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Introduction

Every solution of the Cauchy problem for the Boltzmann equation over the
spatial domain RD has a unique global Maxwellian associated with it that
is determined by the initial values of its formally conserved quantities.

Kaniel-Shinbrot iteration can be used to establish the existence of solu-
tions to the Boltzmann equation over the spatial domain RD for some ini-
tial data that is pointwise bounded above and below by a class of global
Maxwellians larger than previously considered.

When these solutions are global in time, we use the bounds on them to
obtain results on their large-time asymptotics.
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1. Cauchy Problem for the Boltzmann Equation

We consider a kinetic density F(v, x, t) governed by the Cauchy problem
for the Boltzmann equation:

∂tF + v ·∇xF = B(F, F) , F
∣

∣

∣

t=0
= F in . (1)

We assume that F in(v, x) is nonnegative and satisfies the bounds

0 <
∫∫

RD×RD

(

1 + |v|2 + |x|2
)

F in dv dx < ∞ . (2)

The collision operator B(F, F) has the form

B(F, F) =

∫∫

SD−1×RD

(

F ′
∗F

′ − F∗F
)

bdω dv∗ , (3)

where ω ∈ SD−1, b(ω, v − v∗) is the collision kernel, while F∗, F ′, and
F ′∗ denote F( · , x, t) evaluated at v∗, v′ = v − ω ω · (v − v∗), and v′∗ =

v∗ + ω ω · (v − v∗) respectively.



Collision Kernels

We will assume that the collision kernel has the separable form

b(ω, v − v∗) = b̂(ω ·n)|v − v∗|β , where n =
v − v∗
|v − v∗|

, (4)

for some β ∈ (−D,2) while b̂(ω ·n) is positive almost everywhere and
satisfies the weak small-deflection cutoff condition

∥

∥

∥b̂

∥

∥

∥

L1(dω)
=
∫

SD−1
b̂(ω ·n) dω < ∞ . (5)

The conditions β > −D and (5) are required for b(ω, v − v∗) given by (4)
to be locally integrable with respect to dω dv∗.



Classical Collision Kernels

The form (4) arises from the classical scattering cross section calculation
for identical hard spheres of mass m and diameter do, which yields

b(ω, v − v∗) =
dD−1
o

2m
|ω · (v − v∗)| . (6)

This corresponds to the case β = 1 and b̂(ω ·n) = dD−1
o
2m |ω ·n| in (4).

The form (4) also arises from potentials proportional to r−k, where r is the
distance between the center of masses, one has

β = 1 − 2
D − 1

k
for k > 2

D − 1

D + 1
. (7)

The cases β ∈ (−D,0), β = 0, β ∈ (0,1], and β ∈ (1,2) are called re-
spectively the “soft”, “Maxwell”, “hard”, and “super-hard” cases. The super-
hard cases do not arise from an inverse-power interparticle potential.



Attenuation and Gain Operators

The weak small-deflection cutoff condition allows us to decompose the
collision operator (3) as

B(F, F) = G(F, F) −A(F)F , (8)

where the attenuation operator A(F) and the gain operator G(F, F) are
defined by

A(F) =

∫∫

SD−1×RD
F∗ bdω dv∗ ,

G(F, F) =
∫∫

SD−1×RD
F ′
∗F

′
bdω dv∗ .

(9)



2. Consered Quantities and Global Maxwellians
Local Conservation Laws

Any solution F of the Boltzmann equation (1) formally satisfies the local
conservation law

∂t

∫

RD
ξ F dv + ∇x ·

∫

RD
v ξ F dv = 0 ,

when ξ(v, x, t) is any quantity that satisfies

ξ( · , x, t) ∈ span{1, v1, v2, · · · , vD, |v|2} , ∂tξ + v ·∇xξ = 0 . (10)

It has been known essentially since Boltzmann, who worked out the case
D = 3, that the only such quantities ξ are linear combinations of the
4 + 2D + D(D−1)

2 quantities

1 , v , x − vt , 1
2|v|

2 , v ∧ x v · (x − vt) , 1
2|x − vt|2 , (11)

where v ∧ x = v xT − x vT is the skew tensor product.



