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Navier-Stokes Equations

The Navier-Stokes equations are given by

vi+v-Vv—puAv+Vp=0,
V.-v=0,

where v is the velocity field, p is the pressure, and p > 0 is the viscosity coefficient
which for simplicity we set y = 1.

It is well-known that there exists a global weak solution with initial data in L2.
However, uniqueness and regularity of weak solution are still open.

This talk is NOT about
1. Non-uniqueness of weak solution on a hyperbolic space

2. Size of singular set of weak solution.



Leray weak solution of NS

For vp € L2 with V - vg = 0, there exists a solution v of the Navier-Stokes equations in
the sense of distributions: for any smooth divergence-free p € €2°,

//[v-cpt—i—v-Acp—l—(v@v):th]dxdtzo
holds. Moreover, v satisfies the following energy inequality:
2 ‘ 2 2
(eI + [ 19w < ol
For Regularity, Serrin proved that the Leray weak solution v is smooth for t € (0, T] if
2 3
vel (0, T;L%), -+-=1
r s

The pair (r, s) satisfying the Serrin condition is related the scaling invariance property
of the Navier-Stokes equations.



Assume that (v, p) solves NS. Then, the same is true for rescaled functions:
va(t,x) = Av ()\zt, )\X) , pa(t,x) = A2p ()\Zt, )\x) .
1.s> g — 1 (Subcritical)
(i) Local-in-time solution for large data in H®

(ii) Energy method, Sobolev embedding

d
2. s= 5~ 1 (Critical)

(i) Global-in-time solution for small data in H*

(ii) Energy method, Sobolev embedding, Critical norm (Serrin Condition)

d
3.s< 5 1 (Supercritical): No ill-posed/well-posed results in the setting of Mild
Solution.



There are some ill-posedness results with supercritical initial data in Dispersive
equations.
1. N. Burq, P. Gerad, N. Tzvetkov

(i) An instability property of the nonlinear Schrodinger equation on S¢ (2002)

(if) Two singular dynamics of the nonlinear Schrodinger equation on a plane
domain (2003)

2. M. Christ, J. Colliander, T. Tao: lll-posedness for nonlinear Schrodinger and wave
equations (2003)

3. G. Lebeau: Perte de régularité pour les equations dondes sur-critiques (2005)

One of the reason is that even for small data which dictates the equation behaves as a
linear equation, the free solution does not provide enough integrability. A natural
question is that

Can we improve integrability of the linear part while keeping regularity?



A positive answer was provided by Burq—Tzvetkov [2008]. They proved
. the local-wellposedness for the wave equations
. with supercritical initial data in the mild solution setting

. by using the randomization method.

A W N =

. This process increases integrability of the linear term while keeping regularity.

Although this result is very recent, there are already many results using their method;

1. Dispersive equations: Burg—Tzvetkov (2008), Thomann (2009), Oh (2011),
Colliander—Oh (2012)

2. Navier-Stokes equations: Deng—Shangbin (2011), Fang-Zhang (2011)

In this talk,
1. Main idea of Burq—Tzvetkov

2. Navier-Stokes equations with Supercritical initial data



Wave Equations: Burq—Tzvetkov
We consider the wave equation on Td:
use — Au+ |ulP7lu =0,
(u,ue)| o = (fi, f2) € H(TY) x H=H(TY) := (1.
We consider the case d = 3 and p = 3. Then, the above equation has the scaling:
ux(t, x) = Au(At, Ax).
Therefore, H% is the scaling invariant space.

By using Strichartz estimates, one can show
1. local existence of a strong solution for the subcritical case, s > %

2. global existence of a mild solution for the critical case, s = %

However, the argument to construct a local solutions by Strichartz estimates breaks
down for s < %



Setting

1. {en} is an orthonormal basis of L2(T3) constructed from real eigenvectors of the
operator —A associated with eigenvalues \2:

—Ae, = )\%en.

2. For f = Zanen(x), we define the energy norms by
n>0

1By = 10— A)F FIRaay = 3 ol (14 22)°
n>0

3. {hn(w)} is a sequence of independent, mean zero, and complex random variables
on a probability space (2, ¢, p) such that for all n > 0,

[ Ihn(@)P*dp(e) < €
Q

holds for some k € N.



4. Randomization: For f = Zanen(x), we define the map (Q, &) — H*(T%) by
n>0

wr— £ =3 " agha(w)en(x) € L2 (Q; H(T?)) .
n>0

This randomization of initial data does not give a regularization in the scale of the
Sobolev spaces.

Theorem [Burg—Tzvetkov (2008)]

Let f € 24 (T%), with < € 2 (Q;jﬁ(ﬂﬁ)). Then, for almost all w € Q, there

exists T, > 0 and a unique solution u of the cubic wave equations such that

sin (tvV/=A) £y

u— <cos (tﬁ) i+ Y

) ec <[—Tw, T.]; H%(T3)) .



Strichartz estimates

We say a pair (g, r) is wave admissible if

1 n—1 n—1

- = , n>2.
q 2r 4
)

Suppose that (g, r) and (g, F) are admissible pairs and v is a solution of
utt_Au:F7 (u7uf)|t:0:(ﬁ7f2)e".-I’y X HW?I'
Then, the following Strichartz estimation holds:

lullago,ryn + lelleqo, rpony S 11l + lli-1 + 1Ly o 1y

where

Q|+

In particular, (4,4) is s = % admissible for the cubic wave equations in 3D.



