the unramified classes. For example,
when X = Z/2Z, the unramified classes are those homomorphisms from Gp to Z/2Z that are 0 on Ip, hence that can
be identified with homomorphisms from Gp/Ip to Z/2Z. There are two such homomorphisms, the 0 homomorphism
and the one corresponding to the unique unramified quadratic extension of Qp (or of Fp). This is well-known, but is
also a consequence of the following, which often allows us to calculate the order of the group of unramified classes,
since H0(Gp, X) = XGp .
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Lemma 1. Let X be finite. Then #H1(Gp/Ip, X
Ip) = #H0(Gp, X) (and both are finite).

Proof. There is an exact sequence

0 −→ XGp −→ XIp (Frob−1)−−−−−−→ XIp −→ XIp/(Frob− 1)XIp −→ 0.

The exactness at the first XIp follows from the fact that if x ∈ XIp and (Frob−1)x = 0, then x is fixed by both Ip and
Frob, which (topologically) generate Gp. The first term gives H0(Gp, X) and the last term gives H1(Gp/Ip, X

Ip).
The result follows easily. �

The last preliminary topic that we need is cup products. In general, suppose X1, X2, and X3 are G-modules,
and there is a G-module homomorphism Φ : X1 ⊗X2 → X3. The cup product is a map Hi(G,X1)×Hj(G,X2)→
Hi+j(G,X3). We define the cup product only when i+j = 2, since this is the main case we need. Let f1 ∈ H2(G,X1),
so we may regard f1 as (being represented by) a map f1 : G×G→ X1. Let x2 ∈ XG

2 = H0(G,X2). Then f3 = f1∪x2
is the 2-cocycle satisfying f3(g1, g2) = Φ(f1(g1, g2) ⊗ x2). The cup product of H0 and H2 is defined similarly. Now
let φk ∈ H1(G,Xk) for k = 1, 2. Define

(φ1 ∪ φ2)(g1, g2) = Φ
(

φ1(g1)⊗ g1 φ2(g2)
)

.

It is easy to see that this defines a 2-cocycle, hence an element of H2(G,X3).
For example, let a, b ∈ Q×

p . Let φ ∈ H1(Gp,Z/2Z) be defined by φ(g) = 0 if g(
√
a) =

√
a and φ(g) = 1 otherwise.

Define ψ ∈ H1(Gp, µ2) by ψ(g) = g(
√
b)/
√
b. We may regard µ2 ≃ Hom(Z/2Z, µ2) as the dual of Z/2Z; hence there

is a map Z/2Z ⊗ µ2 → µ2 ⊂ Q̄×
p . Therefore φ ∪ ψ ∈ H2(Qp, Q̄

×
p ). Fix a square root

√
b and let h(g) = (g

√
b)φ(g).

A calculation shows that φ∪ψ multiplied times the coboundary h(g1) · g1h(g2)/h(g1g2) equals the cocycle f defined
earlier, the one corresponding to the Hilbert symbol (a, b)p. In fact, this cup product is one way to define the Hilbert
symbol; see [Se]. We now have a pairing

H1(Gp,Z/2Z)×H1(Gp, µ2) −→ H2(Gp, Q̄
×
p ) ≃ Q/Z.

The non-degeneracy of this pairing is equivalent to the non-degeneracy of the Hilbert symbol.
Now let p be odd and consider the group H1(Gp/Ip, Z/2Z) of unramified classes. Assume a is not a square.

The element φ is in this group if
√
a generates an unramified extension (in fact, the unique quadratic extension) of

Qp, which means we may assume a is a p-adic unit. We have (a, b)p = 1 ⇐⇒ b is a norm from Qp(
√
a) ⇐⇒

b is a square times a p-adic unit (this follows from the fact that p is a uniformizer for Qp(
√
a)) ⇐⇒ the cocycle

ψ is unramified. Therefore, the unramified classes in H1(Qp, µ2) form the annihilator of the unramified classes in
H1(Qp,Z/2Z) under the above pairing. All of this will be greatly generalized in the next section.

§3. Local Tate Duality.
Let p be prime and let X be a Gp-module of finite cardinality n. Let

X∗ = HomZ(X, µn),

where Gp acts on X∗ by (g x∗)(x) = g(x∗(g−1x)). Note that X ⊗X∗ ≃ µn ⊆ Q̄×
p as Gp-modules.

Theorem 1 (Local Tate Duality). (a) The groups Hi(Gp, X) are finite for all i ≥ 0, and =0 for i ≥ 3.
(b) For i = 0, 1, 2, the cup product gives a non-degenerate pairing

Hi(Gp, X)×H2−i(Gp, X
∗)→ H2(Gp, Q̄

×
p ) ≃ Q/Z.