Globally Conserved Quantities

By integrating the coresponding local conservation laws over space and
time, we formally obtain the globally conserved quantities

∫∫

RD×RD



























1
v

x − vt
1
2|v|2
v ∧ x

v · (x − vt)
1
2|x − vt|2



























F(v, x, t) dv dx , (12)

where these quantities exist by the bounds (2). These are associated re-
spectively with the conservation laws of mass, momentum, initial center of
mass, energy, angular momentum, scalar momentum moment, and scalar
inertial moment. The last two are not general physical laws, but are shared
by the solutions of other kinetic equations.



Local Maxwellians

One consequence of Boltzmann’s celebrated H-theorem is that if f(v)

is any nonnegative integrable function that has appropriate behavior as
|v| → ∞ then B(f, f) = 0 if and only if

f =
ρ

(2πθ)
D
2

exp

(

− |v − u|2
2θ

)

, (13)

for some (ρ, u, θ) ∈ R+× RD × R+.

Functions of the form (13) where ρ, u, and θ functions of (x, t) are called
local Maxwellians.



Global Maxwellians

Local Maxwellians that satisfy the Boltzmann equation are called global
Maxwellians. The family of global Maxwellians over RD with positive mass,
zero net momentum, and center of mass at the origin has the form

M =
m

(2π)D

√

det(Q) exp
(

− q(v, x, t)
)

,

Q = (ac − b2)I + B2 ,

q(v, x, t) =
1

2

(

v
x − vt

)T (
cI bI + B

bI − B aI

)(

v
x − vt

)

,

(14)

with m > 0 and (a, b, c, B) ∈ Ω where Ω is defined by

Ω =
{

(a, b, c, B) ∈ R+× R × R+× R
D∧D : (ac − b2)I + B2 > 0

}

.

Here R+ denotes the positive real numbers and RD∧D denotes the skew-
symmetric D × D real matrices.



This form can be derived from the fact that log(M) must satisfy

log(M) ∈ span{1, v1, v2, · · · , vD, |v|2} ,
(

∂t + v · ∇x

)

log(M) = 0 ,

whereby log(M) must be a linear combination of the quantities

1 , v , x − vt ,
1
2|v|

2 , v ∧ x v · (x − vt) , 1
2|x − vt|2 .

The form of M then comes from the requirements that it have finite mass,
zero net momentum, and center of mass at the origin.

The larger family of global Maxwellians with positive mass is obtained from
the form M by introducing translations in v and x, whereby it has a total of
4 + 2D + D(D−1)

2 parameters.



We can bring M into the local Maxwellian form

M =
ρ(x, t)

(

2πθ(t)
)D

2

exp

(

−|v − u(x, t)|2
2θ(t)

)

,

where the temperature θ(t), bulk velocity u(x, t), and mass density ρ(x, t)

are given by

θ(t) =
1

at2 − 2bt + c
, u(x, t) = θ(t)

(

axt − bx − Bx
)

,

ρ(x, t) = m

(

θ(t)

2π

)D
2 √

det(Q) exp

(

−θ(t)

2
xTQx

)

.

(15)

Because a, c > 0 and ac > b2, we see that at2 − 2bt + c > 0 for every t.
Because Q > 0, we see that ρ(x, t) is integrable over RD.



The second moments of M may be computed by evaluating the Gaussian
integrals as

∫∫

RD×RD

(

v
x − vt

)(

v
x − vt

)T

Mdv dx = m

(

cI bI + B
bI − B aI

)−1

= m

(

aQ−1 −bQ−1 − Q−1B

−bQ−1 + Q−1B cQ−1

)

.

In particular, the values of the quadratic conserved quantities are given by
∫∫

RD×RD
|v|2Mdv dx = m tr

(

Q−1
)

a ,
∫∫

RD×RD
v · (x − vt)Mdv dx = −m tr

(

Q−1
)

b ,
∫∫

RD×RD
|x − vt|2Mdv dx = m tr

(

Q−1
)

c ,
∫∫

RD×RD
v ∧ xMdv dx = −2mQ−1B .

