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Introduction

When a classical kinetic equation is posed over the spatial domain R
D,

every initial data with finite mass, energy, and second spatial moments
formally has 4 + 2D+ D(D−1)

2 conserved quantities associated with it.

The family of global Maxwellians with finite mass over the spatial domain
RD has 4 + 2D+ D(D−1)

2 parameters.

We show that a unique global Maxwellian can be associated with each
such initial data by matching the values of their conserved quantities.

Moreover, the set of all such values is characterized by an inequality on
the trace norm of the angular momentum matrix.
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Classical Kinetic Equations

We will consider classical kinetic equations that govern the evolution of a
kinetic density F(v, x, t) over the velocity-position space RD× RD by the
Cauchy problem

∂tF + v ·∇xF = C(F) , F
∣

∣

∣

t=0
= F in , (1)

where the initial data F in(v, x) is nonnegative and satisfies the bounds

0 <

∫∫

RD×RD

(

1 + |v|2 + |x|2
)

F in dv dx <∞ . (2)

The upper bound will insure the existence of the zeroth through second
moments of F in. The lower bound will insure that F in is positive over a set
of positive measure.



Collision Operators

The collision operator C acts only on the v variable.

We assume that C is defined over a domain Dom(C) contained within a
cone of nonnegative functions of v with sufficiently rapid decay at infinity.

We assume that the kinetic equation is Galilean invariant, which means
that Dom(C) is invariant under v translations while C commutes with v

translations.

We also assume that C and Dom(C) have the following properties related
to conservation, dissipation, and equilibria. These properties are shared
by most classical collision operators.



Conservation Properties

The quantities 1, v, and |v|2 are assumed to be locally conserved by C.
This means that for every f ∈ Dom(C)

∫

RD
C(f) dv = 0 ,

∫

RD
v C(f) dv = 0 ,

∫

RD
|v|2 C(f) dv = 0 .

These reflect mass, momentum, and energy conservation by collisions.
We assume moreover, that every locally conserved quantity is a linear
combination of these three. More specifically, given any ξ = ξ(v), the
following statements are equivalent:

(i)
∫

RD
ξ C(f) dv = 0 , for every f ∈ Dom(C) ;

(ii) ξ ∈ span{1, v1, v2, · · · , vD, |v|
2} .

This means that there is no other quantity that is locally conserved by C.



Local Conservation Laws

Any solution F of the kinetic equation formally satisfies the local conserva-
tion law

∂t

∫

RD
ξ F dv+ ∇x ·

∫

RD
v ξ F dv = 0 ,

when ξ(v, x, t) is any quantity that satisfies

ξ ∈ span{1, v1, v2, · · · , vD, |v|
2} , ∂tξ+ v ·∇xξ = 0 .

It has been known essentially since Boltzmann, who worked out the case
D = 3, that the only such quantities ξ are linear combinations of the
4 + 2D+ D(D−1)

2 quantities

1 , v , x− vt ,
1
2|v|

2 , v ∧ x v · (x− vt) , 1
2|x− vt|2 ,

where v ∧ x = v xT − x vT is the skew tensor product.



Global Conservation Laws

By integrating the corresponding local conservation laws over all space,
we formally obtain the conserved quantities

∫∫

RD×RD



























1
v

x− vt
1
2|v|

2

v ∧ x
v · (x− vt)
1
2|x− vt|2



























F(v, x, t) dv dx .

These quantities are associated respectively with the conservation laws
of mass, momentum, initial center of mass, energy, angular momentum,
scalar momentum moment, and scalar inertial moment. The last two are
not general physical laws, but are general to solutions of classical kinetic
equations.



Dissipation Properties and Maxwellians

The operator C is assumed to satisfy the local dissipation relation
∫

RD
log(f) C(f) dv ≤ 0 , for every f ∈ Dom(C) .

Moreover, we assume that for every nonzero f ∈ Dom(C) the following
statements are equivalent:

(i)
∫

RD
log(f) C(f) dv = 0 ,

(ii) C(f) = 0 ,

(iii) f =
ρ

(2πθ)
D
2

exp

(

−
|v − u|2

2θ

)

with (ρ, u, θ) ∈ R+× R
D× R+ .

