
Navier-Stokes Equations With Supercritical Initial Data

Hantaek Bae

CSCAMM, University of Maryland, College Park



Navier-Stokes Equations

The Navier-Stokes equations are given by

vt + v · ∇v − µ∆v +∇p = 0,

∇ · v = 0,

where v is the velocity field, p is the pressure, and µ > 0 is the viscosity coefficient
which for simplicity we set µ = 1.

It is well-known that there exists a global weak solution with initial data in L2.

However, uniqueness and regularity of weak solution are still open.

This talk is NOT about

1. Non-uniqueness of weak solution on a hyperbolic space

2. Size of singular set of weak solution.



Leray weak solution of NS

For v0 ∈ L2 with ∇ · v0 = 0, there exists a solution v of the Navier-Stokes equations in
the sense of distributions: for any smooth divergence-free ϕ ∈ C∞c ,∫ ∫

[v · ϕt + v ·∆ϕ+ (v ⊗ v) : ∇ϕ] dxdt = 0

holds. Moreover, v satisfies the following energy inequality:

‖v(t)‖2
L2 +

∫ t

0
‖∇v(s)‖2

L2ds ≤ ‖v0‖2
L2 .

For Regularity, Serrin proved that the Leray weak solution v is smooth for t ∈ (0,T ] if

v ∈ Lr (0,T ; Ls),
2

r
+

3

s
= 1

The pair (r , s) satisfying the Serrin condition is related the scaling invariance property
of the Navier-Stokes equations.



Assume that (v , p) solves NS. Then, the same is true for rescaled functions:

vλ(t, x) = λv
(
λ2t, λx

)
, pλ(t, x) = λ2p

(
λ2t, λx

)
.

1. s >
d

2
− 1 (Subcritical)

(i) Local-in-time solution for large data in Hs

(ii) Energy method, Sobolev embedding

2. s =
d

2
− 1 (Critical)

(i) Global-in-time solution for small data in Ḣs

(ii) Energy method, Sobolev embedding, Critical norm (Serrin Condition)

3. s <
d

2
− 1 (Supercritical): No ill-posed/well-posed results in the setting of Mild

Solution.



There are some ill-posedness results with supercritical initial data in Dispersive
equations.

1. N. Burq, P. Gerad, N. Tzvetkov

(i) An instability property of the nonlinear Schrodinger equation on Sd (2002)

(ii) Two singular dynamics of the nonlinear Schrodinger equation on a plane
domain (2003)

2. M. Christ, J. Colliander, T. Tao: Ill-posedness for nonlinear Schrodinger and wave
equations (2003)

3. G. Lebeau: Perte de régularité pour les equations d́ondes sur-critiques (2005)

One of the reason is that even for small data which dictates the equation behaves as a
linear equation, the free solution does not provide enough integrability. A natural
question is that

Can we improve integrability of the linear part while keeping regularity?



A positive answer was provided by Burq–Tzvetkov [2008]. They proved

1. the local-wellposedness for the wave equations

2. with supercritical initial data in the mild solution setting

3. by using the randomization method.

4. This process increases integrability of the linear term while keeping regularity.

Although this result is very recent, there are already many results using their method;

1. Dispersive equations: Burq–Tzvetkov (2008), Thomann (2009), Oh (2011),
Colliander–Oh (2012)

2. Navier-Stokes equations: Deng–Shangbin (2011), Fang–Zhang (2011)

In this talk,

1. Main idea of Burq–Tzvetkov

2. Navier-Stokes equations with Supercritical initial data



Wave Equations: Burq–Tzvetkov

We consider the wave equation on Td ;

utt −∆u + |u|p−1u = 0,

(u, ut)
∣∣
t=0

= (f1, f2) ∈ Hs(Td )× Hs−1(Td ) := H s(Td ).

We consider the case d = 3 and p = 3. Then, the above equation has the scaling:

uλ(t, x) = λu(λt, λx).

Therefore, Ḣ
1
2 is the scaling invariant space.

By using Strichartz estimates, one can show

1. local existence of a strong solution for the subcritical case, s > 1
2

2. global existence of a mild solution for the critical case, s = 1
2

.

However, the argument to construct a local solutions by Strichartz estimates breaks
down for s < 1

2
.



Setting

1. {en} is an orthonormal basis of L2(T3) constructed from real eigenvectors of the
operator −∆ associated with eigenvalues λ2

n:

−∆en = λ2
nen.

2. For f =
∑
n≥0

αnen(x), we define the energy norms by

‖f ‖2
Hs (T3)

= ‖(1−∆)
s
2 f ‖2

L2(T3)
=
∑
n≥0

|αn|2
(
1 + λ2

n

)s
.

3. {hn(ω)} is a sequence of independent, mean zero, and complex random variables
on a probability space (Ω,A , p) such that for all n ≥ 0,∫

Ω
|hn(ω)|2kdp(ω) < C

holds for some k ∈ N.