(16)



Conserved Quantities and Global Maxwellians

Every Cauchy problem (1) whose initial data F in(v, x) satisfies the bounds

0 <
∫∫

RD×RD

(

1 + |v|2 + |x|2
)

F in dv dx < ∞ , (17)

can be associated with a unique global Maxwellian determined by the val-
ues of the conserved quantities computed from F in. By choosing an ap-
propriate rescaling and Galilean frame, we may assume without loss of
generality that

∫∫

RD×RD
F in dv dx = 1 ,

∫∫

RD×RD
v F in dv dx =

∫∫

RD×RD
x F in dv dx = 0 .

(18)



Theorem. 1 Let F in(v, x) be a nonnegative function that satisfies the bounds
(2) and the normalizations (18). Let a∗, b∗, c∗, and B∗ be given by
∫∫

RD×RD
|v|2F in dv dx = a∗ ,

∫∫

RD×RD
v ·x F in dv dx = b∗ ,

∫∫

RD×RD
|x|2F in dv dx = c∗ ,

∫∫

RD×RD
v ∧ x F in dv dx = B∗ .

(19)
Then (a∗, b∗, c∗, B∗) ∈ Ω∗, where Ω∗ is defined by

Ω∗ =

{

(a∗, b∗, c∗, B∗) ∈ R+× R × R+× R
D∧D : 1

2 tr(|B∗|) <
√

a∗c∗ − b2
∗
}

,

with |B∗| =
√

BT∗ B∗ =
√

−B 2∗ .



Conversely, if (a∗, b∗, c∗, B∗) ∈ Ω∗ then there exists a unique global Maxwellian
M given by (14) with m = 1 and (a, b, c, B) ∈ Ω such that the quadratic
converved quantities associated with M through (16) have values (a∗, b∗, c∗, B∗)
— i.e. such that

a∗ = tr
(

Q−1
)

a , b∗ = − tr
(

Q−1
)

b , c∗ = tr
(

Q−1
)

c , B∗ = −2Q−1B ,

(20)
where Q = (ac − b2)I + B2 and the set Ω was defined after (14).

Remark. The first part of this theorem states that Ω∗ contains the set of
values that can be realized by the conserved quantities given by (16). The
second part asserts that every point in Ω∗ can be so realized. Therefore
Ω∗ characterizes all such values. This is a moment realizability result. The
trace norm appearing in the characterization of Ω∗ makes it unusual.



Ordering Global Maxwellians

Lemma. 2 Let M1 and M2 be global Maxwellians of the form (14) with
parameters given by (m1, a1, b1, c1, B1) ∈ R+×Ω and (m2, a2, b2, c2, B2) ∈
R+ × Ω respectively. Then M1 ≤ M2 for every (v, x, t) if and only if

(

c2I b2I + B2
b2I − B2 a2I

)

≤
(

c1I b1I + B1
b1I − B1 a1I

)

, (21)

m1

√

det
((

a1c1 − b2
1

)

I + B 2
1

)

≤ m2

√

det
((

a2c2 − b2
2

)

I + B 2
2

)

.

(22)

Similarly, M1 < M2 for every (v, x, t) if and only if (21) holds and (22) is
a strict inequality.



3. Kaniel-Shinbrot Iteration and Global Solutions

Kaniel-Shinbrot iteration can be used to prove the existence of solutions
F to the Boltzmann initial-value problem posed over the spatial domain
RD with initial data F in(v, x) that satisfies certain pointwise bounds. More
specifically, it is used to construct two sequences of approximate solutions,
{

FL
j

}

j∈N
and

{

FU
j

}

j∈N
, the first of which converges monotonically to F

from below, while the second converges monotonically to F from above. In
other words, for some T ∈ (0,∞] these opposing monotone sequences
should satisfy the order relationships

FL
j ≤ FL

j+1 ≤ FU
j+1 ≤ FU

j over RD× RD × [0, T) for every j ∈ N .

(23)
The expectation is that these sequences will converge to F(v, x, t) over
RD× RD × [0, T). When this construction can be carried out for T = ∞
then the solution F will be global in time.