(c) If p does not divide the order of X then the unramified classes H1(Gp/Ip, X
Ip) and H1(Gp/Ip, (X

∗)Ip) are the
exact annihilators of each other under the pairing H1(Gp, X)×H1(Gp, X

∗)→ Q/Z.

For a proof, see [Mi].

For the archimedean prime, the groups Hi(GR, X) are finite for all i. If we use the modified group Ĥ0 in place of

H0, then we have #Ĥ0(GR, X) = #Hi(GR, X) for all i > 0. There is a non-degenerate pairing

H1(GR, X)×H1(GR, X
∗)→ Q/Z,

and also
Ĥ0(GR, X)×H2(GR, X

∗)→ Q/Z

(and with Ĥ0 and H2 reversed); note that we use the modified Ĥ0 here also.

Another result we need evaluates Euler characteristics.
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Proposition 3. Let p be prime and let X be a finite Gp-module. Then

#H1(Gp, X)

#H0(Gp, X) ·#H2(Gp, X)
=

#H1(Gp, X)

#H0(Gp, X) ·#H0(Gp, X∗)
= pvp(#X).

The first equality follows from Theorem 1. For a proof of the proposition, see [Mi].

By using Theorem 1 and Proposition 3, we can evaluate #H1(Gp, X) and #H2(Gp, X) in terms of #H0(Gp, X)
and #H0(Gp, X

∗). These are much easier to calculate in most cases.

§4. Extensions and deformations.
The main reason that Galois cohomology arises in Wiles’ work is that certain cohomology groups can be used to

classify deformations of Galois representations. In order to explain this, we need a few concepts.
Suppose G is a group acting on an abelian group M , and assume in addition that M is a free module of rank n

over a ring R (commutative with 1), and the action of G commutes with the action of R. The action of G is then
given by a homomorphism

ρ : G→ GLn(R).

This yields an action of G on Mn(R), the ring of n× n matrices, via x 7→ ρ(g)xρ(g)−1. Let Adρ denote Mn(R) (or
EndR(M)) with this action. We also will need the submodule Ad0ρ consisting of matrices with trace 0.

An extension of M by M will mean a short exact sequence

0 −−−−→ M
α−−−−→ E

β−−−−→ M −−−−→ 0,

where E is an R[G]-module and α and β are R[G]-homomorphisms. The equivalence of two extensions is given by a
commutative diagram

0 −−−−→ M
α1−−−−→ E1

β1−−−−→ M −−−−→ 0

=





y

γ





y

=





y

0 −−−−→ M
α2−−−−→ E2

β2−−−−→ M −−−−→ 0,

where γ is an R[G]-isomorphism. The set of equivalence classes of such extensions is denoted Ext1(M,M).
Let R[ǫ] denote the ring R[T ]/(T 2) (so ǫ2 = 0). An infinitesimal deformation of ρ is an extension of ρ to

ρ′ : G→ GLn(R[ǫ])

such that ρ′ maps to ρ under the map ǫ 7→ 0. Two such infinitesimal deformations ρ′ and ρ′′ are equivalent if there
is a matrix A ≡ I mod ǫ such that Aρ′A−1 = ρ′′. The idea behind this is that we want to fit ρ into a family of
representations. Suppose, for example, that R is a local ring with maximal ideal M, and that we can extend ρ to
ρ̃ : G → GLn(R[T ]) (or R[[T ]] if R is complete). Then we can evaluate T at anything in the maximal idealM and
get a representation congruent to ρ modM. The infinitesimal deformations are the first steps in the direction of
constructing such families.

Proposition 4. The following sets are in one-one correspondence.
(a) H1(G,Adρ)
(b) Ext1(M,M)
(c) Equivalence classes of infinitesimal deformations of ρ.

Proof. Consider an extension 0 −→M
α−→ E

β−→M −→ 0. SinceM is free over R, there is an R-module homomorphism
φ : M → E such that β ◦ φ =idM . Let g ∈ G and m ∈M . Since β is an R[G]-homomorphism, gφ(g−1m)− φ(m) is
in Ker(β). Let Tg :M →M be defined by

Tg(m) = α−1
(

gφ(g−1m)− φ(m)
)

.

It is easy to check that Tg1g2 = Tg1 + g1Tg2 , where the action of G is the one on Adρ. Therefore g 7→ Tg gives an
element of H1(G,Adρ). If we have two equivalent extensions and φ1 and φ2 are the corresponding maps, and T1 and
T2 are the corresponding cocycles, then (T2)g − (T1)g = gψ − ψ, where ψ = α−1γ−1(φ2 − γφ1) :M →M . Therefore
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T2 − T1 is a coboundary for Adρ, hence T1 and T2 represent the same class in H1(G,Adρ). Therefore we have a
well-defined map Ext1(M,M)→ H1(G,Adρ).

