## The Space of Cluster Polylogarithms

Etienne Phillips ${ }^{1}$ Ziwei Tan ${ }^{2}$ Advisors: Christian Krogager Zickert ${ }^{3}$

${ }^{1}$ North Carolina State University $\quad$ Brrn Mawr College $\quad$ UUniveristy of Maryland, College Park

## Cluster Algebra

Quiver: A directed graph with no one or two cycles with vertices labeled $1,2 \ldots$.
Seed: A pair $(Q, a)$ for a quiver, $Q$ and a tuple $a=\left(a_{1}, a_{2}, \ldots a_{n}\right)$ called a cluster labeling the vertices Seed: A pair $(Q, a)$ for a quiver, $Q$ and a tuple $a=$ of $Q$ respectively. The $a_{i}^{\prime}$ s are called A-coordinates.
For each vertex, $k$, of a seed, a mutation at vertex $k$ produces a new seed with a new quiver and a new list of variables in the following manner:


The cluster algebra generated by a seed $Q$ is the $\mathbf{Q}$-Algebra generated by all $\mathbf{A}$-coordinates ap pearing in any seed obtained by mutating the original seed.

## The Grassmannian

Grassmannian over a feld $F$, denoted $\operatorname{Gr}(p, n)$ is the space of $p$-dimensional sub-spaces of an $n$-dimensional vector space over $F$.
Fact: An element of $\operatorname{Gr}(p, n)$ can be identified with a $p \times n$ matrix which can in turn be identified by the determinants of $p$-column minors, called Plucker Coordinates (modulo some left action

The coordinate ring of the Grassmannian is the space of Plucker Coordinates modulo relations between them.
Theorem: The coordinate ring of $\operatorname{Gr}(p, n)$ has a cluster algebra structure.

## Polylogarithm Relation

Classical polylogarithms appeared in the 18th and 19th centuries under different guises in the works of Leibniz, Euler, Spence, Abel, Kummer, Lobachevsky, and many others.

- Classical Polylogarithm $L i_{n}(x)=\sum_{k=1}^{\infty} \frac{x^{k}}{k^{n}}$
- Multiple Polylogarithms $L i_{n_{1}, \ldots, n_{d}}\left(x_{1}, \ldots, x_{d}\right)=\sum_{k_{1}<\ldots<k_{d}} \frac{x_{1}^{k_{1}} \ldots x_{d}^{k_{d}}}{k_{1}^{n_{1}} \ldots k_{d}^{n_{d}}}$

The weight of a polylogarithm is $n_{1}+n_{2} \ldots+n_{d}$ and the depth is $d$, the number of variables
It was noticed early on that polylogarithms satisfy functional equations: a linear combination of polylogarithms of some weight are equal to lower weight terms. Here is the famous five-term relation for the dilogarithm obtained by Abe

$$
L i_{2}(-x)-L i_{2}(-y)+L i_{2}\left(-\frac{1+y}{x}\right)-L i_{2}\left(-\frac{1+x+y}{x y}\right)+L i_{2}\left(-\frac{1+x}{y}\right)=\text { lower weight terms }
$$

which holds when $0<x<y<1$. Similar relations for $\mathrm{Li}_{3}$, $\mathrm{L}_{4}$, and $\mathrm{L}_{5}$ were found by Kummer

The relations proved very important to understanding polylogarithms. The discoveries by Abel Kummer and others led to the following conjecture:
Conjecture: There exists a relation among the polylogarithms of each weight.

## Cluster Polylogarithms

Observation: The five-term relation is a sum of dilogarithms evaluated at A-coordinates of a cluster algebra! This motivated the theory of Cluster Polylogarithms, which are polylogarithms evaluated at A-coordinates.
The space $C L_{n}(S)$ is the space of cluster polylogarithms of weight $n$ associated to the seed $S$. More formally, it is all of the following expressions of the form

$$
\sum_{=\left(i_{1}, \ldots i_{0}\right)} k_{I} \int_{\gamma} d \log \left(a_{i_{1}}\right) \ldots d \log \left(a_{i_{n}}\right)
$$

## that satisfy two conditions:

- Cluster adjacency For each $I, a_{i_{1}} \ldots a_{i_{n}}$ all lie in a single cluster
- Cluster integrability The iterated integral only depends on the homotopy class of $\gamma$