Kaniel-Shinbrot iteration constructs sequences as follows. Given FL
j−1 and

FU
j−1 for any j ∈ Z+ we define the Kaniel-Shinbrot iterates FL

j and FU
j to

be the solution of the linear system

∂tF
U
j + v ·∇xFU

j + A
(

FL
j−1

)

FU
j = G

(

FU
j−1, FU

j−1

)

,

∂tF
L
j + v ·∇xFL

j + A
(

FU
j−1

)

FL
j = G

(

FL
j−1, FL

j−1

)

,
(24a)

FU
j

∣

∣

∣

t=0
= FL

j

∣

∣

∣

t=0
= F in . (24b)

The existence of FL
j and FU

j can be inferred from the mild formulation of
system (24a).

Notice that F in enters the construction of FL
j and FU

j for j ≥ 1 in (24b).

The only iterates that generally do not satisfy (24b) are FL
0 and FU

0 .



The form of the Kaniel-Shinbrot iteration (24) is motivated by the fact that
A and G have the monotonicity properties

F ≤ G =⇒ A(F) ≤ A(G) and G(F, F) ≤ G(G, G) . (25)

The following lemma shows that this form insures that Kaniel-Shinbrot iter-
ates preserve the order relationships that appear in (23).

Lemma. 3 (Order Preservation Lemma) If for some T ∈ (0,∞] the
Kaniel-Shinbrot iterates FL

j−1, FU
j−1, FL

j , and FU
j satisfy

FL
j−1 ≤ FL

j ≤ FU
j ≤ FU

j−1 over RD× RD × [0, T) , (26)

then the Kaniel-Shinbrot iterates FL
j+1 and FU

j+1 satisfy

FL
j ≤ FL

j+1 ≤ FU
j+1 ≤ FU

j over RD× RD × [0, T) . (27)



Kaniel-Shinbrot Theorem

Induction, Lemma 3, the Lebesgue Monotone Convergence Theorem, and
a stability bound can be used to prove the following.

Theorem. 4 (Kaniel-Shinbrot) If for some T ∈ (0,∞] the Kaniel-Shinbrot
iterates FL

0 , FU
0 , FL

1 , and FU
1 satisfy the so-called beginning condition

FL
0 ≤ FL

1 ≤ FU
1 ≤ FU

0 over RD× RD × [0, T) , (28)

then the Kaniel-Shinbrot iteration yields opposing monotone sequences
{

FL
j

}

j∈N
and

{

FU
j

}

j∈N
over RD× RD × [0, T) — i.e. sequences that

satisfy the order relationship (23). These sequences converge to a unique
mild solution of the initial-value problem (1) for the Boltzmann equation.



Beginning with Local Maxwellians

The hard part of applying the Kaniel-Shinbrot Theorem is showing the first
two iterates satisfy the beginning condition (28). When the initial Kaniel-
Shinbrot iterates are local Maxwellians then there is a simple criterion that
insures the beginning condition is satisfied for some T ∈ (0,∞].

Proposition 5 (Local Maxwellian Beginning Lemma) Suppose ML and
MU are local Maxwellians that satisfy

ML
∣

∣

∣

t=0
≤ MU

∣

∣

∣

t=0
over RD× RD , (29a)

and for some T ∈ (0,∞] satisfy

∂tM
U + v ·∇xMU ≥ A(MU − ML)MU over RD× RD × [0, T) ,

− ∂tM
L − v ·∇xML ≥ A(MU − ML)ML over RD× RD × [0, T) ,

(29b)



Then for every initial data F in such that

ML
∣

∣

∣

t=0
≤ F in ≤ MU

∣

∣

∣

t=0
over RD× RD ,

the Kaniel-Shinbrot iterates obtained by setting FL
0 = ML and FU

0 =

MU satisfy the beginning condition (28) over [0, T). Moreover, the Kaniel-
Shinbrot Theorem (4) yields the unique mild solution F(v, x, t) of the initial-
value problem (1) for the Boltzmann equation that satisfies the bounds

ML(v, x, t) ≤ F(v, x, t) ≤ MU(v, x, t) over R
D× R

D× [0, T) .