Note that the trivial extension E =M ⊕M (as R[G]-modules) yields the trivial cohomology class.
We remark that this method of obtaining cocycles is fairly standard; namely, take an element, such as φ, in a

bigger set, in this case Hom(M,E), and form gφ− φ. Something of this form will automatically satisfy the cocycle
condition, but of course we also want gφ−φ to be in the original set. When φ itself is in the original set, in this case
Adρ, the cocycle is a coboundary.

Now suppose we have two extensions E1 and E2 and corresponding cohomology classes T1 and T2, and suppose
these classes are equal. Then there exists an R-map ψ : M → M such that (T2)g − (T1)g = gψ − ψ. Let e1 ∈ E1.
We can uniquely write e1 = α1(m) + φ1(m

′) with m,m′ ∈ M . Define γ(e1) = α2(m) + φ2(m
′) − α2(ψ(m

′)). A
calculation shows that γ : E1 → E2 is an R[G]-homomorphism that makes the appropriate diagram commute (and
is therefore an isomorphism, by the Snake Lemma); hence the extensions are equivalent. We have proved that the
map Ext1(M,M)→ H1(G,Adρ) is an injection.

Finally, let g → C(g) ∈Adρ be a cocycle. Let E = M ⊗R R[ǫ] = ǫM ⊕M . We regard ρ(g) as an element of
GLn(R[ǫ]) via the natural containment GLn(R) ⊆ GLn(R[ǫ]). The matrix I + ǫC(g) is also in GLn(R[ǫ]), so we
define

ρ′(g) =
(

I + ǫC(g)
)

ρ(g).

This is easily seen to be a homomorphism, and gives an action of G on E. We have the short exact sequence

0 −−−−→ M
ǫ−−−−→ E −−−−→ M −−−−→ 0.

Let φ :M → E = ǫM ⊕M be the map to the second summand. Then the above recipe gives

Tg(m) = ǫ−1
(

(

1 + ǫC(g)
)

ρ(g)φ
(

ρ(g)−1m
)

− φ(m)
)

= C(g)(m).

Therefore this extension yields the cocycle C, so the map Ext1(M,M)→ H1(G,Adρ) is surjective.
The above shows that a cocycle yields an infinitesimal deformation. Conversely, if ρ′ : G→ GLn(R[ǫ]) extends ρ,

define C(g) by I + ǫC(g) = ρ′(g)ρ(g)−1. An easy calculation shows that C is a cocycle. The identity

(I + ǫA)(I + ǫC) ρ (I − ǫA) =
(

I + ǫ(A− ρAρ−1 + C)
)

ρ

shows that equivalence of deformations corresponds to equivalence of cohomology classes. Note that the trivial
cohomology class corresponds to the trivial deformation ρ′ = ρ. This completes the proof. �

One of the themes in Wiles’ work is to consider deformations with various restrictions imposed. By the above, this
corresponds to considering cohomology classes lying in certain subsets of H1(G,Adρ). For the moment, we consider
two such examples.

1. Suppose we want to consider deformations where the determinant remains unchanged. Note that det((I +
ǫC)ρ) = (1 + ǫTr(C))detρ. Keeping the determinant unchanged is equivalent to having C ∈ Ad0ρ. Since Ad(ρ) =
Ad0ρ ⊕ R, where R represents the scalar matrices with trivial action of G, we have H1(G,Adρ) = H1(G,Ad0ρ) ⊕
H1(G,R). From the above, H1(G,Ad0ρ) gives the classes of infinitesimal deformations with fixed determinant.

2. Let p be prime and consider a cohomology class C in H1(Gp/Ip, (Adρ)
Ip), which is the kernel of the restriction

map H1(Gp,Adρ)→ H1(Ip,Adρ). Let ρ′ be the corresponding deformation. Then ρ′ restricted to Ip is (equivalent
to) the trivial deformation: ρ′|Ip = ρ|Ip . Therefore ρ′ is unramified at p if and only if ρ is unramified at p (i.e.,
ρ|Ip is trivial). Moreover, if ρ is ramified, all the ramification of the deformation ρ′ comes from that of ρ. We will
often require certain cohomology classes to be unramified in order to control the ramification of the corresponding
deformations of ρ.

§5. Generalized Selmer groups.
Let X be a GQ-module. Eventually, X will be Ad0ρ, but for the moment we do not need to make this restriction.

