Navier-Stokes Equations With Supercritical Initial Data

Hantaek Bae
CSCAMM, University of Maryland, College Park

Navier－Stokes Equations

The Navier－Stokes equations are given by

$$
\begin{aligned}
& v_{t}+v \cdot \nabla v-\mu \Delta v+\nabla p=0, \\
& \nabla \cdot v=0
\end{aligned}
$$

where v is the velocity field，p is the pressure，and $\mu>0$ is the viscosity coefficient which for simplicity we set $\mu=1$ ．

It is well－known that there exists a global weak solution with initial data in L^{2} ．
However，uniqueness and regularity of weak solution are still open．
This talk is NOT about
1．Non－uniqueness of weak solution on a hyperbolic space
2．Size of singular set of weak solution．

Leray weak solution of NS

For $v_{0} \in L^{2}$ with $\nabla \cdot v_{0}=0$, there exists a solution v of the Navier-Stokes equations in the sense of distributions: for any smooth divergence-free $\varphi \in \mathscr{C}_{c}^{\infty}$,

$$
\iint\left[v \cdot \varphi_{t}+v \cdot \Delta \varphi+(v \otimes v): \nabla \varphi\right] d x d t=0
$$

holds. Moreover, v satisfies the following energy inequality:

$$
\|v(t)\|_{L^{2}}^{2}+\int_{0}^{t}\|\nabla v(s)\|_{L^{2}}^{2} d s \leq\left\|v_{0}\right\|_{L^{2}}^{2}
$$

For Regularity, Serrin proved that the Leray weak solution v is smooth for $t \in(0, T]$ if

$$
v \in L^{r}\left(0, T ; L^{s}\right), \quad \frac{2}{r}+\frac{3}{s}=1
$$

The pair (r, s) satisfying the Serrin condition is related the scaling invariance property of the Navier-Stokes equations.

Assume that (v, p) solves NS. Then, the same is true for rescaled functions:

$$
v_{\lambda}(t, x)=\lambda v\left(\lambda^{2} t, \lambda x\right), \quad p_{\lambda}(t, x)=\lambda^{2} p\left(\lambda^{2} t, \lambda x\right)
$$

1. $s>\frac{d}{2}-1$ (Subcritical)
(i) Local-in-time solution for large data in H^{s}
(ii) Energy method, Sobolev embedding
2. $s=\frac{d}{2}-1$ (Critical)
(i) Global-in-time solution for small data in \dot{H}^{s}
(ii) Energy method, Sobolev embedding, Critical norm (Serrin Condition)
3. $s<\frac{d}{2}-1$ (Supercritical): No ill-posed/well-posed results in the setting of Mild Solution.

There are some ill-posedness results with supercritical initial data in Dispersive equations.

1. N. Burq, P. Gerad, N. Tzvetkov
(i) An instability property of the nonlinear Schrodinger equation on S^{d} (2002)
(ii) Two singular dynamics of the nonlinear Schrodinger equation on a plane domain (2003)
2. M. Christ, J. Colliander, T. Tao: III-posedness for nonlinear Schrodinger and wave equations (2003)
3. G. Lebeau: Perte de régularité pour les equations d́ondes sur-critiques (2005)

One of the reason is that even for small data which dictates the equation behaves as a linear equation, the free solution does not provide enough integrability. A natural question is that

Can we improve integrability of the linear part while keeping regularity?

A positive answer was provided by Burq-Tzvetkov [2008]. They proved

1. the local-wellposedness for the wave equations
2. with supercritical initial data in the mild solution setting

3 . by using the randomization method.
4. This process increases integrability of the linear term while keeping regularity.