(30)



Proposition 5 requires us to find local Maxwellians ML and MU that meet
criterion (29) for some T ∈ (0,∞]. When ML > 0 this criterion may be
recast as
(

∂t + v ·∇x

)

log
(

MU
)

≥ A
(

MU − ML
)

over R
D× R

D× [0, T) ,

−
(

∂t + v ·∇x

)

log
(

ML
)

≥ A
(

MU − ML
)

over R
D× R

D× [0, T) ,

(31a)

ML
∣

∣

∣

t=0
≤ MU

∣

∣

∣

t=0
over R

D× R
D . (31b)

When ML = 0 criterion (29) reduces to simply
(

∂t + v ·∇x

)

log(MU) ≥ A
(

MU
)

over R
D× R

D× [0, T) . (32)

We will construct such local Maxwellians from the global Maxwellians given
by (14). When we can do this with T = ∞, the Kaniel-Shinbrot theorem
will yield global solutions.



Building Local Maxwellians from Global Ones

Let M1 and M2 be global Maxwellians in the form (14) that are given
by parameters (m1, a1, b1, c1, B1) ∈ R+ × Ω and (m2, a2, b2, c2, B2) ∈
R+ × Ω respectively, and that satisfy M1 ≤ M2 for every (v, x, t). Set

Q1 = (a1c1 − b2
1 )I + B 2

1 , Q2 = (a2c2 − b2
2 )I + B 2

2 ,

q1(v, x, t) =
1

2

(

v
x − vt

)T (
c1I b1I + B1

b1I − B1 a1I

)(

v
x − vt

)

.

q2(v, x, t) =
1

2

(

v
x − vt

)T (
c2I b2I + B2

b2I − B2 a2I

)(

v
x − vt

)

,

(33)

so that

Mi =
mi

(2π)D

√

det(Qi) exp
(

− qi(v, x, t)
)

.

Because M1 ≤ M2, we know that q1(v, x, t) ≥ q2(v, x, t).



We will construct local Maxwellians MU and ML in the form

MU(v, x, t) = γ(t)
m2

(2π)D

√

det(Q2) exp

(

−q2(v, x, t)

η(t)

)

, (34a)

ML(v, x, t) =
1

γ(t)

m1

(2π)D

√

det(Q1) exp

(

−
(

2 − 1

η(t)

)

q1(v, x, t)

)

,

(34b)

where the functions γ(t) and η(t) satisfy

γ(0) = η(0) = 1 , γ′(t) > 0 , η′(t) ≥ 0 .



Clearly, inequality (31b) is satisfied because

ML
∣

∣

∣

t=0
= M1

∣

∣

∣

t=0
≤ M2

∣

∣

∣

t=0
= MU

∣

∣

∣

t=0
.

Because (∂t + v ·∇x)q2(v, x, t) = (∂t + v ·∇x)q1(v, x, t) = 0, a direct
calculation from (34) yields

(

∂t + v ·∇x

)

log
(

MU
)

=
γ′(t)
γ(t)

+
η′(t)
η(t)

q2(v, x, t)

η(t)
,

−
(

∂t + v ·∇x

)

log
(

ML
)

=
γ′(t)
γ(t)

+
η′(t)
η(t)

q1(v, x, t)

η(t)
.



Because q1(v, x, t) ≥ q2(v, x, t), we see that

−
(

∂t + v ·∇x

)

log
(

ML
)

≥
(

∂t + v ·∇x

)

log
(

MU
)

,

therefore criterion (31) will be satisfied if

γ′(t)
γ(t)

+
η′(t)
η(t)

q2(v, x, t)

η(t)
≥ A

(

MU − ML
)

. (35)

Similarly, if ML = 0 while MU is given by (34a) then criterion (32) will be
satisfied if

γ′(t)
γ(t)

+
η′(t)
η(t)

q2(v, x, t)

η(t)
≥ A

(

MU
)

. (36)

This extends the basic inequality derived in Kaniel-Shinbrot (1978) to a
more general class of local Maxwellians. We can treat criterion (36) as
criterion (35) with ML = 0,