4. Randomization: For f =
∑
n≥0

αnen(x), we define the map (Ω,A )→ Hs(T3) by

ω 7−→ f ω =
∑
n≥0

αnhn(ω)en(x) ∈ L2
(
Ω;Hs(T3)

)
.

This randomization of initial data does not give a regularization in the scale of the
Sobolev spaces.

Theorem [Burq–Tzvetkov (2008)]

Let f ∈ H
1
4 (T3), with f ω ∈ L2

(
Ω; H

1
4 (T3)

)
. Then, for almost all ω ∈ Ω, there

exists Tω > 0 and a unique solution u of the cubic wave equations such that

u −
(

cos
(
t
√
−∆

)
f ω1 +

sin
(
t
√
−∆

)
f ω2√

−∆

)
∈ C

(
[−Tω ,Tω] ;H

1
2 (T3)

)
.



Strichartz estimates

We say a pair (q, r) is wave admissible if

1

q
+

n − 1

2r
=

n − 1

4
, n ≥ 2.

Suppose that (q, r) and (q̃, r̃) are admissible pairs and u is a solution of

utt −∆u = F , (u, ut)
∣∣
t=0

= (f1, f2) ∈ Ḣγ × Ḣγ−1.

Then, the following Strichartz estimation holds:

‖u‖Lq([0,T ];Lr ) + ‖u‖C([0,T ];Ḣ γ ) . ‖f ‖Ḣγ + ‖g‖Ḣγ−1 + ‖F‖
Lq̃
′

([0,T ];Lr̃
′

)
,

where
1

q
+

n

r
=

n

2
− γ =

1

q̃′
+

n

r̃ ′
− 2.

In particular, (4, 4) is s = 1
2

admissible for the cubic wave equations in 3D.



Eigenfunction estimates: Sogge(1988)

‖en‖Lp ≤


λ

d−1
2

( 1
2
− 1

p
)

for 2 ≤ p ≤ 2(d+1)
d−1

λ
d( 1

2
− 1

p
)− 1

2 for 2(d+1)
d−1

≤ p ≤ ∞

for the spectral projection on
√
−∆ ∈ [λ, λ+ 1]. In 3D,

‖en‖L4 . λ
1
4
n Cf: Critical space Ḣ

1
2 .

Therefore, we can reduce initial regularity by 1
4

: f ∈ Ḣ
1
4 .

Averaging Lemma: L2 to Lp

Let {hn(ω)} be a L2k (Ω) sequence of independent, mean zero and complex random
variables. Then, for p ∈ [2, 2k] and for every complex valued l2 sequence c = {cn},∥∥∥∑

n≥1

cnhn(ω)
∥∥∥
Lp(Ω)

. ‖c‖l2 .



Estimation of the free solution

uωf = cos(t
√
−∆)f ω1 +

sin(t
√
−∆)f ω2√
−∆

.

By the Minkowski inequality,∥∥∥e it√−∆f ω1

∥∥∥
L4(Ω;L4([0,T ]×T3))

≤
∥∥∥e it√−∆f ω1

∥∥∥
L4([0,T ]×T3;L4(Ω))

.

By averaging lemma,∥∥∥e it√−∆f ω1

∥∥∥
L4([0,T ]×T3;L4(Ω))

.

∥∥∥∥(∑ |αnen(x)|2
) 1

2

∥∥∥∥
L4([0,T ]×T3)

≤
(∑∥∥∥|αnen(x)|2

∥∥∥
L2([0,T ]×T3)

) 1
2

= T
1
4

(∑
|αn|2 ‖en(x)‖2

L4(T3)

) 1
2

. T
1
4

(∑
|αn|2(1 + λ2

n)
2
8

) 1
2

= T
1
4 ‖f1‖

H
1
4 (T3)

.



NS with Supercritical Data

We consider NS with initial data in Ḣs for s < 1
2

. By the energy estimation,

sup
0≤t≤T

‖v(t)‖Ḣs + ‖∇v‖L2(0,T ;Ḣs ) . ‖v0‖Ḣs + ‖v2‖L2(0,T ;Ḣs ).

∇sv ∈ L∞(0,T ; L2) ∩ L2(0,T ; L6) =⇒ ∇sv ∈ L4(0,T ; L3).

By the product rule,

‖v2‖L2(0,T ;Ḣs ) . ‖∇
sv‖L4(0,T ;L3)‖v‖L4(0,T ;L6).

Therefore, we have

‖∇sv‖L4(0,T ;L3) . ‖v0‖Ḣs + ‖∇sv‖L4(0,T ;L3)‖v‖L4(0,T;L6).

We need to estimate v in L4(0,T ; L6) and the norm ‖v‖L4(0,T ;L6) should be
sufficiently small to complete the estimation.



We note that the L4(0,T ; L6) norm is invariant under the scaling

vλ(t, x) = λv
(
λ2t, λx

)
.

