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Transition Path Theory

Consider a system governed by overdamped Langevin Dynamics

dx = −∇V (x)dt +
√

2β−1dW

V (x) is a smooth potential, β ∝ 1
T , dW is Brownian noise

Figure 1. Attractors on Mueller

Potential Contour Map

The committor function q gives the

probability that a particle starting at x
arrives at attractor B before attractor A.

q satisfies the Boundary Value Problem:

β−1eβV ∇ · (e−βV ∇q) = 0, x ∈ Ω
q = 0, x ∈ ∂A
q = 1, x ∈ ∂B

The committor function is integral

to studying rare events in chemical

reactions and nonlinear oscillators.

Neural Networks

A neural network of L layers is a sequence of compositions of the form

N (x; θ) = σ ◦ LL ◦ · · · ◦ σ ◦ L1

L = Aφθ(x) + b, where φ is an operator with parameters θ, A is a

weight matrix, b are bias terms

σ is an nonlinear activation function (ReLU, tanh) applied pointwise

The size refers to the number of trainable parameters

the depth refers to the number of activation layers

Training a neural network refers to optimizing the values of A, φ, b for each
layer using a training set.

The model is then evaluated on a test set.

Project Objective

Adapt different neural network architectures to solve the committor

problem cheaper, faster, or more accurately than traditional finite

element methods (FEM).

Approach 1: Neural Operator

Typical solvers for the committor (FEM, PINNs) solve the committor for

one set of parameters (i.e. β)

In contrast, neural operators learn the solution operator, which allows

for quick computation of committors with different parameters

We use the Fourier Neural Operator (FNO) architecture, a highly

successful architecture that solves PDEs with high accuracy (Li et al.,

2021).

Architecture of Fourier Neural Operator

Given points of input functions aj (coefficients) and uj (solutions)

1. Projective layer P sends data aj → νt

2. Multiple Fourier Layers σ(Wνtx + F−1(F(Gθ · νt))) sends νt → νt+1
Apply Fast Fourier Transform F
Performs convolution in Fourier Space with Gθ

Weights and biases W, b are applied along with activation function σ
Inverse Fast Fourier transform F−1

3. Projective Layer Q sends νT to uj

Computational Result: Rugged Mueller Potential

A Fourier Neural Operator was trained on the committor for the

Rugged Mueller’s potential which includes a periodic term

The 3 parameters are β, γ (amplitude of noise), k (periodicity of noise)

which introduces computational difficulty in training

5500 epoch model test set error: MAE: 2.6e-5, weighted MAE: 4.9e-3

Figure 2. FNO evaluated Committor Figure 3. Error from FNO evaluation

Approach 2: Rational Activation Function

Main Idea: Choose σ(x) = P (x)
Q(x) =

∑rP
i=0 aixi∑rQ
j=0 bjxj

(rP > rQ, rP ≈ rQ + 1)

Benefits: ◦ Gradient does not tend to 0 as x → ±∞
◦ Gradient is non-zero for negative inputs (Boulle et al., 2020)

Preliminary Results for Mueller Potential

wMAE wMRSE

Tanh ReLU Rational Tanh ReLU Rational

3 L, 200 epochs 8.29e-3 5.65e-3 2.94e-3 2.04e-2 1.54e-2 5.92e-3

3 L, 1000 epochs 4.85e-4 9.51e-3 NaN* 6.86e-4 2.44e-2 NaN*

2 L, 1000 epochs

(Yuan et al.)

2.6e-3 N/A N/A 4.1e-3 N/A N/A

*Neural network parameters became NaN while training - addressing this issue has

proven challenging

Approximation Theory of Rationals

Definition: An ε-approximation of f : Rd → R over [−1, 1]d is a function,
f̃ , such that ‖f − f̃‖∞ ≤ ε

Novel Results: The size of an ε-approximation by a rational neural

network of a tanh neural network is bounded above by O(log(log(1
ε)))

*Result relies partially on a numeric step

Approach 3: Variational Physics Informed Neural
Network (VPINNs)

Main Idea: q satisfies a(q, v) =
∫

Ω e−βV ∇q · ∇v = 0 for all v ∈ V such

that V = {v : v|∂A∪∂B = 0} (Berrone et al., 2021)

T is a triangulation of Ω and {φi} ⊆ V are the basis functions for T
Let u be a solution to the boundary conditions and define

B : H1(Ω) → u + V as Bw = u + Φw, where Φ maps w into V

Train the neural network by minimizing R(w) =
∑

φi
a(Bw, φi)2

Current computational results have been inconclusive

Conclusion

Neural operators can achieve reasonable accuracy for committors

Rational neural networks can provide more accurate results than

traditional activation functions, but can be harder to train
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