These assumptions simply abstract some consequences of Boltzmann’s
celebrated H-theorem for Maxwell-Boltzmann collision operators.



Global Maxwellians

Functions in the form (iii) with ρ, u, and θ functions of (x, t) are called
local Maxwellians. Local Maxwellians that satisfy the kinetic equation are
called global Maxwellians. The family of global Maxwellians over the spatial
domain RD with positive mass, zero net momentum, and center of mass
at the origin has the form

M =
m
√

det(Q)

(2π)D
exp



−
1

2

(

v

x− vt

)T (
cI bI +B

bI −B aI

)(

v

x− vt

)



 ,

with m > 0, Q = (ac− b2)I +B2, and (a, b, c, B) ∈ Ω, where

Ω =
{

(a, b, c, B) ∈ R+× R × R+× R
D∧D : Q > 0

}

.

Here R+ denotes the positive real numbers and RD∧D denotes the skew-
symmetric D ×D real matrices.



This form can be derived from the fact that log(M) must satisfy

log(M) ∈ span{1, v1, v2, · · · , vD, |v|
2} ,

(

∂t + v · ∇x
)

log(M) = 0 ,

whereby log(M) must be a linear combination of the quantities

1 , v , x− vt ,
1
2|v|

2 , v ∧ x v · (x− vt) , 1
2|x− vt|2 .

The form of M then comes from the requirements that it have finite mass,
zero net momentum, and center of mass at the origin.

The larger family of global Maxwellians with positive mass is obtained from
the form M by introducing translations in v and x, whereby it has a total of
4 + 2D+ D(D−1)

2 parameters.



We can bring M into the local Maxwellian form

M =
ρ(x, t)

(

2πθ(t)
)D

2

exp

(

−
|v − u(x, t)|2

2θ(t)

)

,

where the temperature θ(t), bulk velocity u(x, t), and mass density ρ(x, t)
are given by

θ(t) =
1

at2 − 2bt+ c
, u(x, t) = θ(t)

(

axt− bx−Bx
)

,

ρ(x, t) = m

(

θ(t)

2π

)D
2 √

det(Q) exp

(

−
θ(t)

2
xTQx

)

.

Because a, c > 0 and ac > b2, we see that at2 − 2bt+ c > 0 for every t.
Because Q > 0, we see that ρ(x, t) is integrable over RD.



The second moments of M may be computed by evaluating the Gaussian
integrals as

∫∫

RD×RD

(

v

x− vt

)(

v

x− vt

)T

Mdv dx = m

(

cI bI +B

bI −B aI

)−1

= m

(

aQ−1 −bQ−1 −Q−1B

−bQ−1 +Q−1B cQ−1

)

.

In particular, the values of the quadratic conserved quantities are given by
∫∫

RD×RD
|v|2Mdv dx = m tr

(

Q−1
)

a ,
∫∫

RD×RD
v · (x− vt)Mdv dx = −m tr

(

Q−1
)

b ,
∫∫

RD×RD
|x− vt|2Mdv dx = m tr

(

Q−1
)

c ,
∫∫

RD×RD
v ∧ xMdv dx = −2mQ−1B .



Main Theorem

We show that every Cauchy problem (1) with initial data F in(v, x) that
satisfies the bounds (2) can be associated with a unique global Maxwellian
determined by the values of the conserved quantities computed from F in.
This is a statement only about the initial data, not the Cauchy problem. So
we will consider nonnegative integrable functions F that satisfy the bounds

0 <

∫∫

RD×RD

(

1 + |v|2 + |x|2
)

F dv dx <∞ . (3)

By choosing an appropriate rescaling and Galilean frame, we may assume
without loss of generality that

∫∫

RD×RD
F dv dx = 1 ,

∫∫

RD×RD
v F dv dx =

∫∫

RD×RD
xF dv dx = 0 .

(4)

Our main result is the following.



