Errata for Introduction to Cryptography with Coding Theory

by Wade Trappe and Lawrence C. Washington

The following lists corrections for the First printing (September 2001). There was a Third Printing in 2002 that corrected most of these errors. The remaining errors are marked with *
*page 16, line 9: change "it will always happen this way" to "it will always happen this way when the coefficients of α in the equations are even"
page 18 , lines -19 to -15 : the middle lines of the ciphertext are incorrect. The correct ciphertext is in the computer problems on pages 377, 408, 446.
page 38, Table 2.4: characters 60 and 62 should be $<$ and $>$
*page 42, line -12: remove the second "is"
page 55 , line 14: Change the first sentence to "A sequence generated by a length three recurrence starts 001110 ."
page 55 , lines 17-18: change these lines to "the length three recurrence $k_{n+3}=k_{n}+k_{n+1}+k_{n+2}$. This sequence can also be given by a length two recurrence. Determine this length two recurrence"
page 57, line 20: change Vigenére to Vigenère
page 57 , line -6 : remove a at the end of the line
*page 62, line 12: this line should read

$$
576=2^{6} 3^{2}, \quad 135=3^{3} 5, \quad \operatorname{gcd}(576,135)=3^{2}=9
$$

*page 64 , lines 13,15 : The second x_{j-2} on each line should be y_{j-2}
*pages 90-91: The explanation here for LFSR sequences is not correct. The transpose of the matrix associated to multiplication by X needs to be used. A corrected version of these pages is here:
http://www.math.umd.edu/ ${ }^{\sim}$ lcw/ninety.pdf
page 92 , line -18: change "such" to "such that"
page 93 , line 15 : change " $2^{32}=1(\bmod 65537)$ " to " $2^{32} \equiv 1(\bmod 65537)$ "
*page 93 , line -8 : it should be " $s_{1}=1$."
page 103, line 17: remove "that"
page 104, line -12: change " $K_{1}=010011010$ " to " $K_{2}=01001101$ "
page 116, line 2: remove "that"
page 122, line -10: change $K_{1} \oplus E_{K_{2}}\left(K_{3} \oplus m\right)$ to $K_{3} \oplus E_{K_{2}}\left(K_{1} \oplus m\right)$
*page 129, line -7 : remove the period after "column"
page 132, line -4: change the second "is" to "in"
*page 133, lines 2-4: The sentence should read "Add 1 to each of these numbers (since the first row and column are numbered 0) and look in the 13th row and 12 th column of the S-box."
page 140, line 14: change 1.2599 to 1.4422
*page 143 , line -8 : it should be " $s_{1}=1$."
page 148 , line 21: it should be $b_{0} \equiv 8(\bmod 17)$
page 148 , line 22 : it should be $b_{1} \equiv-4(\bmod 17)$
page 152 , line -11: $(6,4,6,0,2,4,0,2)$ should be $(8,4,6,0,2,4,0,2)$
page 174 , line 15: change Alice to Bob
*page 189 , line -12 : change $D_{k}(m)$ to $E_{k}(m)$
page 192, lines 15 and 17 : change α to a
page 194, lines $-4,-5$: the values of m_{1} and s_{1} are incorrect. They should be

$$
\begin{aligned}
& m_{1}=418726553997094258577980055061305150940547956 \\
& s_{1}=749142649641548101520133634736865752883277237
\end{aligned}
$$

page 194, lines $-2,-1$: the last sentence should read "The numbers $n_{A}, n_{B}, p_{B}, q_{B}$ are stored as signa, signb, sigpb, sigqb.)"
page 207, line 5: change r to b
page 207, line 6: change $A^{r} \equiv z^{H} r$ to $A^{r} \equiv z^{H} b$
*page 225, line -21: change "residues quadratic" to "quadratic residues"
page 234 , line -2 : change Alice to Peggy
page 248, line -2: change $c 1$ to c
page 249 , line 10: change $b_{I}=13$ to $b_{I}=23$
page 249, lines $-3,-2$: change K_{3} to K_{H}
page 253 , line 6: remove "is"
*pages 276-277: The polynomial $x^{3}+2 x+3$ has a double root mod 5 at $x=4$, so the curve E is a degenerate curve in the sense of page 283 . Therefore, the addition law for points behaves well only if we do not use the point $(4,0)$. This is the same idea as in the example on page 283.
page 289, line -6: change Alice to Bob
*page 291, line -2: it should be " $S_{1}=\infty$."
*page 292, line 3: change "Exercise 3.12(a)" to "Exercise 12(a) in Chapter $3 "$
*page 292, line 4: remove comma
*page 292, line 11: change "Exercise 3.12(b)" to "Exercise 12(b) in Chapter $3 "$
page 292, lines 17, 18: change m to n^{\prime}
page 293, line 19: change m to n
*page 311, line 2: This sentence should read "The Singleton bound says that $16=M \leq 2^{5}$, so it is not an MDS code."
page 320 , line -12 : remove one of the right parentheses
page 320 , line -8: change the vector to ($0,0,0,0,1,0,0,0,0,0,0,1,0,0,1$)
page 320 , line -6 : change the vector to $(0,0,0,0,1,0,0,0,0,0,0)$
*page 330 , line 13: change the last " ($("$ on the line to " $"$
*page 333, line -11: change "by (4)" to "by (3)"
*page 334, line 8: change "part (5)" to "part (4)"
*page 334, line -5: change "part (5)" to "part (4)"
page 341, line 13: change "In following" to "In the following"
*page 344, lines 4-5: these should read: "is $n-\operatorname{deg}(g)=n+1-d$. Therefore a Reed-Solomon code is a cyclic $[n, n+1-d, d]$ code."
page 349 , line -11: the code should be $\{(0,0,1),(1,1,1),(1,0,0),(0,1,0)\}$
page 351 , line 14: add subscript $j-1$ to C
page 351, line 15: Replace the first sentence with "Let $a v+c$, with $a \neq 0$, be an element of C_{j}, as in (c)."
page 351, line 16: change the last v to c
page 351, line -11: insert "of length 7 " between "code" and "generated"
page 351 , line -6: change the sentence to "Assume $0 \neq C \neq F^{n}$ and $p \nmid n$ (as in the Theorem on p. 336)."
page 351 , line -3: change $h(X)$ to $g(X)$
*pages 368, 369: some statements about the approximation properties of continued fractions are inaccurate. Replacement pages are here:
http://www.math.umd.edu/~1cw/three68.pdf
page 370, line 11: change $=2^{m-s}$ to $=2^{m-s} e^{2 \pi i x c_{0} / 2^{m}}$
page 374 , line 17: choose[txt, \mathbf{m}, \mathbf{n}] lists the characters in txt in positions congruent to $n(\bmod m) .(m$ and n were reversed)
page 419 , lines 6,9 : change]] to)
page 428: in the three displayed Maple commands, change mult to mul
(last updated $11 / 29 / 2004$)