Although this result is very recent, there are already many results using their method;

1. Dispersive equations: Burq-Tzvetkov (2008), Thomann (2009), Oh (2011), Colliander-Oh (2012)
2. Navier-Stokes equations: Deng-Shangbin (2011), Fang-Zhang (2011)

In this talk,

1. Main idea of Burq-Tzvetkov
2. Navier-Stokes equations with Supercritical initial data

Wave Equations: Burq-Tzvetkov

We consider the wave equation on \mathbb{T}^{d};

$$
\begin{aligned}
& u_{t t}-\Delta u+|u|^{p-1} u=0 \\
& \left.\left(u, u_{t}\right)\right|_{t=0}=\left(f_{1}, f_{2}\right) \in H^{s}\left(\mathbb{T}^{d}\right) \times H^{s-1}\left(\mathbb{T}^{d}\right):=\mathscr{H}^{s}\left(\mathbb{T}^{d}\right)
\end{aligned}
$$

We consider the case $d=3$ and $p=3$. Then, the above equation has the scaling:

$$
u_{\lambda}(t, x)=\lambda u(\lambda t, \lambda x)
$$

Therefore, $\dot{H}^{\frac{1}{2}}$ is the scaling invariant space.
By using Strichartz estimates, one can show

1. local existence of a strong solution for the subcritical case, $s>\frac{1}{2}$
2. global existence of a mild solution for the critical case, $s=\frac{1}{2}$.

However, the argument to construct a local solutions by Strichartz estimates breaks down for $s<\frac{1}{2}$.

Setting

1. $\left\{e_{n}\right\}$ is an orthonormal basis of $L^{2}\left(\mathbb{T}^{3}\right)$ constructed from real eigenvectors of the operator $-\Delta$ associated with eigenvalues λ_{n}^{2} :

$$
-\Delta e_{n}=\lambda_{n}^{2} e_{n}
$$

2. For $f=\sum_{n \geq 0} \alpha_{n} e_{n}(x)$, we define the energy norms by

$$
\|f\|_{H^{s}\left(\mathbb{T}^{3}\right)}^{2}=\left\|(1-\Delta)^{\frac{s}{2}} f\right\|_{L^{2}\left(\mathbb{T}^{3}\right)}^{2}=\sum_{n \geq 0}\left|\alpha_{n}\right|^{2}\left(1+\lambda_{n}^{2}\right)^{s} .
$$

3. $\left\{h_{n}(\omega)\right\}$ is a sequence of independent, mean zero, and complex random variables on a probability space (Ω, \mathscr{A}, p) such that for all $n \geq 0$,

$$
\int_{\Omega}\left|h_{n}(\omega)\right|^{2 k} d p(\omega)<C
$$

holds for some $k \in \mathbb{N}$.
4. Randomization: For $f=\sum_{n \geq 0} \alpha_{n} e_{n}(x)$, we define the map $(\Omega, \mathscr{A}) \rightarrow H^{s}\left(\mathbb{T}^{3}\right)$ by

$$
\omega \longmapsto f^{\omega}=\sum_{n \geq 0} \alpha_{n} \mathbf{h}_{\mathrm{n}}(\omega) e_{n}(x) \in L^{2}\left(\Omega ; H^{s}\left(\mathbb{T}^{3}\right)\right)
$$

This randomization of initial data does not give a regularization in the scale of the Sobolev spaces.

Theorem [Burq-Tzvetkov (2008)]

Let $f \in \mathscr{H}^{\frac{1}{4}}\left(\mathbb{T}^{3}\right)$, with $f^{\omega} \in L^{2}\left(\Omega ; \mathscr{H}^{\frac{1}{4}}\left(\mathbb{T}^{3}\right)\right)$. Then, for almost all $\omega \in \Omega$, there exists $T_{\omega}>0$ and a unique solution u of the cubic wave equations such that

$$
u-\left(\cos (t \sqrt{-\Delta}) f_{1}^{\omega}+\frac{\sin (t \sqrt{-\Delta}) f_{2}^{\omega}}{\sqrt{-\Delta}}\right) \in C\left(\left[-T_{\omega}, T_{\omega}\right] ; H^{\frac{1}{2}}\left(\mathbb{T}^{3}\right)\right)
$$

