Vv

VANDERBILT
UNIVERSITY

Geometric Aspects of a Fluid Model for Electrons

Team: Dennis Corraliza (dcorraliza@knights.ucf.edu), Shivam Mohite (shivam.j.mohite@vanderbilt.edu)

Advisor: Dr. Dionisios Margetis (diom@umd.edu)

Dyakonov-Shur Model: Microstrip Geometry

Background: The original Dyakonov-Shur paper from 1993 described
the fluid-like behavior of electron flow in microdevices. With current

technological trends causing devices to become thinner and smaller,
there is interest in understanding how electrons behave in 2-
dimensional materials like graphene. We are primarily interested in
how instability may arise in the system. Instability is interesting

because it makes the system easier to observe.

Model Assumptions:
e U;(x) KU, @1(x) K D
 Ansatz Solutions
o U(x,t) =Ui(x)e @t + U,
o (Uv)(x,t) = P(x,t) = D;(x)e @t + b,
Partial Differential Equations:
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Continuity Equation: v L 0
Alpha Parameter Boundary Condition: In the
original model, we find instability in the N |

subsonic regime (v, < s) and stability in the ..\

Electron fluid
U= U, = const. v = $y = Uy = const.
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Fig. 1: The geometry and boundary conditions
descnbed by Dyakonov, Shur
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supersonic regime (v, > s). This behavior is

Subsonic Regime

swapped when the constant boundary

UO<S

conditions are swapped. We introduce the .« S

parameter a to examine how the instability

criteria changes when we mix the two
boundary conditions. This is accomplished by
taking a convex combination of the flux and

electrostatic potential at both boundaries:
c (1—-—a)vyU(0,t) + ad(0,t) = P,
o avoU(L,t) + (1 —a)P(L,t) = D,

Figure 2: Phase diagram showing regions of stability for the system

Robin Conditions: The second set of new boundary conditions we imposed on the system were Robin
Conditions, which involved a new “impedance” term applied only to the left boundary (e.g. the left

boundary condition became U(x,t) + Z aU;i £
yielded the following value for w:
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which tells us that the introduction of the Robin Condition had the same effect on the instability
criterion of the system as a renormalization of the length scale for the microstrip.
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= U,). By perturbation in Z, we found that this condition

The Annulus Problem: Effect of Curvature

Background: The microstrip electron flow model focused on a geometry without curvature. Next, we
introduced curvature by looking at an annulus. This systems maintains the 2 boundary conditions and a
one-dimensional motion for the flow. We want to find how the instability or stability criterion for this
system.

Yo = PoVyq

Model Assumptions:

* Electron flow is rotationally symmetric

* Y(r,t) = pvi(r, t)

* U(r,t) = Cp(r,t)

 Ansatz Solution:
s Y(r,t) = W (r)e ' ® + Y (1), ¥, KWV,
« U(r,t) = U;(n)e '@t + Ul (r), U; K U,

Equations of Motion for Radial Coordinate System:

ov 10v Z e dU Figure 1: Geometry of the Annulus
Euler Equation: — + — L with the boundary conditions.
ot 2 or m Or
o _ dp 10 e dU Boundary Conditions:
Continuity Equation: F -+ P (rpv,) = i U(a,t) =U, W(bt) =",

Steady State Solutions of the System: The steady state
equations can be represented as the following:
* Electrostatic Potential:

o Uq(r) = UTO}\ [2 COS (Hg)) + 1], '

27 A-1 (a)?
0(r) =1—-"-73 (?)
* Velocity Flux:

« Yi(r) = %1/10

Transient State Formulation of the System: The
partial differential equations were linearized
around e ~'?t of the Ansatz solution. Then, the
equations where decoupled and simplified to
canonical form, where ¥; » Y.
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Figure 2: Electrostatic Potential for different values of g.
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Conclusion: The annulus problem shows the steady state terms are functions of the radius. Applying the
limit for the unsteady state as € = 0 returns the original model. Finally, after solving the system with
either the WKB Method or Aireys functions, we expect the instability or stability to depend on the
curvature ¢ of the geometry normalizing the initial velocity of the flow.
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