The right-hand sides of (35) and (36) contain expressions of the form
A(M) where M is some local Maxwellian. If ρ(x, t), u(x, t), and θ(x, t)
are the fluid variables associated with M then

A(M) =
∫∫

SD−1×RD
M∗ b(ω, v − v∗) dω dv∗

=
∥

∥

∥b̂

∥

∥

∥

L1(dω)

∫

RD
|v − v∗|β

ρ

(2πθ)
D
2

exp

(

−|v∗ − u|2
2θ

)

dv∗

= ρ θ
β
2 a

(

v − u√
θ

)

,

(37)

where the attenuation coefficient a(w) is defined by

a(w) =
∥

∥

∥b̂

∥

∥

∥

L1(dω)

1

(2π)
D
2

∫

RD
|w − w∗|β exp

(

−1
2|w∗|2

)

dw∗ . (38)

By rotation invariance a(w) is a function of only |w|. It is bounded when
β ∈ (−D,0], and unbounded when β ∈ (0,2]. This fundamental differ-
ence requires a different analysis for each of these cases.



Soft and Maxwell Cases

We now complete the foregoing construction of for cases when the colli-
sion kernel has the separable form (4) with β ∈ (−D,0]. In other words,
for cases when the kernel arises from either soft or Maxwell potentials.
Because (38) shows the right-hand sides of (35) and (36) are bounded
functions of v when β ∈ (−D,0], we take η(t) = 1 in the forms of MU

and ML given by (34). Criterion (35) then reduces to

γ′(t)
γ(t)

≥ A
(

MU − ML
)

, γ(0) = 1 . (39)

Below we show how this criterion can be met in certain cases.



Near Vacuum Case

The easiest case to treat is when the lower bound is the vacuum.

Proposition 6 Let M be the global Maxwellian in the form (14) given by
m > 0 and (a, b, c, B) ∈ Ω. Let F in(v, x) be any initial data such that

0 ≤ F in(v, x) ≤ M(v, x,0) over R
D× R

D . (40)

Let β ∈ (−D,0]. Let

N(t) = ‖a‖L∞(dw)

√

det
(

1
2π Q

)

∫ t

0
θ(s)

D+β
2 ds , (41)

where Q = (ac − b2)I + B2 and θ(t) is given by (15).



Then there exists a mild solution F(v, x, t) to the Cauchy problem (1) for
the Boltzmann equation over [0, T) that satisfies the bounds

0 ≤ F(v, x, t) ≤ γ(t)M(v, x, t) over R
D× R

D × [0, T) , (42)

where

γ(t) =
1

1 − mN(t)
over [0, T) , T = sup{t > 0 : mN(t) < 1} .

(43)
In particular, this solution is global when β ∈ (1 − D,0] and

m N∞ ≤ 1 , where N∞ = lim
t→∞

N(t) . (44)

and is globally bounded by a global Maxwellian when strict inequality holds.

Remark. The local result above is in the spirit of Kaniel and Shinbrot
(1978), while the global result is in the spirit of Illner and Shinbrot (1984).
The bounds obtained here are different because of our use of the global
Maxwellian family (14).



Near Global Maxwellian Case

The next easiest case to treat is when the lower and upper bounds are
proportional to the same global Maxwellian.

Proposition 7 Let M(t) be the global Maxwellian in the form (14) given
by m = 1 and some (a, b, c, B) ∈ Ω. Let m2 > m1 > 0. Let F in(v, x)

be any initial data such that

m1M(v, x,0) ≤ F in(v, x) ≤ m2M(v, x,0) over R
D× R

D . (45)

Let β ∈ (−D,0]. Let N(t) be given by (41). Let γmn =
√

m1/m2.



Then there exists a mild solution F(v, x, t) to the Cauchy problem (1) for
the Boltzmann equation over [0, T) that satisfies the bounds

m1

γ(t)
M(v, x, t) ≤ F(v, x, t) ≤ γ(t)m2M(v, x, t) (46)

over RD× RD × [0, T), where

γ(t) = γmn
1 + γmn + (1 − γmn)e2γmnm2N(t)

1 + γmn − (1 − γmn)e2γmnm2N(t)
over [0, T) ,

T = sup{t > 0 : (1 − γmn)e
2γmnm2N(t) < 1 + γmn} .