As indicated above, we want to study cohomology classes in H1(GQ, X) with various local restrictions. For each
place ℓ of Q, including the archimedean one, we may regard the group Gℓ as a subgroup of GQ. There are many
ways to do this, but all the results we obtain will be independent of these choices. We have the restriction maps

resℓ : H
1(GQ, X)→ H1(Gℓ, X).
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Let L = {Lℓ} be a family of subgroups Lℓ ⊆ H1(Gℓ, X) as ℓ runs through all places of Q, with Lℓ = H1(Gℓ/Iℓ, X
Iℓ)

for all but finitely many ℓ. Such a family will be called a collection of local conditions. Define the generalized Selmer
group

H1
L(Q, X) = {x ∈ H1(GQ, X)|resℓ(x) ∈ Lℓ for all ℓ}.

Let L∗ = {L⊥
ℓ }, where L⊥

ℓ is the annihilator of Lℓ under the Tate pairing. By Theorem 1, L⊥
ℓ = H1(Gℓ/Iℓ, X

∗Iℓ) for
all but finitely many ℓ. The following result is crucial in Wiles’ proof. It was inspired by work of Ralph Greenberg
[Gr].

Theorem 2. The group H1
L(Q, X) is finite, and

#H1
L(Q, X)

#H1
L∗(Q, X∗)

=
#H0(GQ, X)

#H0(GQ, X∗)

∏

ℓ≤∞

#Lℓ
#H0(Gℓ, X)

.

Note that #H0(Gℓ, X) = #H1(Gℓ/Iℓ, X
Iℓ) by Lemma 1, so almost all factors in the product are 1. The formu-

lation of the theorem is that of [DDT], which differs slightly from that of [Wi]. An easy exercise, using Theorem 1
and Proposition 3, shows that the two versions are equivalent.

We sketch the proof of the theorem at the end of the paper.
In the applications, L is chosen so that H1

L∗ = 0. Since the terms on the right are fairly easy to work with, we
obtain information about the group H1

L, which for appropriate X describes deformations of representations with
certain local conditions.

To show how the formula may be used, we now give an application in a fairly concrete setting. The techniques
are much in the spirit of those used by Wiles. Let X = Z/pnZ (with trivial Galois action), where p is an odd
prime. Let S be a finite set of primes containing p and ∞. For ℓ ∈ S, let Lℓ = H1(Gℓ,Z/p

nZ). For ℓ 6∈ S, let
Lℓ = H1(Gℓ/Iℓ,Z/p

nZ). Then L⊥
ℓ = 0 for ℓ ∈ S and L⊥

ℓ = H1(Gℓ/Iℓ, µpn) for ℓ 6∈ S. Consider H1
L∗(Q, µpn).

From above, we know that every element of H1(GQ, µpn) is represented by a cocycle of the form g 7→ gα/α, where

αp
n

= a ∈ Q×. To be in H1
L∗ , it must be unramified everywhere. Since

H1(Iℓ, µpn) = H1(GQunr
ℓ

, µpn) ≃ (Qunrℓ )×/((Qunrℓ )×)p
n

,

where Qunrℓ is the maximal unramified extension of Qℓ, this implies that vℓ(α) ≡ 0 mod pn for all ℓ. Therefore
a = pnth power in Q (we can ignore ±1 since p is odd) and the cocycle represents the trivial cohomology class. It
follows that H1

L∗(Q, µpn) = 0.
We now evaluate the right side of the formula. First, #H0(GQ,Z/p

nZ) = #Z/pnZ = pn. Since we chose p to be
odd, H0(GQ, µpn) = 0. In the product, the terms for ℓ 6∈ S are all 1. When ℓ 6=∞ is in S, the factor is

#H1(Gℓ,Z/p
nZ)

#H0(Gℓ,Z/pnZ)
= #H0(Gℓ, µpn) · ℓvℓ(p

n)

by Proposition 3. The number of pnth roots of unity in Qℓ is (ℓ− 1, pn), so this is the order of H0(Gℓ, µpn). Since
#Hom(GR,Z/p

nZ) = 1, the factor for ℓ =∞ is 1/pn. Putting everything together, we find

#H1
L(Q,Z/p

nZ) = pn
∏

ℓ∈S\∞

(ℓ− 1, pn).

Note that H1(GQ,Z/p
nZ) = Hom(GQ,Z/p

nZ) classifies cyclic extensions of degree dividing pn, and H1
L(Q,Z/p

nZ)
gives those extensions that are unramified outside S.

