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Abstract

In the study of regularity theory for anisotropic minimal surfaces, several ellipticity

conditions have been posed, including the atomic condition (AC), the scalar atomic

condition (SAC), the scalar atomic condition 1 (SAC1), and the uniform scalar atomic

condition (USAC). In exploring the implications between these ellipticity conditions,

we find counterexamples to several open implications. We show that the condition

(SAC1) cannot be weakened further to be implied by (SAC), prove that (AC1) is open

in the C1 topology, and in codimension 1 show that (SAC) and (AC) are not open in

the C2 topology.

Background

Plateau’s Problem

Given a boundary γ, what is the surface with that boundary that minimizes the total

area? What if we wish to minimize other quantities given the boundary γ?

Varifold

A d-dimensional varifold V is a Radon measure on Rn × G(n, d), where G(n, d) is the
Grassmannian of d-planes in Rn.

By disintegration of measure, V be decomposed as

V (dx, dT ) = ||V ||(dx) ⊗ µ(dT )
Integrands and Energy

Unless otherwise stated, assume all integrands are autonomous: Given a positive C1

integrand function Ψ : Rn × G(n, d) → R, the anisotropic energy of a varifold V is

defined as

Ψ(V ) :=
∫
G(n,d)

Ψ(T )dµ(T )

Given autonomous integrand Ψ, its dual Ψ∗ : G(n, d) → R is defined as

Ψ∗(P ) := Ψ(id − P ) = Ψ(P ⊥) ∀P ∈ G(n, d)
The first variation of the autonomous energy Ψ at the varifold V is given by

δΨV (g) = d

dt
Ψ(ϕ#

t V, Ω)
∣∣∣∣
t=0

=
∫
G(n,d)

[〈BΨ(T ), Dg(x)〉] dµ(T )

where

〈BΨ(T ), L〉 := Ψ(T )〈T, L〉 + 〈DΨ(T ), T ⊥LT + (T ⊥LT )>〉 ∀L ∈ Rn×n

From this,

A(µ) =
∫

BΨ(T )dV (T )

Atomic Conditions

Ψ satisfies the atomic condition (AC) if:

(AC1): dim ker A(µ) ≤ n − d for all µ ∈ P(G(n, d)),
(AC2): if dim ker A(µ) = n − d, then µ = δT0 for some T0 ∈ G(n, d).

Ψ satisfies the scalar atomic condition (SAC) if

〈BΨ(T ), BΨ∗(S⊥)〉 > 0 ∀T 6= S ∈ G(n, d)
Ψ satisfies the scalar atomic condition 1 (SAC1) if there exists δ < 1

d−1 such that

〈BΨ(T )w, w〉 ≤ (1 + δ)Ψ(T )||w||2 ∀T ∈ G(n, d), w ∈ Rn

Ellipticity Relations

The following theorems give some known relations among the conditions:

Theorems (De Rosa, Tione, 2020):

If Ψ is a positive integrand satisfying (SAC), then Ψ satisfies (AC).

If Ψ is a positive integrand staisfying (SAC1), then Ψ satisfies (AC1).

Proposition: In codimension 1, (SAC) does not imply (SAC1).

Definition: An integrand Ψ is said to satisfy the weak (SAC1) condition (wSAC1) if for any

orthonormal set of vectors {v1, . . . , vd−1} and for any µ,

d−1∑
i=1

〈A(µ)vi, vi〉 ≤ (d − 1)(1 + δ)
∫

Ψ(S)dµ(S)

where c > n − d and δ < 1
d−1.

Figure 1. Vector v (in red) and gradient ∇vG(v) normal to the surface (in blue). As the ellipse is elongated,

the magnitude of the vector and gradient increase while they grow increasingly orthogonal, bounding the

inner product on the left hand side of the last expression, while the right hand side can be made arbitrarily

large.

In codimension 1, (wSAC1) is equivalent to the following condition holding for w ∈ Sn−1,
v ⊥ u ∈ Sn−1:

(1 + (n − 2)δ)G(w) ≥ 〈∇G(w), v〉〈w, v〉 + 〈∇G(w), u〉〈w, u〉

Theorem: If Ψ is a positive integrand satisfying (wSAC1) then Ψ satisfies (AC1).

Proposition: In dimension and codimension 1, (SAC) does not imply (wSAC1).

Integrands under Linear Transformations

One question of interest is whether or not ellipticity conditions are invariant under linear

transformations.

Lemma: If Ψ̃(v) = Ψ(Av), then BΨ̃(v) = A>BΨ(Av)(A−1)>.

Theorem: If Ψ ∈ C1(G(n, d)) satisfies (SAC) and A ∈ GLn(R), then Ψ̃(v) = Ψ(Av) ∈
C1(G(n, d)) satisfies (SAC) as well.

Theorem: Let A ∈ O(n) and Ψ ∈ C1(G(n, d)) satisfy (SAC1). Then there exists ε > 0
such that for all Lε ∈ Rn×n with ||Lε|| < ε, Ψ((A + Lε))(v) satisfies (SAC1) aswell.

An important consequence:

Proposition: In any codimension, (SAC) does not imply (SAC1) or (wSAC1).

Relations between Conditions in Dimension and Codimension 1

(wSAC1) (wSAC) (wAC)

(SAC1) (AC1)

(USAC) (SAC) (AC)

strong convexity strict convexity convexity

\

\

\

\

Figure 2. Implication graph.

Topological Properties of Ellipticity Conditions

In general dimension and codimension, the set of functions satisfying (SAC1) is open

in the C1 topology, and those satisfying (USAC) are open in the C2 topology (De Rosa,

Tione, 2020).

Theorem: For arbitrary n > d, (AC1) is open in the C1 topology on C1(G(n, d)).

Theorem: (SAC) and (AC) are neither open nor closed in the C2-topology on

C2(G(n, n − 1)).

FutureWork

One line of investigation is to explore the relationships between these ellipcity

conditions in general dimension; that is, for integrands defined on G(n, d).
The `p norms have been used to construct a counterexample for topological

properties of the ellipticity conditions. However, whether `p for p 6= 2 satisfies (AC) in

higher dimension and codimension is still an open question.
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