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The Annulus Problem: Effect of Curvature
Background: The microstrip electron flow model focused on a geometry without curvature. Next, we 
introduced curvature by looking at an annulus. This systems maintains the 2 boundary conditions and a
one-dimensional motion for the flow. We want to find how the instability or stability criterion for this 
system.

Equations of Motion for Radial Coordinate System:

Euler Equation:
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Continuity Equation:
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Model Assumptions:
• Electron flow is rotationally symmetric
• Ψ r, t = ρvr r, t
• U r, t ≅ Cρ r, t
• Ansatz Solution:

• Ψ r, t = Ψ1 r e−iωt + Ψs r , Ψ1 ≪ Ψ𝑠

• U r, t = U1 r e−iωt + Us r , 𝑈1 ≪ 𝑈𝑠

Steady State Solutions of the System: The steady state 
equations can be represented as the following:
• Electrostatic Potential:

• Us r =
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• Velocity Flux:

• Ψs r =
b

r
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• 𝑌"(𝑥) + 𝑉(𝜀𝑥)𝑌(𝑥) = 0
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Conclusion: The annulus problem shows the steady state terms are functions of the radius. Applying the 
limit for the unsteady state as 𝜀 → 0 returns the original model. Finally, after solving the system with 
either the WKB Method or Aireys functions, we expect the instability or stability to depend on the 
curvature 𝜀 of the geometry normalizing the initial velocity of the flow.

Boundary Conditions:

𝑈 𝑎, 𝑡 = 𝑈0 Ψ 𝑏, 𝑡 = Ψ0

             

              

             

              

             

                  

              

  
  
 

 
  

  
  
 
 
  
  
  
  
  
  
  
 
  
  
 
 
  
 
  
 
  
  
 

                                                      

     
                                  

      
            

          

            

            

             

             

            

             

             

                  

             

  
  
 

 
  

  
  
 
 
  
  
  
  
  
  
  
 
  
  
 
 
  
 
  
 
  
  
 

                                                      

     
                                  

      
          

          

            

            

Figure 2: Electrostatic Potential for different values of  
𝑏

𝑎
.

Figure 1: Geometry of the Annulus 
with the boundary conditions.

Subsonic Regime
𝑣0 < 𝑠

Dyakonov-Shur Model: Microstrip Geometry

Background: The original Dyakonov-Shur paper from 1993 described 
the fluid-like behavior of electron flow in microdevices. With current 
technological trends causing devices to become thinner and smaller, 
there is interest in understanding how electrons behave in 2-
dimensional materials like graphene. We are primarily interested in 
how instability may arise in the system. Instability is interesting 
because it makes the system easier to observe.

Partial Differential Equations: 

• Euler (Momentum) Equation: 
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• Continuity Equation: 
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Model Assumptions: 
• 𝑈1 𝑥 ≪ 𝑈𝑠, Φ1 𝑥 ≪ Φ𝑠

• Ansatz Solutions
• 𝑈 𝑥, 𝑡 = 𝑈1 𝑥 𝑒−𝑖𝜔𝑡 + 𝑈𝑠

• 𝑈𝑣 𝑥, 𝑡 = Φ 𝑥, 𝑡 = Φ1 𝑥 𝑒−𝑖𝜔𝑡 + Φ𝑠

Alpha Parameter Boundary Condition: In the 
original model, we find instability in the 
subsonic regime (𝑣0 < 𝑠) and stability in the 
supersonic regime (𝑣0 > 𝑠). This behavior is 
swapped when the constant boundary 
conditions are swapped. We introduce the 
parameter 𝛼 to examine how the instability 
criteria changes when we mix the two 
boundary conditions. This is accomplished by 
taking a convex combination of the flux and 
electrostatic potential at both boundaries:
• 1 − 𝛼 𝑣0𝑈 0, 𝑡 + 𝛼Φ 0, 𝑡 = Φ0

• 𝛼𝑣0𝑈 𝐿, 𝑡 + 1 − 𝛼 Φ 𝐿, 𝑡 = Φ0

Robin Conditions: The second set of new boundary conditions we imposed on the system were Robin 
Conditions, which involved a new “impedance” term applied only to the left boundary (e.g. the left 

boundary condition became 𝑈 𝑥, 𝑡 + 𝑍
𝜕𝑈(𝑥,𝑡)

𝜕𝑥
= 𝑈0). By perturbation in 𝑍, we found that this condition 

yielded the following value for ⍵:
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which tells us that the introduction of the Robin Condition had the same effect on the instability 
criterion of the system as a renormalization of the length scale for the microstrip.
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Figure 2: Phase diagram showing regions of stability for the system

Transient State Formulation of the System: The 
partial differential equations were linearized 
around 𝑒−𝑖𝜔𝑡 of the Ansatz solution. Then, the 
equations where decoupled and simplified to 
canonical form, where Ψ1 ↦ 𝑌.
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