We already have a good supply of such extensions coming from subfields of cyclotomic fields. For each finite
prime ℓ ∈ S, there is a cyclic extension of degree (ℓ − 1, pn) contained in the ℓ-th cyclotomic field. There is also a
cyclic extension of degree pn contained in the pn+1st cyclotomic field. These extensions are disjoint, so we obtain
an abelian extension of exponent pn and degree pn

∏

ℓ∈S(ℓ − 1, pn). The Galois group of this extension has this
many homomorphisms into Z/pnZ, so all homomorphisms of GQ into Z/pnZ unramified outside S are obtained from
subfields of cyclotomic fields. By enlarging S arbitrarily, we find that every cyclic extension of Q of degree dividing
pn is contained in a cyclotomic field. The same analysis may be done for powers of 2 with the same result. Since
every finite abelian group is a product of cyclic groups of prime power order, we obtain the Kronecker-Weber theorem
that every abelian extension of Q is contained in a cyclotomic field. (Of course, this proof is by no means elementary,
since the full power of class field theory is used in the proof of Theorem 2.)

As in the proof of the Kronecker-Weber theorem just given, it will sometimes be necessary to enlarge the set of
primes at which ramification is allowed. The following estimates how much the Selmer group increases.
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Proposition 5. Let p be prime and suppose #X is a power of p. Let L = {Lℓ} be a collection of local conditions
and let q 6= p be a prime for which Lq = H1(Gq/Iq, X

Iq ). Define a new collection L′ = {L′
ℓ} of local conditions by

L′
ℓ = Lℓ if ℓ 6= q and L′

q = H1(Gq, X). Then

#H1
L′(Q, X)

#H1
L(Q, X)

≤ #H0(Gq, X
∗).

Proof. Since L′
q
⊥

= 0, the conditions defining H1
L′∗ are more restrictive than those defining H1

L∗ , so H1
L′∗ has

order less than or equal to that of H1
L∗ . When L is changed to L′ in Theorem 2, all factors on the right remain

the same except the one for q, which changes from 1 to #H1(Gq, X)/#H0(Gp, X). By Proposition 3, this equals
#H0(Gq, X

∗), since q ∤ #X. The result follows easily. �

§6. Local conditions.
From now on, fix a finite set Σ of primes (including∞, though this will not be important). Let p be an odd prime

and assume R is a finite ring of cardinality a power of p. We will work with X =Ad0ρ, where ρ : GQ →GL2(R) is a
2-dimensional representation. We also assume ρ is an odd representation. For our present purposes, we take this to

mean that if c is (any choice of) complex conjugation, then the matrix ρ(c) is similar to

(

1 0
0 −1

)

.

Define a collection of local conditions as follows:

Lℓ = H1(Gℓ/Iℓ, (Ad
0ρ)Iℓ) for ℓ 6∈ Σ, ℓ 6= p

Lℓ = H1(Gℓ,Ad
0ρ) for ℓ ∈ Σ, ℓ 6= p

Lp will be specified later.

In other words, if we think in terms of infinitesimal deformations, we allow as little ramification as possible at the
primes 6= p outside Σ, the ramification at those places being due to ramification in ρ. At the primes ℓ 6= p in Σ we
allow arbitrary ramification. At p we want to control what happens a little more carefully, depending on properties
of ρ.

In the formula of Theorem 2, we need to evaluate, or at least estimate, the factors #Lℓ/#H
0(Gℓ,Ad

0ρ) corre-
sponding to the various primes.
• The factors for the primes ℓ 6∈ Σ with ℓ 6= p are all 1 by Lemma 1
• The factor for the infinite prime is easy. Since GR has order 2 and Ad0ρ has odd order, H1(GR,Ad

0ρ) = 0.

Therefore L∞ is a subgroup of the trivial group, hence trivial. We may assume that ρ(c) =

(

1 0
0 −1

)

. Since

ρ(c)Aρ(c)−1 = A is equivalent to A being diagonal, we see that H0(GR,Ad
0ρ) has order #R. Therefore the factor

for ∞ is 1/#R.
• Let ℓ ∈ Σ, ℓ 6= p, ∞. Then, as in the proof of Proposition 5, we have

#H1(Gℓ,Ad
0ρ)

#H0(Gℓ,Ad0ρ)
= #H0(Gℓ, (Ad

0ρ)∗).

§7. Conditions at p.

Ordinary representations. Suppose ρ|Gp
has the form (for some choice of basis)

(

ψ1ǫ ∗
0 ψ2

)

, where ψ1 and ψ2

are unramified characters (with values in R×), and ǫ is now the cyclotomic character (not the infinitesimal element
from above) giving the action of Gp on the p-power roots of unity. Let W 0 be the additive subgroup of Ad0ρ given

by matrices of the form

(

0 ∗
0 0

)

.

