Mining large graphs

AMSC808N/CMSC828V

References

- David F. Gleich and Michael W. Mahoney, Mining large graphs, Handbook of Big Data, Handbooks of modern statistical methods, 2016
- Sergey Brin and Lawrence Page, The anatomy of a largescale hyper textual Web search engine, Computer Networks and ISDN Systems 30 (1998) 107—117
- L. Page, S. Brin, R. Motwani, and T. Winograd, The PageRank citation ranking: Bringing order to the web, Technical report 1999-66, Stanford University, 1999

Sizes of LARGE graphs

Already outdated but gives some idea

- Google (2008): indexed over 10¹² URLs
- Facebook (2012): 721*10⁶ individuals and 137*10⁹ links
- Phone companies (2013) process a few trillion calls a year
- The human brain (2011) has around 100*10⁹ and 100*10¹² neuronal connections

Graph representations

- Edge list
- Adjacency list

Graph mining tasks

- Random walk steps (e.g. to extract a massive graph nearby the seed) O(1)
- Connected components O(n)
- PageRank determine importance of nodes O(n)
- Effective diameter (mean shortest path or longest shortest path to connect 90% of possible node pairs) O(n)
- Extremal eigenvalues of graph Laplacian (the first eigenvector helps to split the graph) O(n log n)
- Triangle counting (detect interesting groups) O(n^{3/2})
- All-pairs problems O(n³) time and O(n²) memory

Classification of large graphs

Graphs are sparse: the number of edges O(n)

- Small graphs (< 10⁴ vertices) all algorithms are feasible
- large Small graphs (10^4 — 10^6 vertices) O(n^2) in time is fine but O(n^2) in memory may be prohibitive
- small Large graphs (10⁶—10⁸ vertices) O(n²) is prohibitive without specialized computing resources
- Large graphs (10⁸—10¹⁰ vertices)
- LARGE graphs (> 10¹⁰ vertices)

Sources for graph data

- https://snap.stanford.edu/data/index.html
- http://law.di.unimi.it/datasets.php
- http://www.lemurproject.org/clueweb12/webgraph.php/
- https://sparse.tamu.edu

The PageRank

We are interested at backlinks of the page

The PageRank

Definition. Let E(u) be some vector over the Web pages that corresponds to a source of rank. Then, the PageRank of a set of Web pages is an assignment, R', to the Web pages which satisfies

$$R'(u) = c \sum_{v \in B_u} \frac{R'(v)}{N_v} + cE(u)$$

Such that c is maximized and $||R'||_1 = 1$.

Eigenvalue problem:

$$R' = c(A + E1^{\top})R'$$

Computing PageRank

 $R_0 = \text{an initial guess for the rank vector}$ $\mathbf{while} \ \delta > \epsilon$ $R_{j+1} = AR_j$ $d = \|R_j\|_1 - \|R_{j+1}\|_1$ $R_{j+1} = R_{j+1} + dE$ $\delta = \|R_{j+1} - R_j\|_1$ end

Convergence of PageRank Computation

Choosing source vector E

- E is uniform. Problem: sites like highly interlinked mailing lists archives receive overly high ranking.
- E is personalized: E(u) > 0 only for one page, e.g. user's personal web page.
- A compromise: E consists of all root-level pages of all web servers.

Connections, Library...

http://www.sau.edu/ - size 2K - 4 Feb 97

University of Washington ECSEL Projects

next 10

Northwestern University: NUInfo

http://www.nwu.edu/ 66.15% 3% - 12/14/96 - 01/05/97

Web Page	PageRank (average is 1.0)
Download Netscape Software	11589.00
http://www.w3.org/	10717.70
Welcome to Netscape	8673.51
Point: It's What You're Searching For	7930.92
Web-Counter Home Page	7254.97
The Blue Ribbon Campaign for Online Free Speech	7010.39
CERN Welcome	6562.49
Yahoo!	6561.80
Welcome to Netscape	6203.47
Wusage 4.1: A Usage Statistics System For Web Servers	5963.27
The World Wide Web Consortium (W3C)	5672.21
Lycos, Inc. Home Page	4683.31
Starting Point	4501.98
Welcome to Magellan!	3866.82
Oracle Corporation	3587.63

Table 1: Top 15 Page Ranks: July 1996