Theorem. 1 Let F(v, x) be a nonnegative integrable function that satisfies
the bounds (3) and the normalizations (4). Let a∗, b∗, c∗, and B∗ be given
by

∫∫

RD×RD
|v|2F dv dx = a∗ ,

∫∫

RD×RD
v ·xF dv dx = b∗ ,

∫∫

RD×RD
|x|2F dv dx = c∗ ,

∫∫

RD×RD
v ∧ xF dv dx = B∗ .

(5)

Then (a∗, b∗, c∗, B∗) ∈ Ω∗, where Ω∗ ∈ R × R × R × RD∧D is an open
cone defined by

Ω∗ =

{

(a∗, b∗, c∗, B∗) ∈ R+× R × R+× R
D∧D : 1

2 tr(|B∗|) <
√

a∗c∗ − b2∗

}

.

Here tr( · ) denotes the trace of a matrix while |B∗| denotes the unique
nonnegative definite matrix that satisfies |B∗|2 = BT∗ B∗ = −B 2

∗ .



Conversely, if (a∗, b∗, c∗, B∗) ∈ Ω∗ then there is a unique global Maxwellian
M with m = 1 and (a, b, c, B) ∈ Ω such that the quadratic converved
quantities associated with M have values (a∗, b∗, c∗, B∗) given by

a∗ = tr
(

Q−1
)

a , b∗ = − tr
(

Q−1
)

b ,

c∗ = tr
(

Q−1
)

c , B∗ = −2Q−1B ,
(6)

where Q = (ac− b2)I +B2.

Remark. The fact that tr(|B∗|) is the trace norm B∗ will be used.

Remark. The first part of this theorem states that Ω∗ contains the set of
values that can be realized by the conserved quantities given by (5). The
second part asserts that every point in Ω∗ can be so realized. Therefore
Ω∗ characterizes all such values. This is a moment realizability result. The
trace norm appearing in the characterization of Ω∗ makes it unusual.



Remark. The second part of this theorem is equivalent to the assertion
that for every (a∗, b∗, c∗, B∗) ∈ Ω∗ there exists a unique minimizer of

H(F) =

∫∫

RD×RD
F log(F) − F dv dx

over the set of nonnegative integrable functions that satisfy the bounds (3),
the normalizations (4), and the constraints (5). Indeed, when we apply the
method of Lagrange multipliers to this constrained minimization problem,
the problem of finding a solution to the resulting Euler-Lagrange equations
reduces to showing that the algebraic system (6) has a unique solution
(a, b, c, B) ∈ Ω. The unique minimizer will then be the global Maxwellian
given by m = 1 and (a, b, c, B).

If (a∗, b∗, c∗, B∗) 6∈ Ω∗ then the resulting Euler-Lagrange equations will not
have a solution from among the admissible functions because otherwise it
would violate the first part of the theorem.



Remark. The sets Ω∗ and Ω respectively are characterized as subsets of
R+× R × R+× RD∧D by the inequalities

1
2 tr(|B|) <

√

ac− b2 , ‖B‖ <

√

ac− b2 ,

where ‖B‖ is the ℓ2 matrix norm. Because B is skew-symmetric, ‖B‖

equals the spectral radius of B, and the nonzero eigenvalues of B come in
conjugate pairs. Whenever B has at most two nonzero eigenvalues then
1
2 tr(|B|) = ‖B‖.

If D = 1, D = 2, or D = 3 then Ω∗ = Ω because in those cases B can
have at most two nonzero eigenvalues. (In fact, B = 0 when D = 1.)

If D > 3 then Ω∗ will be a proper subset of Ω because ‖B‖ < 1
2 tr(|B|)

whenever B has more than two nonzero eigenvalues.



Values of Conserved Quantities

Here we prove the first part of the Main Theorem, which states that the
values taken by the quadratic conserved quantities must lie in Ω∗.

Theorem. 2 Let F(v, x) be a nonnegative function that satisfies the bounds
(3) and the nomalizations (4). Let a∗, b∗, c∗, and B∗ be given by (5).

Then (a∗, b∗, c∗, B∗) ∈ Ω∗ where Ω∗ is an open cone in R×R×R×RD∧D.

Remark. The fact that every (a∗, b∗, c∗, B∗) ∈ Ω∗ gives the values of the
conserved quantities for some F will be established by Theorem 6.