Strichartz estimates

We say a pair (q, r) is wave admissible if

$$
\frac{1}{q}+\frac{n-1}{2 r}=\frac{n-1}{4}, \quad n \geq 2
$$

Suppose that (q, r) and (\tilde{q}, \tilde{r}) are admissible pairs and u is a solution of

$$
u_{t t}-\Delta u=F,\left.\quad\left(u, u_{t}\right)\right|_{t=0}=\left(f_{1}, f_{2}\right) \in \dot{H}^{\gamma} \times \dot{H}^{\gamma-1}
$$

Then, the following Strichartz estimation holds:

$$
\|u\|_{L^{q}\left([0, T] ; L^{r}\right)}+\|u\|_{C\left([0, T] ; \dot{\mathscr{C}}^{\gamma}\right)} \lesssim\|f\|_{\dot{H}^{\gamma}}+\|g\|_{\dot{H}^{\gamma-1}}+\|F\|_{L \tilde{q}^{\prime}\left([0, T] ; L^{\prime}\right)},
$$

where $\frac{1}{q}+\frac{n}{r}=\frac{n}{2}-\gamma=\frac{1}{\tilde{q}^{\prime}}+\frac{n}{\tilde{r}^{\prime}}-2$.

In particular, $(4,4)$ is $s=\frac{1}{2}$ admissible for the cubic wave equations in 3D.

Eigenfunction estimates: Sogge(1988)

$$
\left\|e_{n}\right\|_{L^{p}} \leq\left\{\begin{array}{lll}
\lambda^{\frac{d-1}{2}\left(\frac{1}{2}-\frac{1}{p}\right)} & \text { for } & 2 \leq p \leq \frac{2(d+1)}{d-1} \\
\lambda^{d\left(\frac{1}{2}-\frac{1}{p}\right)-\frac{1}{2}} & \text { for } & \frac{2(d+1)}{d-1} \leq p \leq \infty
\end{array}\right.
$$

for the spectral projection on $\sqrt{-\Delta} \in[\lambda, \lambda+1]$. In 3D,

$$
\left\|e_{n}\right\|_{L^{4}} \lesssim \lambda_{n}^{\frac{1}{4}} \quad \text { Cf: Critical space } \quad \dot{H}^{\frac{1}{2}}
$$

Therefore, we can reduce initial regularity by $\frac{1}{4}: f \in \dot{\mathscr{H}}^{\frac{1}{4}}$.
Averaging Lemma: L^{2} to L^{p}
Let $\left\{h_{n}(\omega)\right\}$ be a $L^{2 k}(\Omega)$ sequence of independent, mean zero and complex random variables. Then, for $p \in[2,2 k]$ and for every complex valued I^{2} sequence $c=\left\{c_{n}\right\}$,

$$
\left\|\sum_{n \geq 1} c_{n} h_{n}(\omega)\right\|_{L^{p}(\Omega)} \lesssim\|c\|_{1^{2}} .
$$

Estimation of the free solution

$$
u_{f}^{\omega}=\cos (t \sqrt{-\Delta}) f_{1}^{\omega}+\frac{\sin (t \sqrt{-\Delta}) f_{2}^{\omega}}{\sqrt{-\Delta}}
$$

By the Minkowski inequality,

$$
\left\|e^{i t \sqrt{-\Delta}} f_{1}^{\omega}\right\|_{L^{4}\left(\Omega ; L^{4}\left([0, T] \times \mathbb{T}^{3}\right)\right)} \leq\left\|e^{i t \sqrt{-\Delta}} f_{1}^{\omega}\right\|_{L^{4}\left([0, T] \times \mathbb{T}^{3} ; L^{4}(\Omega)\right)} .
$$