(47)



In particular, this solution is global when β ∈ (1 − D,0] and

m2 N∞ ≤ 1

2γmn
log

(

1 + γmn

1 − γmn

)

, where N∞ = lim
t→∞

N(t) , (48)

and is globally bounded by a global Maxwellian when strict inequality holds
in (48).

Remark. Condition (48) yields global solutions with larger mass by picking
γmn closer to 1.

Remark. This result is in the spirit of Toscani (1988). The bounds obtained
here are different because of our use of the global Maxwellian family (14).
In particular, we can treat initial data with significant rotation that are ex-
cluded earlier.



Hard and Super-Hard Cases

We now complete the foregoing construction for cases when the collision
kernel has the separable form (4) with β ∈ (0,2]. Such kernels arise from
hard potentials when β ∈ (0,1), and from hard spheres when β = 1.
When β ∈ (1,2] the kernel is said to be super-hard. The super-hard case
has only theoretical interest. We will only treat the near vacuum case.



Proposition 8 Let M be the global Maxwellian in the form (14) given by
m > 0 and (a, b, c, B) ∈ Ω, so that

M(v, x, t) =
m

(2π)D

√

det(Q) exp
(

− q(v, x, t)
)

,

Q = (ac − b2)I + B2 ,

q(v, x, t) =
1

2

(

v
x − vt

)T (
cI bI + B

bI − B aI

)(

v
x − vt

)

.

(49)

Let F in(v, x) be any initial data such that

0 ≤ F in(v, x) ≤ M(v, x,0) over R
D× R

D . (50)

Let β ∈ (0,2] and

N(t) = m

√

det
(

1
2π Q

) ∥

∥

∥b̂

∥

∥

∥

L1(dω)

∫ t

0

(

1

as2 − 2bs + c

)

D+β
2

ds . (51)



Then there exists a mild solution F(v, x, t) to the Cauchy problem for the
Boltzmann equation over [0, T) that satisfies the bounds

0 ≤ F(v, x, t) ≤ γ(t)
m

(2π)D

√

det(Q) exp

(

−q(v, x, t)

η(t)

)

(52)

over RD× RD × [0, T), where

γ(t) =

(

1 − N(t)

τ

)−µ

, η(t) =

(

1 − N(t)

τ

)−ν

, (53a)

µ = 1 − β

2

D + β

2D + β
, ν =

β

2D + β
, τ = (2D + β)−

β
2 , (53b)

T = sup{t > 0 : N(t) < τ} . (53c)



In particular, this solution is global when

N∞ ≤ τ , where N∞ = lim
t→∞

N(t) , (54)

and is globally bounded by a global Maxwellian when strict inequality holds.

Remark. The local result above is in the spirit of Kaniel and Shinbrot
(1978), while the global result is in the spirit of Illner and Shinbrot (1984).
The bounds obtained here are different because of our use of the global
Maxwellian family (14) and because we employ a sharper bound on the at-
tenuation coefficient. If we set β = 0 into the results here they are identical
to those of Proposition 6 for Maxwell case.



4. Long-Time Behavior of Global Solutions

We begin with a rough L1 stability estimate on the collision operator.

Lemma. 9 Let the collision kernel b have the separated form (4) for some
β ∈ (−D,2]. Let M be the global Maxwellian given by (14) for some
(m, a, b, c, B) ∈ R+× Ω. Let F be any measurable function that satisfies
the pointwise bounds

0 ≤ F(v, x, t) ≤ M(v, x, t) over R
D× R

D× [0,∞) for some s ∈ R .

(55)
Then for every [t1, t2] ⊂ [0,∞) one has the L1-bound
∫ t2

t1

∫∫∫∫

∣

∣

∣F ′
∗F

′ − F∗F
∣

∣

∣ bdω dv∗ dv dxdt ≤ C1

∫ t2

t1
θ(t)

β+D
2 dt , (56)

where C1 is a constant and θ(t) is given by (15). Here all four-fold integrals
are understood to be taken over the domain SD−1× RD× RD× RD.