The scaling invariance can be used to solve the Navier-Stokes equations in the integral
setting.

We express a solution v in the integral form:

v(t) = et∆v0 −
∫ t

0

[
e(t−s)∆P∇ · (v ⊗ v)(s)

]
ds.

Any solution satisfying this integral form is called a mild solution, and we can find it
by using fixed point argument for the function v 7→ F (v), where

F (v)(t) = et∆v0 −
∫ t

0

[
e(t−s)∆P∇ · (v ⊗ v)(s)

]
ds.



We now estimate ‖v‖L4(0,T ;L6) by using this integral equation.

Nonlinear Term∥∥∥∥∫ t

0

[
∇e−(t−s)∆Pv2(s)

]
ds

∥∥∥∥
L6

.
∫ t

0

[
(t − s)−

3
4 ‖v(s)‖2

L6

]
ds.

By Hardy-Littlewood-Sobolev inequality,∥∥∥∥∫ t

0

[
∇e−(t−s)∆v2(s)

]
ds

∥∥∥∥
L4
t L

6

. ‖v‖2
L4(0,T ;L6)

.

Linear Term et∆v0

∇set∆v0 ∈ L∞(0,T ; L2) ∩ L2(0,T ; Ḣ1).

By the interpolation and the Sobolev embedding,

et∆v0 ∈ L4
(

0,T ; Ḣs+ 1
2

)
⊂ L4

(
0,T ; L

3
1−s

)
,

3

1− s
< 6.



To use the randomization method, we consider the Navier-Stokes equation on T3.

Main Idea
1. We need L4

tL
6 norm which corresponds to Ḣ

1
2 initial data.

2. ‖en‖Lp . λ
d( 1

2
− 1

p
)− 1

2 for p ≥ 4 =⇒ v0 ∈ L2.

3. Randomize initial data

4. Regularizing effect of the Heat Kernel.

5. Mild solution: ‖v0‖L2 should be small to obtain a global-in-time solution.

Theorem: There exists ε > 0 such that for v0 ∈ L2 with ‖v0‖L2 ≤ ε, there exists an

event Ωε such that p (Ωε) ≥
1

2
and for every ω ∈ Ωε there exists a unique

global-in-time solution v such that

v − et∆vω0 ∈ L4
(
0,∞; L6(T3)

)
.



Proof: We represent initial data as Fourier series:

v0 =
∑
n≥0

αnen(x) =⇒ et∆vω0 =
∑
n≥0

e−tλ2
nhn(ω)αnen(x).

Averaging over ω ∈ Ω,∥∥∥et∆vω0

∥∥∥
L6(Ω;L4

t L
6)

.
∥∥∥(∑

n≥0

α2
ne
−tλ2

n |en(x)|2
) 1

2
∥∥∥
L4
t L

6

.
∥∥∥(∑

n≥0

α2
n

∥∥∥e−tλ2
n

∥∥∥2

L4
t

‖en‖2
L6

)∥∥∥ 1
2 .

∥∥∥(∑
n≥0

α2
nλ
−1
n ‖en‖

2
L6

)∥∥∥ 1
2

. ‖v0‖L2 .

By Chebyshev inequality,

Eλ,v0
=
{
ω ∈ Ω :

∥∥∥et∆vω0

∥∥∥
L6(Ω;L4

t L
6)
≥ λ

}
=⇒ p

(
Eλ,v0

)
≤ Cλ−6‖v0‖6

L2(T3)
.

p
(
E c
λ,v0

)
≥ 1− Cλ−6‖v0‖6

L2(T3)
.



Let v = et∆vω0 + u, where u solves

u(t) = −
∫ t

0

[
e(t−s)∆P∇ ·

(
(et∆vω0 + u)⊗ (et∆vω0 + u)

)
(s)
]
ds.

We define the map

Kω : u 7−→ −
∫ t

0

[
e(t−s)∆P∇ ·

(
(et∆vω0 + u)⊗ (et∆vω0 + u)

)
(s)
]
ds.

For ω ∈ E c
λ,v0

,

‖u‖L4
t L

6 . λ2 + ‖u‖2
L4
t L

6 .

We take λ . 1. Then, Kω is contractive on the ball of radius 1 of L4
tL

6.

By taking initial data v0 such that ‖v0‖L2 . λ,

p
(
E c
λ,v0

)
≥ 1− Cλ−6‖v0‖6

L2(T3)
≥

1

2
.



Concluding remarks

1. We show that there exists a unique global-in-time L2 solution with a large
probability if ‖v0‖L2 is sufficiently small.

2. We can show that there exists a local-in-time solution for large L2 initial data
almost surely.

3. By changing the invariant norm, we can show the above two results for all
s ∈ [0, 1

2
).

4. We do not know the global well-posedness for large data in L2 almost surely.

5. There are no results on the whole spaces.

6. Possible application: 2D Schrodinger equations with quadratic nonlinearity

iut −∆u = u2.
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