Eigenfunction estimates: Sogge(1988)

d—1¢1_1

)\2(2 5) for 2§p§%
el <4

AGE=P) "2 g 2gdj11)§p§oo

for the spectral projection on v/—A € [A, A+ 1]. In 3D,
1 -1
llenll e S An Cf: Critical space H2.
Therefore, we can reduce initial regularity by %: fe }f%
Averaging Lemma: [? to L?

Let {hn(w)} be a L?(Q) sequence of independent, mean zero and complex random
variables. Then, for p € [2,2k] and for every complex valued /? sequence ¢ = {cn},

[ Zc”hn(w)HLp(Q) S llelle-

n>1



Estimation of the free solution

sin(tv/—A)fyY
uf = cos(tvV—A)¥ + ———=.
f ( ) 1 m
By the Minkowski inequality,
Heit\/—Afu.) Heit —Afw )
LA(Q:L4([0, T]XT3)) — L4([0, TIXT3;L4(Q))

By averaging lemma,

Hem/fA F

L*([0, T]x T3;L4(Q))

1
<[ ()
3 1

(Z H‘OLnEn(X)‘2 LZ([OVT]X’W)) 2 _ T% (Z |an|2 ”en(X)Hi‘l(']ﬁ)) 2

Ti 214 32)3)7 = Th
(ClanP@+20)%)" = THAy -

L4([0, T]xT3)

IN
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NS with Supercritical Data

We consider NS with initial data in HS for s < % By the energy estimation,
298 VOl 19074y S Il + 117 o, ey
Viv € L®(0, T; L2) N L2(0, T; L%) = Vv € L*(0, T; L3).
By the product rule,
||V2||L2(077;Hs) b HVSVHL“(O,T;L3)||V||L4(O,T;L5)'
Therefore, we have
HVSVHL“(O,T;B) S lhvollgs + HVSVHL“(O,T;E“)HV||L4(0,T;L5)‘

We need to estimate v in L*(0, T; L®) and the norm Ivll 40,6y should be
sufficiently small to complete the estimation.



We note that the L#(0, T; L%) norm is invariant under the scaling
va(t,x) = Av ()\2t, )\X) .

The scaling invariance can be used to solve the Navier-Stokes equations in the integral
setting.

We express a solution v in the integral form:
t
v(t) = eByy — / [e(t_s)AIP’V (ve v)(s)] ds.
0

Any solution satisfying this integral form is called a mild solution, and we can find it
by using fixed point argument for the function v — F(v), where

F(v)(t) = et®vy — /Ot {e(t_s)AIP’V (v® v)(s)] ds.



We now estimate HV”L“(O,T-Lﬁ) by using this integral equation.

Nonlinear Term
t

‘/ [Ve’(t’S)APﬂ(s)] ds
0

By Hardy-Littlewood-Sobolev inequality,

t
’/ [Ve’(t’S)sz(s)] ds
L1416

0

: /0 [t =) vt ] o

L6

S ”VHifl(o’T;LB)-
Linear Term et®y,
Vietlyy € L2(0, T; L2) N L2(0, T; HY).

By the interpolation and the Sobolev embedding,

R 3 3
eByy e L4 (o, T, H”%) c Lt (0, T; LH) Lo <6
— S



To use the randomization method, we consider the Navier-Stokes equation on T3.

Main ldea

1. We need L4L% norm which corresponds to M2 initial data.

1_1y 1
Mlealle SAT2TR) 2 forp>a = v elL2

. Randomize initial data

. Regularizing effect of the Heat Kernel.

g~ W N

. Mild solution: ||vgl|;2 should be small to obtain a global-in-time solution.

Theorem: There exists € > 0 such that for vg € L? with ||vo||,2 < ¢, there exists an

1
event Q¢ such that p(Q¢) > 5 and for every w € Q¢ there exists a unique

global-in-time solution v such that

v—ethy et (0, oo; L6('[[‘3)) .



Proof: We represent initial data as Fourier series:

Zanen(x) = et Ze tXoh n(w)anen(x).

n>0 n>0

Averaging over w € ,

H “ SJHLB(QL“LG S H(Za € - "len(x)! )%

n>0

2
2
o el )

L416

< H(Za A lleals )

1
2 1
—tAy 2

e

[0
n>0

< lIvoll2-

By Chebyshev inequality,

tA W

0 >0} = p(Erw) < O OUo)8 -

EA,VO:{wEQ:‘e

HLﬁ(Q L316) —

P (ESu) = 1= CAOl0ll8qas).



Let v = etAvé*’ + u, where u solves
t
u(t) = —/ [e(tfs)AIP’V . <(etAv(‘)" +u)®@ (ePvg + u)) (5)] ds.
0
We define the map
t
K :ur— 7/ [e(t_s)A[P’V . ((emvg’ +u) @ (e + u))(s)] ds.
0

For w € E;,Vg'

2 2
llullags S A7+ [lullfa e

We take A < 1. Then, K“ is contractive on the ball of radius 1 of L4L5.
By taking initial data vy such that [|v]|,2 S A,

_ 1
P(ESu) 21— Al > -



Concluding remarks

. We show that there exists a unique global-in-time L? solution with a large
probability if ||vg||,2 is sufficiently small.

. We can show that there exists a local-in-time solution for large L2 initial data
almost surely.

. By changing the invariant norm, we can show the above two results for all
1
se[0,3)

4. We do not know the global well-posedness for large data in L2 almost surely.

5. There are no results on the whole spaces.

6. Possible application: 2D Schrodinger equations with quadratic nonlinearity

iue — Au = .
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