An immediate consequence of the foregoing lemma is the following.

Proposition 10 Let the collision kernel have the separated form (4) for
some β ∈ (1 − D,2]. Let F(v, x, t) satisfy the hypotheses of Lemma 9.
Then

∫ ∞

0

∥

∥

∥B(F, F)
∥

∥

∥

L1(dv dx)
dt < ∞ . (57)



Scattering for Boltzmann Solutions

The advection operator A = −v ·∇x generates the group etA that acts on
every function F in that is defined almost everywhere by the formula

etAF in(v, x) = F in(v, x − vt) .

When F in is locally integrable then F = etAF in is the unique distribution
solution of the initial-value problem

∂tF + v ·∇xF = 0 , F
∣

∣

∣

t=0
= F in . (58)

The main result of this section states that certain global solutions of the
Cauchy problem for the Boltzmann equation will behave like solutions of
(58) as t → ∞. This kind of large-time asymptotic result is often called a
scattering result.



Theorem. 11 Let the collision kernel b have the separated form (4) for
some β ∈ (1−D,2]. Let F(v, x, t) be a global mild solution of the Cauchy
problem (1) for the Boltzmann equation that also satisfies the hypotheses
of Lemma 9. There exists a unique F∞(v, x) such that

lim
t→∞

∥

∥

∥F(t) − etAF∞∥∥
∥

L1(dv dx)
= 0 , (59)

and F∞ satisfies the bounds

0 ≤ F∞(v, x) ≤ M(v, x,0) almost everywhere over R
D× R

D .

(60)



Proof. The fact that F is a global mild solution of the Cauchy problem for
the Boltzmann equation means that for every t ∈ [0,∞)

F(t) = etAF in +

∫ t

0
e(t−t′)AB(F(t′), F(t′)) dt′ . (61)

Because β ∈ (1 − D,2] while F satisfies the hypotheses of Lemma 9,
Proposition 10 implies that

∫ ∞

0

∥

∥

∥e−t′AB(F(t′), F(t′))‖L1(dv dx) dt′

=

∫ ∞

0

∥

∥

∥B(F(t′), F(t′))‖L1(dv dx) dt′ < ∞ .
(62)

This implies (by the Cauchy criterion for families) that

lim
t→∞

∫ t

0
e−t′AB(F(t′), F(t′)) dt′ exists in L1(dv dx) .



We then define F∞ ∈ L1(dv dx) by

F∞ = F in +
∫ ∞

0
e−t′AB(F(t′), F(t′)) dt′ . (63)

Upon solving this relationship for F in and placing the result into (61), we
find that

F(t) = etAF∞ −
∫ ∞

t
e(t−t′)AB(F(t′), F(t′)) dt′ . (64)

Because e(t−t′)A is an isometry in L1(dv dx) we see that
∥

∥

∥F(t) − etAF∞∥∥
∥

L1(dv dx)
≤
∫ ∞

t

∥

∥

∥B(F(t′), F(t′))
∥

∥

∥

L1(dv dx)
dt′ .

But the right-hand side above vanishes as t → ∞ by (62), whereby limit
(59) is established.



Because by hypothesis 0 ≤ F(v, x, t) ≤ M(v, x, t), it follows that

0 ≤ e−tAF(v, x, t) ≤ e−tAM(v, x, t) = M(v, x,0) over R
D× R

D .

By passing to the limit as t → ∞ in these inequalities, we obtain

0 ≤ F∞(v, x) = lim
t→∞

e−tAF(v, x, t) ≤ M(v, x,0)

almost everywhere over RD× RD. This establishes bound (60), and thereby
completes our proof. �



5. Conclusion

At this point we have been unable to show that F∞ is a global Maxwellian.
If it were, and we could show that it has the same values for its formally
conserved quantities as F in, then F∞ would be uniquely determined by
the values of those quantities.

This is on-going work.

Thank You!