Lemma 2. Gp acts on W 0 by multiplication by ψ1ǫ/ψ2.

Proof.
(

ψ1ǫ ∗
0 ψ2

)(

0 b
0 0

)(

ψ1ǫ ∗
0 ψ2

)−1

=

(

0 ψ1ǫb/ψ2

0 0

)

. �
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Lemma 3. #H0(Gp, (W
0)∗) = #R/

(

ψ1

ψ2

(Frobp)− 1
)

R.

Proof. An element of (W 0)∗ is a group homomorphism φ : R → µpn (for some sufficiently large n), and φ is fixed

by Gp if and only if φ(gr) = gφ(r) for all g ∈ Gp and r ∈ R. By Lemma 2, this means φ(ψ1ǫ
ψ2

r) = ǫφ(r). Note that

ǫ takes values in the image of Zp in R, which is the same as the image of Z in R. Therefore we can regard ǫ as an

integer that is also a unit in R, and consequently obtain φ(ψ1

ψ2

r) = φ(r). Since ψ1 and ψ2 are unramified, it suffices

to check this for g = Frobp, so we let α = ψ1

ψ2

(Frobp). We need φ to satisfy φ((α− 1)r) = 0 for all r. This says that

φ is a group homomorphism from R/(α− 1)R to µpnZ. The number of such homomorphisms is #R/(α− 1)R. �

We now look at two choices for Lp.

1. Lp = Ker
(

H1(Gp,Ad
0ρ)→ H1(Ip,Ad

0ρ/W 0)
)

.

In terms of infinitesimal deformations ρ′, this requires ρ′|Ip always to be equivalent to the form

(

ǫ ∗
0 1

)

. This

case will be used, for example, in the case of an elliptic curve with good ordinary reduction at p.
Consider the diagram

H1(Gp,Ad
0ρ)





y

u

0 −→ H1(Gp/Ip, (Ad
0ρ/W 0)Ip) −→ H1(Gp,Ad

0ρ/W 0)
res−−→ H1(Ip,Ad

0ρ/W 0)Gp/Ip .

Then Lp = Ker(res ◦ u) and H1(Gp,Ad
0ρ)/Lp ≃ Im (res ◦ u). From the exact sequence,

#Im (res ◦ u) ≥ #Im u/#H1(Gp/Ip, (Ad
0ρ/W 0)Ip) = #Im u/#H0(Gp,Ad

0ρ/W 0),

the last equality following from Lemma 1. The exact sequence (with Hi(X) = Hi(Gp, X))

0→ H0(W 0)→ H0(Ad0ρ)→ H0(Ad0ρ/W 0)→ H1(W 0)→ H1(Ad0ρ)→ Im u→ 0

yields #Im u as the alternating product of the orders of the other terms, and we obtain

#Lp
#H0(Gp,Ad0ρ)

=
#H1(Gp,Ad

0ρ)

#H0(Gp,Ad0ρ)#Im (res ◦ u) ≤
#H1(Gp,Ad

0ρ)#H0(Gp,Ad
0ρ/W 0)

#H0(Gp,Ad0ρ)#Im u

=
#H1(Gp,W

0)

#H0(Gp,W 0)
= #R ·#H0(Gp, (W

0)∗).

The last equality follows from Proposition 3. Combining this with Lemma 3, we obtain

#Lp
#H0(Gp,Ad0ρ)

≤ #R ·#
[

R/(
ψ1

ψ2
(Frobp)− 1)R

]

.

2. Lp = Ker
(

H1(Gp,Ad
0ρ)→ H1(Gp,Ad

0ρ/W 0)
)

.

This is used when working with an elliptic curve that has bad multiplicative reduction at p. It is similar to the
previous case, except that it specifies what happens on all of Gp. Actually, in this case (“ordinary but not flat”
[DDT], or “strict” [Wi]) we could use the same Lp as before, by a result of Diamond [Wi, Proposition 1.1], but the
present choice is more convenient for our calculations. By the calculations just completed, but with the new choice
of Lp, we have H1(Gp,Ad

0ρ)/Lp ≃ Im u and

#Lp
#H0(Gp,Ad0ρ)

=
#R ·#H0(Gp, (W

0)∗)

#H0(Gp,Ad0ρ/W 0)
.

