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Introduction

Consider the Overdamped Langevin Dynamics dq = −∇V (q)dτ+
√

2β−1dWτ that models the

dynamics of particles in a potential force field, where q ∈ RD is the position of the particles,

V is the potential, β−1 is proportional to the temperature, and Wτ is the standard Wiener

process. Our goal is to find collective variables ξi(q) that approximate dynamics well, where

ξ : RD → Rd is the collective variable map we want to learn. The criterion we use to learn

ξ(q) is that its level sets are orthogonal to the manifold on which the dynamics lives.

Summary of Our Approach

Step 1 Target Measure Diffusion Map (finding 3 dominant eigenvectors and mapping

data points onto the eigenspace)

Step 2 Diffusion Net (using NNs to learn the mapping from data space to eigenspace)

Step 3 Learn Manifold on the Embedding Space using NNs

Step 4 Learn CVs that are Orthogonal to the Manifold

Step 5 Compute Transition Rates

Proposed Approach for Learning CVs and Testing Them

Step 1: Target Measure Diffusion Map[1]

Goal: Learn a low-dimensional embedding of the original high-dimensional data space.

Algorithm (given points {xi}ni=1):

Construct kernel matrix Kε where (Kε)ij = kε(xi, xj) = exp (−‖xi−xj‖2

ε )
Compute kernel density estimate qε(xi) =

∑n
j=1(Kε)ij

Construct diagonal matrix Dε,π where (Dε,π)ii = π1/2(xi)q−1
ε (xi)

Normalization: Kε,π = KεDε,π

Construct diagonal matrix D̃ε,π where (D̃ε,π)ii =
∑n

j=1(Kε,π)ij
Compute operator for the diffusion process Lε,π = 1

ε(D̃
−1
ε,πKε,π − I)

To project points from the original high-dimensional space RD to the low-dimensional em-

bedding space Rd, we take the first d eigenvectors of Lε,π. We denote the low-dimensional

embedding of each xi ∈ RD as Ψ(xi) ∈ Rm.

Step 2: Diffusion Net[2]

Goal: Learn a neural network (encoder) fe : RD → Rm that approximates the function from

the original high-dimensional data space to the low-dimensional embedding space given by

the Target Measure Diffusion Map. the neural fe, lets us perform out-of-sample extensions.

Training Input: {xi}ni=1 ∈ RD

Target: Ψ(xi) ∈ Rm

Loss Function:

L = θ1
2n

n∑
i=1

‖fe(xi) − Ψ(xi)‖2
2 + θ2

2

M−1∑
l=1

‖W (l)‖2
F

M : number of layers in the neural network

θ1, θ2: weights of mean-squared loss & regularization term, respectively, in the loss function.

Step 3: Learning the Manifold on Which the Dynamics Lives

Goal: We decompose our potential as V (x) = V0(x) + 1
εV1(x), where {x | V1(x) = 0} is the

manifold on which the dynamics of the system lives. In other words, V0, V1 are the potentials
of the ’fast’ & ’slow’ processes, respectively. We want to learn ψ : Rm → R such that

ψ2(f 1
e (x), ..., fme (x)) = 0 and hence our ‘fast’ process potential V1(x) ∼ ψ2(fe(x)).

Training Input: {fe(xi)}ni=1 ∈ Rm and regularization point cloud {dj}pj=1 ∈ Rm surrounding

{fe(xi)}ni=1
Loss Function:

L = θ1 ·
n∑
i=1

ψ2(fe(xi)) + θ2 ·
p∑
j=1

1
ψ2(dj)

θ1, θ2: weights of mean-squared loss for manifold points and point cloud, respectively, in the

loss function.

Step 4: Learn CVs[3]

Goal: We want to learn CVs ξi(x) by imposing the following conditions:

Orthogonality of CVs to V1 (the fast potential): ‖J(ξ)(x) · ∇V1(x)‖2
F = 0

Orthogonality of CVs to each other: ‖J(ξ)(x) · J(ξ)(x)T − I‖2
F = 0

Neural Network

Training Input: {xi}ni=1 ∈ RD

Loss Function:

L = θ1
2n

n∑
i=1

‖J(ξ)(xi) · ∇V1(xi)‖2
F + θ2

2n

n∑
i=1

‖J(ξ)(xi) · J(ξ)(xi)T − I‖2
F + θ3

2

M−1∑
l=1

‖W (l)‖2
F

M : number of layers in the neural network

θ1, θ2, θ3 : weights of the two orthogonality condition losses & the regularization term, re-

spectively, in the loss function

Step 5: Evaluating CVs[4]

Goal: We evaluate our learned CVs through computing the diffusion tensor, the free

energy, and approximating the backward Kolmogorov operator for our SDE. We run

dynamics (Euler-Maruyama) with a new potential using CVs to obtain points {ytk}nk=1 ∈ RD.