A key role in our proof of Theorem 2 will be played by the following lemma.

Lemma. 3 Let P = {(a, b, c) ∈ R+× R × R+ : ac − b2 > 0}. Let
Pc denote the closure of P in R3. Let ψ : Pc → [0,∞) be given by

ψ(a, b, c) =
√

ac− b2.

Then ψ is continuous and concave over Pc, and smooth over P. Moreover,
for every (a∗, b∗, c∗) ∈ P and every (a, b, c) ∈ Pc one has the inequality

ψ(a, b, c) ≤ ψ(a∗, b∗, c∗) +
1

ψ(a∗, b∗, c∗)









1
2c∗
−b∗
1
2a∗









T 





a− a∗
b− b∗
c− c∗





 , (7)

with equality if and only if (a, b, c) is proportional to (a∗, b∗, c∗).



An immediate consequence of Lemma 3 is the following, which establishes
one of the assertions of Theorem 2.

Corollary 4 The set Ω∗ is an open cone in R × R × R × R
D∧D.

Proof. By the triangle inequality for the trace norm, the defining inequality

for Ω∗, and the concavity of (a, b, c) 7→
√

ac− b2, we see that

1
2 tr(|B1 +B2|) ≤ 1

2 tr(|B1|) + 1
2 tr(|B2|)

<

√

a1c1 − b21 +
√

a2c2 − b22

≤
√

(a1 + a2)(c1 + c2) − (b1 + b2)
2 .

Hence, (a1 + a2, b1 + b2, c1 + c2, B1 + B2) ∈ Ω∗. Therefore Ω∗ is
a cone. The fact Ω∗ is open is a consequence of the continuity of the
mapping (a∗, b∗, c∗, B∗) 7→

√

a∗c∗ − b2∗ − 1
2 tr(|B∗|).



We are now ready to give the proof of Theorem 2.

Proof. The fact that Ω∗ is an open cone in R+× R × R+× RD∧D was
established by the last corollary. Let (a∗, b∗, c∗, B∗) be given by (5). These
values are defined by the upper bound of (3). Because |v|2 and |x|2 are
positive almost everywhere while v∧x is skew-symmetric, it follows from (5)
and the lower bound of (3) that (a∗, b∗, c∗, B∗) ∈ R+× R × R+× RD∧D.

All that is left to show is that 1
2 tr(|B∗|) <

√

a∗c∗ − b2∗ .

For every (ξ, ζ) ∈ R2 we have
(

ξ

ζ

)T (
a∗ b∗
b∗ c∗

)(

ξ

ζ

)

=

∫∫

RD×RD
|ξv+ ζx|2F dv dx .

If (ξ, ζ) is nonzero then |ξv+ ζx|2 > 0 almost everywhere, which implies
the right-hand side above is positive. Therefore the matrix on the left-hand
side above is positive definite, whereby a∗c∗ − b2∗ > 0.



Let P, Pc, and ψ be as in Lemma 3. We have just seen that (a∗, b∗, c∗) ∈ P.
For every (v, x) ∈ RD× RD we have (|v|2, v ·x, |x|2) ∈ Pc by the Cauchy
inequality. Because the set of (v, x) ∈ RD× RD where (|v|2, v ·x, |x|2)

is proportional to (a∗, b∗, c∗) has measure zero, we see by (7) of Lemma 3
that for almost every (v, x) ∈ R

D× R
D we have

ψ
(

|v|2, v ·x, |x|2
)

< ψ(a∗, b∗, c∗) +
1

ψ(a∗, b∗, c∗)









1
2c∗
−b∗
1
2a∗









T 





|v|2 − a∗
v ·x− b∗
|x|2 − c∗





 .

Upon integrating this inequality and using the fact F is positive on a set of
positive measure, we obtain the strict form of the Jensen inequality

∫∫

RD×RD
ψ
(

|v|2, v ·x, |x|2
)

F dv dx < ψ(a∗, b∗, c∗) .



Next, we claim that for every (v, x) ∈ RD× RD

|v ∧ x| =
√

|v|2|x|2 − (v ·x)2 P{v,x} ,

where P{v,x} is the orthogonal projection onto span{v, x}.

