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Operator learning in a nutshell

Operator between function spaces. & : & — ¥
Approx. & by building a parametric map f';p@
F5.Cy=Qo0(H;)o - o0(H,) o P

Decoder \ Encoder
Nonlinear

activation

_[__ :
unction (%IV)(X) — [ Kl(x’ y)v(y)dy + bl(x)

D,

Want to find 6 such that & ~ ?9 in some sense.

FNO, GNO [Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, Stuart, & Anandkumar, 20],

MeNO [He, Liu, Xu 23], DeepGreen [Gin, Shea, Brunton & Kutz, 2 1], DeepONet [Lu, Jin & Karniadakis, |9]
|IAE-net [Ong, Shen, Yang, 2022], DIMON [Yin, Charon, Brody, Lu, Trayanova, Maggioni, 2024]
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Neural operator learning

Usually, we collect input-output data {f;, €(f) }].\;1 and try to solve

mf—z 1€ — CoHI,

Questions:

What are the &'s of interest?
How big does N need to be for a certain accuracy!?

It NV is big enough, then how do | generate the f:s?
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Testing error

Data-efficient solution operator learning

2D Poisson equation

Viu=f, =0

i1

Accuracy of the approx. solution operator__ | | ,
Training pairs
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We can recover a symmetric low-rank matrix with matrix-vector products v = Av:

Randomized SVD:

@
/=AY

Input-output data

.
h
.'i.-

Tall-skinny Gaussian matrix
with 1id indep. entries

[Halko, Martinsson, & Tropp, 201 1], [Martinsson & Tropp, 2020]
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O = orth(Z)
orthonormal basis
for col(Z)

A, = Q0*A

Theorem (Halko, Martinsson, Tropp, 2011).

We can construct an approximation A, of A from k+5
random input vectors such that

P [HA _ Allr < (1 +15VE+ 5)ek] > .99

Relative error
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Standard Gaussian vectors Correlated Gaussian vectors

s R andomized SVD
= Prior covariance
25 = Best approximation

Theorem [Boullé &T., 2021]

We can construct an approximation A, of A from k+5
correlated random Iinput vectors such that

P[4 - Aelle < (1+18Vk/w)ex | > 0.999

Error / Best approximation error

J
0 500 1,000 1.500 2,000

Number of samples



Randomized SVD for Green's functions

We can learn kernel in a self-adjoint HS integral operator f — | G(x, y)f(y)dy:
JO

Randomized SVD for HS operators:

10



Randomized SVD for Green's functions

We can learn kernel in a self-adjoint HS integral operator f — | G(x, y)f(y)dy:
JO

Randomized SVD for HS operators:

@ QX (k+5)

Y =

Cols are drawn from
Gaussian process GP(0,C)

10



Randomized SVD for Green's functions

We can learn kernel in a self-adjoint HS integral operator f — | G(x, y)f(y)dy:
JO

Randomized SVD for HS operators:
QX (k+5)

|

=

»

Y =

Cols are drawn from
Gaussian process GP(0,C)

10



Randomized SVD for Green's functions

We can learn kernel in a self-adjoint HS integral operator f — | G(x, y)f(y)dy:
JO

Randomized SVD for HS operators:
QX (k+5)

A »\N \&

Cols are dravvn from
Gaussian process GP(0,C)

10



Randomized SVD for Green's functions

We can learn kernel in a self-adjoint HS integral operator f — | G(x, y)f(y)dy:
JO

Randomized SVD for HS operators:
QX (k+5)

‘i ﬂ'ﬂ d

Cols are dravvn from
Gaussian process GP(0,C)

10



Randomized SVD for Green's functions

We can learn kernel in a self-adjoint HS integral operator f — | G(x, y)f(y)dy:
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Randomized SVD for Green's functions

We can learn kernel in a self-adjoint HS integral operator f +—

G(x, y)f(y)dy:
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€, decays very
slowly with k

JO
Randomized SVD for HS operators:
QX (k+)5) @ @
- ‘i {‘w‘ = orthonormal basis
Input-output data for col(Z)
Cols are dravvn from "G, = Q0*G”
Gaussian process GP(0,C)

Theorem [Boullé &T, 2022] Problem:
We can construct an approximation G, of G from k+5 Green’s fUﬂCtiOﬂS typmally dO not
cliveipidatyneddisyf Suegtel have rapidly decaying singular values.
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Green’s functions are low rank on separated blocks

One dimension Three dimensions

g

4
4

Low-rank structure on well

Very slow decaying Rapidly decaying separated domains.
. : [Bebendorf, Hackbush, 2003]
singular values singular values

Hierarchical structure

X

Level 2 Level 3 Level 4

Related approaches for matrices:
[Martinsson, 2008], [Lin, Lu, & Ying, 2010],
[Martinsson, 2016], [Levitt & Martinsson, 2022]




Off-diagonal decay

Green’s function of the Laplace

Green’s functions are smooth and
operator:

VQ . f decay off the diagonal. (Griter, widman, 1982]
G -
Ly Y) >
0.25 |z—y|
[ (for 3D elliptic PDEs)
- 0.20
= (.15 _ .
Hierarchical structure
- 0.10
0.05 Level 2 Level 3 Level 4
0.00

0.00 0.25 0.50 0.75 1.00
X

9)

(Pictures are in | D for illustration purposes.)
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Solution operators for | D hyperbolic PDEs have
Green’s functions with jumps along characteristics.
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Green’s function
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Using input-output data to:

2D slice through the 4D |. Adaptively partition domain to
Isolate characteristics in tiny regions

2. Recover Green's function off the

Chris Wang



Green’s function recovery

Theorem: [Boulé &T, 20217 [Boullé, Kim, Tianyi & T, 2022], [Roullé, Hailikas & T, 2023] [Wang &T, 2024]

There is a randomized algorithm that, for any € > 0, can construct an
approx. G of G for PDE class with 2 input-output pairs
(f;» u;) such that

|G - GA”LP < ellGllL
with high probability.

PDE class i p
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(and uni. self-adjoint elliptic in d > 4.)
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Quality of training data

In our theoretical results, I, is a measure of the quality of the training data.

Theorem

We can construct an approximation G, of G from k+5
random input functions f such that

PG~ Gulx <O (VI ) |

Definition: e = k/(ATr(C™1))

¢ L B@E () dedy

where v; is the ith right singular vectors of G.

15

f~GP(0, K)

where K (x, y) is the covariance kernel

e 0 -1

« We can impose prior knowledge on
the covariance kernel

« EXxplicit bounds for the covariance
quality factor are available



Operator learning without the adjoint

Question:

Can operator learning be data-efficient with only input-output {f;, ?(fi)}ﬁ.il data?

16



Operator learning with and without the adjoint

Consider

1
(€f) = J G(x, y)f(y)dy, where G is a |-Lipschitz smooth function

0
..and G(x,y) = g(x)h(y)

17



Operator learning with and without the adjoint

Consider

1
(€f) = J G(x, y)f(y)dy, where G is a |-Lipschitz smooth function

0
..and G(x,y) = g(x)h(y)

1
Then, (f)x) = (J h(y)f(y)dy) g(x)
0

17



Operator learning with and without the adjoint

Consider

1
(€f) = J G(x, y)f(y)dy, where G is a |-Lipschitz smooth function

0
..and G(x,y) = g)h(y)
1
Then, (€f)(x) = (J h(y)f(y)dy) g(x)
0

1
The adjoint is (£*)(x) = (J g(y)f(y)dy) h(x)
0

17



Operator learning with and without the adjoint

Consider

1
(€f) = J G(x, y)f(y)dy, where G is a |-Lipschitz smooth function

0
..and G(x,y) = g)h(y)
1
Then, (€f)(x) = (J h(y)f(y)dy) g(x)
0

1
The adjoint is (£*)(x) = (J g(y)f(y)dy) h(x)
0

Training dataset size
to achieve € accuracy

17



Operator learning with and without the adjoint

Consider

1
(€f) = J G(x, y)f(y)dy, where G is a |-Lipschitz smooth function

0
..and G(x,y) = g)h(y)
1
Then, (€f)(x) = (J h(y)f(y)dy) g(x)
0

1
The adjoint is (£*)(x) = (J g(y)f(y)dy) h(x)
0

With the adjoint Without the adjoint

Training dataset size
to achieve € accuracy

17



Operator learning with and without the adjoint

Consider

1
(€f) = J G(x, y)f(y)dy, where G is a |-Lipschitz smooth function

0
..and G(x,y) = g(x)h(y)

1
Then, (€f)(x) = (J h(y)f(y)dy) g(x)

0

1
The adjoint is (£*)(x) = (J g(y)f(y)dy) h(x)

0

With the adjoint Without the adjoint

Training dataset size

to achieve € accuracy O(1)

Input-output pairs

17



Operator learning with and without the adjoint

Consider

1
(€f) = J G(x, y)f(y)dy, where G is a |-Lipschitz smooth function

0
..and G(x,y) = g(x)h(y)

1
Then, (€f)(x) = (J h(y)f(y)dy) g(x)

0

1
The adjoint is (£*)(x) = (J g(y)f(y)dy) h(x)

0

With the adjoint Without the adjoint
Training dataset size
to achieve € accuracy O(1) | Ol/e)
Input-output pairs Input-output pairs
[Halikias & T., 22]

17



The adjoint mystery

[Boullé, Halikias, Otto & 1., 2024], [Levitt & Martinsson, 2024]

Forcing terms: IV input-output functions drawn from a Gaussian process.

——+4+c—=f, u0)=u(1)=0, =zel0,1].
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Summary

1. Theory for learning Green’s functions

tu=-v-(A@ve) [P

| O |
| I I
| =
2. Generalization of the randomized SVD

&W[\Wp\z“ﬂ/w S

Can operator learning be data-efficient with only input-output {f;, cﬁ(fi)}fil data?

Question:
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