New Potential: U(y;κ, z) = V (y) +
∑d

i=1
κ
2(ξi(y) − zi)2, where κ is a large spring constant.

Dynamics for Computing the Diffusion Tensor: dy = −∇Udt +
√

2β−1dW

Diffusion TensorM(x) for x = ξ(y): Mij(x) = 1
n

∑n
k=1

∑D
l=1

∂ξi(ytk
)

∂yl

∂ξj(ytk
)

∂yl
, where yl are atomic

coordinates in the original data space

Free Energy: ∇F (x) = κ
n

∑n
k=1(x− ξ(yti))

SDE: dxt = (−M(xt)∇F (xt) + β−1∇ ·M(xt))dt +
√

2β−1M(xt)
1
2dW

Backward Kolmogorov Operator: Lf = β−1eβF∇ · (e−βFM∇f )
The dominant eigenvalues of L approximate the transition rates, which can be compared to

true rates to evaluate CVs (what we currently are working on).

Learning CVs for 2D Lennard-Jones System (LJ7)

Background

The 2D LJ7 system is 14-dimensional. There are 7 particles, each of which has two co-

ordinates (xi, yi), respectively. Existing literature has proposed two collective variables,

µ2(x1, y1, ..., x7, y7) and µ3(x1, y1, ..., x7, y7), corresponding to the second and third central mo-

ments of smooth functions approximating the number of nearest neighbors of particle i, to
represent the dynamics of the system. We aim to use our proposed approach to improve

upon existing CVs for the system.

The system has four distinct metastable states corresponding to four potential energy min-

ima: hexagon (purple), trapezoid (yellow), capped parallelogram 1 (bright green), and capped

parallelogram 2 (blue). The colors in brackets correspond to the colors of the four metastable

states, respectively, mapped in µ2 vs µ3 space, as shown on the right side of Figure 1 below.

Learned CVs

Following our approach aforementioned, we learned 2 CVs ξ(x)with ξ : R14 → R2. On the left
side of Figure 1, wemap data points {xi}ni=1 ∈ R14 in the 2DCVspace. The right side of Figure

1 is the reference figure for the colors of four metastable states in µ2 vs µ3 space. Notice that
the four metastable states are clearly separated by the 2CVs, while separate clusters with the

same color represent different particle configurations with the same metastable state.

Figure 1. 2D machine learned Collective Variables, ξ1 and ξ2, for LJ7

Figure 2. Encoder-Transformed Points Colored by ξ1 (CV1) and ξ2 (CV2), Respectively

In the above figure, we see that the coloring by ξ1 and ξ2 on the encoder transformed

manifold are approximately orthogonal to each other, satisfying one of the criteria of Step 4.

Learning CVs for the Butane System

We use the atomic coordinates of the 4 carbon atoms as input, x ∈ R12, obtained through

enhanced sampling methods (metadynamics, delta-net) using the openMM library.

Physically motivated CVs The dihedral angle of the butane system is considered a represen-

tative 1D collective variable. We use this to visual validation our machine learned CVs.

CV dimensions : The manifold obtained in step 3 suggests that the dynamics of the system

are represented by a 2D variable, hencewe learn ξ : R12 → R2, using the above methodology.
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Figure 3. 2D machine learned collective variables ξ1 and ξ2, for butane

The distribution of the dihedrals suggest that the meta-stable states coincide with the angles:{
π
3 , π,

5π
3
}
. We can see that the machine learned collective variables separate these meta-

stable states. Further, if we color the manifold learned from step 3 with our CVs we observe

that they are clearly orthogonal, confirming their uniqueness.

Figure 4. Encoder-Transformed Points Colored by ξ1 (CV1) and ξ2 (CV2), Respectively
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