Because tr(P{v,x}) = 2 when |v|2|x|2− (v ·x)2 > 0, we obtain the trace
formula

tr(|v ∧ x|) = 2
√

|v|2|x|2 − (v ·x)2 for every (v, x) ∈ R
D× R

D .

Finally, from the triangle inequality for the trace norm, the trace formula,
and the strict Jensen inequality, we get

1
2 tr(|B∗|) ≤

∫∫

RD×RD

1
2 tr(|v ∧ x|)F dv dx

=
∫∫

RD×RD

√

|v|2|x|2 − (v · x)2F dv dx <
√

a∗c∗ − b2∗ .

Therefore (a∗, b∗, c∗, B∗) ∈ Ω∗.



Range of Global Maxwellian Conserved Quantities

We consider the mapping from the global Maxwellians of unit mass, zero
net momentum, and center of mass at the origin to the values of their
conserved quantities. These global Maxwellians M with m = 1 are
parametrized by (a, b, c, B) ∈ Ω. The values of the quadratic conserved
quantities for the global Maxwellian M associated with (a, b, c, B) ∈ Ω

are given by Ψ(a, b, c, B) = (a∗, b∗, c∗, B∗), where

a∗ = tr
(

Q−1
)

a , b∗ = − tr
(

Q−1
)

b ,

c∗ = tr
(

Q−1
)

c , B∗ = −2Q−1B ,
(8)

where Q = (ac− b2)I+B2. We have seen that Ψ maps Ω into Ω∗. The
mapping is clearly real analytic over Ω. We now show that it is one-to-one
and onto, which establishes the second part of the Main Theorem.



Theorem. 5 The mapping Ψ : Ω → Ω∗ given by (8) is one-to-one.

Proof. We will use the fact that the mapping A 7→ log(det(A)) is strictly
concave over the set of symmetric positive definite matrices. This fact can
be seen from the calculation
(

Ȧ · ∂A

)2
log(det(A)) =

(

Ȧ · ∂A

)

tr
(

A
−1

Ȧ

)

= − tr
(

A
−1

ȦA
−1

Ȧ

)

< 0 for every Ȧ 6= 0 .

We then define

φ(a, b, c, B) = log

(

det

(

cI bI +B

bI −B aI

))

= log(det(Q)) .

The mapping (a, b, c, B) 7→ φ(a, b, c, B) is a restriction of the mapping
A 7→ log(det(A)) to a linear subspace, so is also strictly concave.



The strict concavity of φ(a, b, c, B) implies that the Legendre mapping

(a, b, c, B) 7→











∂aφ(a, b, c, B)
∂bφ(a, b, c, B)
∂cφ(a, b, c, B)
∇Bφ(a, b, c, B)











is one-to-one .

Directional derivatives of φ(a, b, c, B) may be computed by the formula
Q̇ · ∂Q log(det(Q)) = tr

(

Q−1Q̇
)

. Direct calculations yield

∂aφ(a, b, c, B) = tr
(

Q−1
)

c , ∂bφ(a, b, c, B) = −2 tr
(

Q−1
)

b ,

∂cφ(a, b, c, B) = tr
(

Q−1
)

a , ∇Bφ(a, b, c, B) = −2Q−1B .

But then Ψ : Ω → Ω∗ is one-to-one because

Ψ(a, b, c, B) =













0 0 1 0

0 1
2 0 0

1 0 0 0
0 0 0 I























∂aφ(a, b, c, B)
∂bφ(a, b, c, B)
∂cφ(a, b, c, B)
∇Bφ(a, b, c, B)











.



We now show that the range of Ψ is Ω∗.

Theorem. 6 The mapping Ψ : Ω → Ω∗ given by (8) is onto.

Proof. Let (a∗, b∗, c∗, B∗) ∈ Ω∗. Let d∗ =
√

a∗c∗ − b2∗ > 0. Be-
cause B∗ ∈ RD∧D, we can list its nonzero eigenvalues with multiplicity
as {±iβk}

n
k=1, where βk > 0. The definition of Ω∗ then shows that

n
∑

k=1

βk = 1
2 tr(|B∗|) < d∗ . (9)

It is clear that if (8) holds for some (a, b, c, B) ∈ Ω then (a, b, c, B) must
have the form

a =
µ∗a∗

d2
∗
, b = −

µ∗b∗

d2
∗
, c =

µ∗c∗

d2
∗
, B = −

µ∗

d∗
N∗ , (10)

where the scalar µ∗ > 0 and the skew-symmetric matrix N∗ are to be
determined.