By averaging lemma,

$$
\begin{aligned}
& \left\|e^{i t \sqrt{-\Delta}} f_{1}^{\omega}\right\|_{L^{4}\left([0, T] \times \mathbb{T}^{3} ; L^{4}(\Omega)\right)} \\
& \lesssim\left\|\left(\sum\left|\alpha_{n} e_{n}(x)\right|^{2}\right)^{\frac{1}{2}}\right\|_{L^{4}\left([0, T] \times \mathbb{T}^{3}\right)} \\
& \leq\left(\sum\left\|\left|\alpha_{n} e_{n}(x)\right|^{2}\right\|_{L^{2}\left([0, T] \times \mathbb{T}^{3}\right)}\right)^{\frac{1}{2}}=T^{\frac{1}{4}}\left(\sum\left|\alpha_{n}\right|^{2}\left\|e_{n}(x)\right\|_{L^{4}\left(\mathbb{T}^{3}\right)}^{2}\right)^{\frac{1}{2}} \\
& \lesssim T^{\frac{1}{4}}\left(\sum\left|\alpha_{n}\right|^{2}\left(1+\lambda_{n}^{2}\right)^{\frac{2}{8}}\right)^{\frac{1}{2}}=T^{\frac{1}{4}}\left\|f_{1}\right\|_{H^{\frac{1}{4}}\left(\mathbb{T}^{3}\right)} .
\end{aligned}
$$

NS with Supercritical Data

We consider NS with initial data in \dot{H}^{s} for $s<\frac{1}{2}$. By the energy estimation,

$$
\begin{aligned}
& \sup _{0 \leq t \leq T}\|v(t)\|_{\dot{H}^{s}}+\|\nabla v\|_{L^{2}\left(0, T ; \dot{H}^{s}\right)} \lesssim\left\|v_{0}\right\|_{\dot{H}^{s}}+\left\|v^{2}\right\|_{L^{2}\left(0, T ; \dot{H}^{s}\right)} . \\
& \nabla^{s} v \in L^{\infty}\left(0, T ; L^{2}\right) \cap L^{2}\left(0, T ; L^{6}\right) \Longrightarrow \nabla^{s} v \in L^{4}\left(0, T ; L^{3}\right) .
\end{aligned}
$$

By the product rule,

$$
\left\|v^{2}\right\|_{L^{2}\left(0, T ; \mathcal{H}^{s}\right)} \lesssim\left\|\nabla^{s} v\right\|_{L^{4}\left(0, T ; L^{3}\right)}\|v\|_{L^{4}\left(0, T ; L^{6}\right)}
$$

Therefore, we have

$$
\left\|\nabla^{s} v\right\|_{L^{4}\left(0, T ; L^{3}\right)} \lesssim\left\|v_{0}\right\|_{\dot{H}^{s}}+\left\|\nabla^{s} v\right\|_{L^{4}\left(0, T ; L^{3}\right)}\|\mathbf{v}\|_{L^{4}\left(0, \mathbf{T} ; L^{6}\right)}
$$

We need to estimate v in $L^{4}\left(0, T ; L^{6}\right)$ and the norm $\|v\|_{L^{4}\left(0, T ; L^{6}\right)}$ should be sufficiently small to complete the estimation.

We note that the $L^{4}\left(0, T ; L^{6}\right)$ norm is invariant under the scaling

$$
v_{\lambda}(t, x)=\lambda v\left(\lambda^{2} t, \lambda x\right)
$$

The scaling invariance can be used to solve the Navier-Stokes equations in the integral setting.

We express a solution v in the integral form:

$$
v(t)=e^{t \Delta} v_{0}-\int_{0}^{t}\left[e^{(t-s) \Delta} \mathbb{P} \nabla \cdot(v \otimes v)(s)\right] d s
$$

Any solution satisfying this integral form is called a mild solution, and we can find it by using fixed point argument for the function $v \mapsto F(v)$, where

$$
F(v)(t)=e^{t \Delta} v_{0}-\int_{0}^{t}\left[e^{(t-s) \Delta} \mathbb{P} \nabla \cdot(v \otimes v)(s)\right] d s
$$

We now estimate $\|v\|_{L^{4}\left(0, T ; L^{6}\right)}$ by using this integral equation.