In the case where this will be applied, we will have

ψ1 = ψ2,
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so #H0(Gp, (W
0)∗) = #R by Lemma 3. Also, we will have a matrix

ρ(g) =

(

ψ1ǫ y
0 ψ2

)

with y ∈ R×

in the image of ρ|Gp
. Since

(

ψ1ǫ y
0 ψ2

)(

a ∗
c −a

)(

ψ1ǫ y
0 ψ2

)−1

=

(

a+ cy
ψ1ǫ

∗
ψ2c
ψ1ǫ

−a− cy
ψ1ǫ

)

,

it follows that an element of Ad0ρ/W 0 fixed byGp is represented by a diagonal matrix. Therefore #H0(Gp,Ad
0ρ/W 0)

= #R. Putting things together, we obtain

#Lp
#H0(Gp,Ad0ρ)

= #R.

Flat representations. This is a more technical situation that must be used in the case of an elliptic curve with
good supersingular reduction. Let Lp = H1

f (Gp,Ad
0ρ) be those cohomology classes in H1(Gp,Ad

0ρ) representing

extensions 0 → M → E → M → 0 in the category of R[Gp]-modules attached to finite flat group schemes over Zp.
We also assume that R = O/λn, where O is the ring of integers in a finite extension of Qp and λ generates the
maximal ideal. The theory of Fontaine-Lafaille implies that

#Lp
#H0(Gp,Ad0ρ)

= #R.

§8. Proof of Theorem 2.
We first address a technical point. Let Σ be the finite set of primes and let QΣ be the maximal extension of

Q unramified at the primes not in Σ. Let X be a module for GΣ =Gal(QΣ/Q). Then X is also a module for
GQ that is unramified outside Σ. Some papers, for example [Wi], consider H1(GΣ, X), while others, for example
[DDT], consider the classes of H1(GQ, X) unramified outside Σ. Fortunately, the two groups are isomorphic. In the
following, we will find it more convenient to work with H1(GΣ, X).

Proposition 6. H1(GΣ, X) ≃ Ker
(

H1(GQ, X)→∏

ℓ 6∈ΣH
1(Iℓ, X)

)

.

Proof. The following diagram commutes (the top row is inflation-restriction).

0 −→ H1(GΣ, X) −→ H1(GQ, X) −→ H1(Gal(Q̄/QΣ), X)




y





y

=

∏

ℓ 6∈Σ Hom(Iℓ, X)
φ←− Hom(Gal(Q̄/QΣ), X).

The map φ is injective since a homomorphism that is 0 on Iℓ for all ℓ 6∈ Σ must vanish on the smallest normal
subgroup generated by all such Iℓ, which is Gal(Q̄/QΣ). The result follows easily. �

Proposition 7. If X is finite then H1(GΣ, X) is finite.

Proof. Choose an open normal subgroup H of GΣ such that H acts trivially on X. Let K be the fixed field of
H. The group H1(H,X) = Hom(H,X) is finite since it classifies Galois extensions of K, unramified outside Σ,
with Galois group isomorphic to a subgroup of X, and there are only finitely many such extensions by a theorem of
Hermite-Minkowski. Since GΣ/H is finite, the group H1(GΣ/H,X) is finite by its definition. The result now follows
from the inflation-restriction sequence. �

Corollary. H1
L(Q, X) is finite.

Proof. The group is isomorphic to a subgroup of H1(GΣ, X). �

Let X be a finite module for GQ. Fix a set Σ containing∞, all the prime divisors of #X, and all primes such that
Ip does not act trivially on X. There exists an open subgroup that acts trivially on X. This subgroup corresponds
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to some finite extension K/Q, and the inertia group of any prime not ramifying in K acts trivially on X. Therefore
we can take Σ to be finite. Let Σf be the set of finite primes in Σ. For an integer r = 0, 1, 2, let

αr : H
r(GΣ, X) −→ Ĥr(GR, X)×

∏

ℓ∈Σf

Hr(Gℓ, X)

be induced by the restriction maps, where Ĥr(GR, X) is the modified Tate cohomology group (when r > 0, let

Ĥr = Hr). By Theorem 1, Ĥr(GR, X) ×∏

Hr(Gℓ, X) is the dual of Ĥ2−r(GR, X
∗) ×∏

H2−r(Gℓ, X
∗), so we may

dualize the map H2−r(GΣ, X
∗)→ Ĥ2−r(GR, X

∗)×∏

H2−r(Gℓ, X
∗) to obtain

βr : Ĥ
r(GR, X)×

∏

ℓ∈Σf

Hr(Gℓ, X) −→ H2−r(GΣ, X
∗)∨,

where A∨ = Hom(A,Q/Z) is the dual of an abelian group A. Let Kerr(GΣ, X) = Ker αr.

Proposition 8. There is a non-degenerate canonical pairing

Ker2(GΣ, X)×Ker1(GΣ, X
∗) −→ Q/Z.