Because

Q = (ac− b2)I +B2 =
µ2
∗

d2
∗

(

I +N 2
∗

)

,

we see that Q > 0 if and only if I +N 2
∗ > 0. Moreover, we see that

Q−1 =
d2
∗

µ2
∗

(

I +N 2
∗

)−1
,

whereby

tr
(

Q−1
)

a =
a∗

µ∗
tr
(

(

I +N 2
∗

)−1
)

,

− tr
(

Q−1
)

b =
b∗

µ∗
tr
(

(

I +N 2
∗

)−1
)

,

tr
(

Q−1
)

c =
c∗

µ∗
tr
(

(

I +N 2
∗

)−1
)

,

−2Q−1B = 2
d∗

µ∗

(

I +N 2
∗

)−1
N∗ .



Equations (8) will be satisfied if and only if µ∗ and N∗ satisfy

1 =
1

µ∗
tr
(

(

I +N 2
∗

)−1
)

, B∗ = 2
d∗

µ∗

(

I +N 2
∗

)−1
N∗ . (11)

The second equation above can be solved for N∗ in terms of µ∗. There is
a unique solution that satisfies I +N 2

∗ > 0, which is given by

N∗ = µ∗

(

d∗I +
(

d2
∗ I − µ2

∗ B
2
∗

)1
2

)−1

B∗ . (12)

The nonzero eigenvalues ±iβk of B∗ are related to nonzero eigenvalues
±iνk of N∗ by

µ∗βk

2d∗
=

νk

1 − ν 2
k

, νk =
µ∗βk

d∗ +
√

d2
∗ + µ2

∗ β
2
k

. (13)

Notice that ν 2
k < 1, which is required by the condition that I +N 2

∗ > 0.



We can use (12) to express the first equation in (11) as 1 = τ(µ∗) where

τ(µ∗) =
1

µ∗
tr
(

(

I +N 2
∗

)−1
)

If we let D0 be the dimension of the null space of N∗ then by using (13) we
find

τ(µ∗) =
D0

µ∗
+

1

µ∗

n
∑

k=1

2

1 − ν 2
k

=
D0

µ∗
+

1

d∗

n
∑

k=1

βk

νk

=
D0

µ∗
+

1

d∗

n
∑

k=1

d∗ +
√

d2
∗ + µ2

∗ β
2
k

µ∗
.



It is clear that τ(µ∗) is a decreasing function over µ∗ ∈ (0,∞) whose
range is (τ∗,∞) where

τ∗ = inf
µ∗>0

{

τ(µ∗)
}

= lim
µ∗→∞

τ(µ∗) =
1

d∗

n
∑

k=1

βk =
1

2d∗
tr(|B∗|) .

Hence, the equation 1 = τ(µ∗) has a unique positive solution if τ∗ < 1,
and has no positive solution otherwise. But the condition τ∗ < 1 is met
by (9) because (a∗, b∗, c∗, B∗) ∈ Ω∗, so the equation 1 = τ(µ∗) has a
unique positive solution µ∗. The (a, b, c, B) constructed from (10) with this
µ∗ and the N∗ given by (12) is in Ω because I +N 2

∗ > 0.

Remark. We could also argue that Ψ : Ω → Ω∗ is one-to-one by arguing
that µ∗ and N∗ in our construction are unique. However, that approach
would obscure the simplicity of the result because it is more complicated
than the approach taken in the proof of Theorem 5.



Conclusion

1. What does the M associated with F in have to do with F? When might
they share the same large-time asymptotics? Claude Bardos, Irene
Gamba and I have preliminary results in a very restrictive setting.

2. Are the M stable? If so, can one bound the rate of convergence?

3. Can similar questions can be addressed for Navier-Stokes systems?

Thank You!