Nonlinear Term

$$
\left\|\int_{0}^{t}\left[\nabla e^{-(t-s) \Delta} \mathbb{P} v^{2}(s)\right] d s\right\|_{L^{6}} \lesssim \int_{0}^{t}\left[(t-s)^{-\frac{3}{4}}\|v(s)\|_{L^{6}}^{2}\right] d s .
$$

By Hardy-Littlewood-Sobolev inequality,

$$
\left\|\int_{0}^{t}\left[\nabla e^{-(t-s) \Delta} v^{2}(s)\right] d s\right\|_{L_{t}^{4} L^{6}} \lesssim\|v\|_{L^{4}\left(0, T ; L^{6}\right)^{2}}^{2}
$$

Linear Term $e^{t \Delta} v_{0}$

$$
\nabla^{s} e^{t \Delta} v_{0} \in L^{\infty}\left(0, T ; L^{2}\right) \cap L^{2}\left(0, T ; \dot{H}^{1}\right)
$$

By the interpolation and the Sobolev embedding,

$$
e^{t \Delta} v_{0} \in L^{4}\left(0, T ; \dot{H}^{s+\frac{1}{2}}\right) \subset L^{4}\left(0, T ; L^{\frac{3}{1-s}}\right), \quad \frac{3}{1-s}<6 .
$$

To use the randomization method, we consider the Navier-Stokes equation on \mathbb{T}^{3}.

Main Idea

1. We need $L_{t}^{4} L^{6}$ norm which corresponds to $\dot{H}^{\frac{1}{2}}$ initial data.
2. $\left\|e_{n}\right\|_{L^{p}} \lesssim \lambda^{d\left(\frac{1}{2}-\frac{1}{p}\right)-\frac{1}{2}}$ for $p \geq 4 \quad \Longrightarrow \quad \mathbf{v}_{0} \in \mathbf{L}^{2}$.
3. Randomize initial data
4. Regularizing effect of the Heat Kernel.
5. Mild solution: $\left\|v_{0}\right\|_{L^{2}}$ should be small to obtain a global-in-time solution.

Theorem: There exists $\epsilon>0$ such that for $v_{0} \in L^{2}$ with $\left\|v_{0}\right\|_{L^{2}} \leq \epsilon$, there exists an event Ω_{ϵ} such that $p\left(\Omega_{\epsilon}\right) \geq \frac{1}{2}$ and for every $\omega \in \Omega_{\epsilon}$ there exists a unique global-in-time solution v such that

$$
v-e^{t \Delta} v_{0}^{\omega} \in L^{4}\left(0, \infty ; L^{6}\left(\mathbb{T}^{3}\right)\right)
$$

Proof: We represent initial data as Fourier series:

$$
v_{0}=\sum_{n \geq 0} \alpha_{n} e_{n}(x) \Longrightarrow e^{t \Delta} v_{0}^{\omega}=\sum_{n \geq 0} e^{-t \lambda_{n}^{2}} h_{n}(\omega) \alpha_{n} e_{n}(x)
$$

Averaging over $\omega \in \Omega$,

$$
\begin{aligned}
& \left\|e^{t \Delta} v_{0}^{\omega}\right\|_{L^{6}\left(\Omega ; L_{t}^{4} L^{6}\right)} \lesssim\left\|\left(\sum_{n \geq 0} \alpha_{n}^{2} e^{-t \lambda_{n}^{2}}\left|e_{n}(x)\right|^{2}\right)^{\frac{1}{2}}\right\|_{L_{t}^{4} L^{6}} \\
& \lesssim\left\|\left(\sum_{n \geq 0} \alpha_{n}^{2}\left\|e^{-t \lambda_{n}^{2}}\right\|_{L_{t}^{4}}^{2}\left\|e_{n}\right\|_{L^{6}}^{2}\right)\right\|^{\frac{1}{2}} \lesssim\left\|\left(\sum_{n \geq 0} \alpha_{n}^{2} \lambda_{n}^{-1}\left\|e_{n}\right\|_{L^{6}}^{2}\right)\right\|^{\frac{1}{2}} \\
& \lesssim\left\|\mathbf{v}_{0}\right\|_{\mathrm{L}^{2}} .
\end{aligned}
$$