Proof. The pairing can be defined as follows. Let f ∈ Ker2 and g ∈ Ker1. For ℓ ∈ Σ, we can write resℓf = δφℓ and
resℓg = δψℓ, where φℓ : Gℓ → X, ψℓ ∈ X∗, and δ is the coboundary map of the appropriate dimension. It can be
shown that the cup product f ∪ g = 0 ∈ H3(GΣ,Q

×
Σ), so f ∪ g = δh for an appropriate h. Then

(f ∪ ψℓ)− h = (φℓ ∪ g)− h+ δ(φℓ ∪ ψℓ),

hence (f ∪ ψℓ) − h and (φℓ ∪ g) − h represent the same class xℓ ∈ H2(Gl,Q
×
ℓ ) ≃ Q/Z, and it is independent of the

choices involved. Define
< f, g >=

∑

ℓ∈Σ

xℓ ∈ Q/Z.

The proof of the non-degeneracy is much more difficult. See [Mi]. �

Proposition 9. α0 is injective, β2 is surjective, and for r = 0, 1, 2, we have Im αr = Ker βr.

For a proof, see [Mi].

This can all be summarized in the following.

Proposition 10 (Poitou-Tate). The following nine-term sequence is exact:

0 −−−−→ H0(GΣ, X)
α0−−−−→ Ĥ0(GR, X)×∏

ℓ∈Σf
H0(Gℓ, X)

β0−−−−→ H2(GΣ, X
∗)∨ −−−−→ H1(GΣ, X)





y

α1

∏

ℓ∈ΣH
1(Gℓ, X)




y

β1

0 ←−−−− H0(GΣ, X
∗)∨

β2←−−−− ∏

ℓ∈ΣH
2(Gℓ, X)

α2←−−−− H2(GΣ, X) ←−−−− H1(GΣ, X
∗)∨

where the unlabeled arrows are maps defined by the non-degeneracy of the pairing in Proposition 8.

It is also possible to work with infinite sets Σ, but then some restrictions need to be made on the direct products
involved.

We can now prove Theorem 2. The definition of the Selmer group yields the exact sequence

0→ H1
L∗(Q, X∗)→ H1(GΣ, X

∗)→
∏

Σ

H1(Gℓ, X
∗)/L⊥

ℓ .
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Dualizing (i.e., Hom(−,Q/Z)) and using the pairing of Theorem 1 yields

0← H1
L∗(Q, X∗)∨ ← H1(GΣ, X

∗)∨ ←
∏

Lℓ.

Splicing this into the nine-term sequence yields

0 −−−−→ H0(GΣ, X)
α0−−−−→ Ĥ0(GR, X)×

∏

ℓ∈Σf
H0(Gℓ, X)

β0−−−−→ H2(GΣ, X
∗)∨ −−−−→ H1

L(Q, X)




y

α1

∏

ℓ∈Σ Lℓ




y

β1

0 ←−−−− H1
L∗(Q, X∗)∨ ←−−−− H1(GΣ, X

∗)∨.

Therefore
#H1

L(Q, X)

#H1
L∗(Q, X∗)

=
#H0(GΣ, X)#H2(GΣ, X

∗)∨ #(1 + c)X

#H1(GΣ, X∗)

∏

ℓ∈Σ

#Lℓ
#H0(Gℓ, X)

,

where we have used the fact for ℓ =∞ that Ĥ0(GR, X) = H0(GR, X)/(1 + c)X. We now need the following formula
for what may be regarded as a global Euler characteristic.

Proposition 11. Let X be finite. The groups Hr(GΣ, X), r = 0, 1, 2, are finite, and

#H0(GΣ, X)#H2(GΣ, X)

#H1(GΣ, X)
=

#H0(GR, X)

#X
.

For a proof, see [Mi, p. 82].

Since H2(GΣ, X
∗) is finite, it has the same order as its dual. Also, H0(GΣ, X) = XGΣ = XGQ = H0(GQ, X).

Therefore the proposition, applied to X∗, reduces the proof to the following.

Lemma 4. #(1 + c)X ·#H0(GR, X
∗) = #X∗.

Proof. The (non-degenerate) pairing X ×X∗ → µn satisfies 〈cx, cx∗〉 = c〈x, x∗〉 = 〈x, x∗〉−1, from which it follows
that 〈(1+c)x, x∗〉 = 〈x, (1−c)x∗〉. Therefore x∗ is fixed by c ⇐⇒ (1−c)x∗ = 0 ⇐⇒ 〈x, (1−c)x∗〉 = 0 for all x ⇐⇒
〈(1 + c)x, x∗〉 = 0 for all x. Therefore H0(GR, X

∗) is the exact annihilator of (1 + c)X, hence is dual to X/(1 + c)X.
The result follows easily. �
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