By Chebyshev inequality,

$$
\begin{gathered}
E_{\lambda, v_{0}}=\left\{\omega \in \Omega:\left\|e^{t \Delta} v_{0}^{\omega}\right\|_{L^{6}\left(\Omega ; L_{t}^{4} L^{6}\right)} \geq \lambda\right\} \Longrightarrow p\left(E_{\lambda, v_{0}}\right) \leq C \lambda^{-6}\left\|v_{0}\right\|_{L^{2}\left(\mathbb{T}^{3}\right)}^{6} \\
p\left(E_{\lambda, v_{0}}^{c}\right) \geq 1-C \lambda^{-6}\left\|v_{0}\right\|_{L^{2}\left(\mathbb{T}^{3}\right)^{6}}
\end{gathered}
$$

Let $v=e^{t \Delta} v_{0}^{\omega}+u$, where u solves

$$
u(t)=-\int_{0}^{t}\left[e^{(t-s) \Delta} \mathbb{P} \nabla \cdot\left(\left(e^{t \Delta} v_{0}^{\omega}+u\right) \otimes\left(e^{t \Delta} v_{0}^{\omega}+u\right)\right)(s)\right] d s
$$

We define the map

$$
K^{\omega}: u \longmapsto-\int_{0}^{t}\left[e^{(t-s) \Delta} \mathbb{P} \nabla \cdot\left(\left(e^{t \Delta} v_{0}^{\omega}+u\right) \otimes\left(e^{t \Delta} v_{0}^{\omega}+u\right)\right)(s)\right] d s
$$

For $\omega \in E_{\lambda, v_{0}}^{c}$,

$$
\|u\|_{L_{t}^{4} L^{6}} \lesssim \lambda^{2}+\|u\|_{L_{t}^{4} L^{6}}^{2} .
$$

We take $\lambda \lesssim 1$. Then, K^{ω} is contractive on the ball of radius 1 of $L_{t}^{4} L^{6}$.
By taking initial data v_{0} such that $\left\|v_{0}\right\|_{L^{2}} \lesssim \lambda$,

$$
p\left(E_{\lambda, v_{0}}^{c}\right) \geq 1-C \lambda^{-6}\left\|v_{0}\right\|_{L^{2}\left(\mathbb{T}^{3}\right)}^{6} \geq \frac{1}{2} .
$$

Concluding remarks

1. We show that there exists a unique global-in-time L^{2} solution with a large probability if $\left\|v_{0}\right\|_{L^{2}}$ is sufficiently small.
2. We can show that there exists a local-in-time solution for large L^{2} initial data almost surely.
3. By changing the invariant norm, we can show the above two results for all $s \in\left[0, \frac{1}{2}\right)$.
4. We do not know the global well-posedness for large data in L^{2} almost surely.
5. There are no results on the whole spaces.
6. Possible application: 2D Schrodinger equations with quadratic nonlinearity

$$
i u_{t}-\Delta u=u^{2} .
$$

References

1. N. Burq, N. Tzvetkov, Random data Cauchy theory for supercritical wave equations I: Local existence theory, Invent. Math., 173(3) (2008), 449-475.
2. N. Burq, N. Tzvetkov, Random data Cauchy theory for supercritical wave equations II: A global existence theory, Invent. Math., 173(3) (2008), 477-496.
3. L. Thomann, Random data Cauchy problem for supercritical Schrodinger equations, Ann. Inst. H. Poincare Anal. Nonlinear Analysis, 26 (2009), no.6, 2385-2402.
4. J. Colliander, T. Oh, Almost sure well-posedness of the periodic cubic nonlinear Schrodinger equation below L², Duke Math J., 161 (2012) no. 3, 367-414.
5. T. Oh, Remarks on nonlinear smoothing under randomization for the periodic KdV and the cubic Szego equation, Funckcial Ekvac., 54 (2011), 335-365.
6. C. Deng, C. Shangbin, Random data Cauchy problem for the Navier-Stokes equations on \mathbb{T}^{3}, J. Differential Equations, 251 (2011) no. 4-5, 902-917.
7. T. Zhang, D. Fang, Random data Cauchy theory for the incompressible three dimensional Navier-Stokes equations, Proc. Amer. Math. Soc., 139 (2011), no.8, 2827-2837.