## Symbols of Polylogarithms

The symbol of a polylogarithm is an algebraic invariant assigned to each cluster polylogarithm in the following way:

$$
\sum_{I=\left(i_{1}, \ldots, i_{n}\right)} k_{I} \int_{\gamma} d \log \left(a_{i_{1}}\right) \ldots d \log \left(a_{i_{n}}\right) \rightarrow \sum_{I=\left(i_{1}, \ldots, i_{n}\right)} k_{I}\left(a_{i_{1}} \otimes \ldots \otimes a_{i_{n}}\right)
$$

Fact: If a linear combination of polylogarithms forms a polylogarithm relation, this can be recovered from only the symbols.
Thus we identify polylogarithms and their symbols. Using polylogarithm symbols, Matveiakin and Rudenko gave a purely algebraic and combinatorial description of $C L_{n}(S)$
Theorem: A polylogarithm $P$ is in $C L_{2}(S)$ if the symbol $S y m(P)$ lies in the space generated by

$$
\left.\left\{\left.\frac{M_{1}}{a a^{\prime}} \wedge \frac{M_{2}}{a a^{\prime}} \right\rvert\, a \text { an A-coordinate of } S\right)\right\}
$$

where $M_{1}$ and $M_{2}$ denote product in and out respectively, and $a, a^{\prime}$ denote the variable at a vertex before and after mutation at that vertex respectively.
A polylogarithm $P$ is in $C L_{n}(S)$ if for all $1 \leq j \leq n-1$, we have

$$
\sum_{I=\left(i_{1}, \ldots i_{n}\right)} k_{I} a_{i 1} \otimes \ldots a_{i j} \wedge a_{i j+1} \otimes a_{i j+2 \ldots} \otimes a_{i n} \in A \otimes \ldots C L 2(S) \otimes \ldots A
$$

Theorem by Andrei Matveiakin and Daniil Rudenko:
Dimension of the space $C L_{n}(G r(2, m))$ of weight $n \geq 2, m \geq 4$ equals to

$$
\binom{m-1}{3}+\binom{m-1}{4}+\ldots+\binom{m-1}{n+1}
$$

What about for $\operatorname{Gr}(3,6), \operatorname{Gr}(3,7), \operatorname{Gr}(3,8)$, etc.?

## The project: Calculation of dimension

$$
\begin{gathered}
\wedge^{2}(\mathbb{Z}[A]) \\
\text { generated by } a \wedge b
\end{gathered}>\underset{\text { generated by } \frac{C L_{2}}{a a^{\prime}} \wedge \frac{M_{2}}{a a^{\prime}}=X \wedge(X+1)}{\text { Wedge Product: } \begin{array}{c}
a \wedge b=-b \wedge a \\
a \wedge a=0 \\
a \wedge b c=a \wedge b+a \wedge c \\
a \wedge \frac{b}{c}=a \wedge b-a \wedge c
\end{array}}
$$

Goal: Find the dimension and basis for $C L_{n}(\operatorname{Gr}(3, m))$ for $m=6,7,8$
Method: Create computational algorithms to compute the clusters and coordinates for the Gras mannians. From this, use linear algebra to construct a basis for $C L 2$. Then, implement the linear map from symbols to tensor and wedge products, and use linear algebra to find the preimage of the necessary subspace to construct a basis for $C L_{M_{1}}$

## Example for $\operatorname{Gr}(2,5)$

 he diago
$\Delta$ : frozen coordinate : unfrozen coordinate

$\frac{M_{1}}{a_{13}^{\prime} a_{13}^{\prime}} \wedge \frac{M_{2}}{a a^{\prime}}=\frac{a_{12} a_{34}}{a_{13} a_{24}} \wedge \frac{a_{14} a_{23}}{a_{13} a_{24}}$
$=a_{12} a_{34} \wedge a_{14} a_{23}-a_{12} a_{31} \wedge a_{13} a_{24}-a_{13} a_{24} \wedge a_{14} a_{22}$
$=a_{12} \wedge a_{14}+a_{12} \wedge a_{23}+a_{11} \wedge a_{12}+a_{14} \wedge a_{23}-a_{12} \wedge a_{13}-a_{12} \wedge a_{24}-a_{31} \wedge a_{13}-a_{31} \wedge a_{24}-a_{13} \wedge$ $a_{14}-a_{13} \wedge a_{23}-a_{24} \wedge a_{14}-a_{24} \wedge a_{23}$

$$
\frac{a_{12} a_{34}}{a_{13}^{24}} \wedge \wedge \frac{a_{14} a_{23}}{a_{13} a_{24}}-\frac{a_{23} a_{45}}{a_{24} a_{35}} \wedge \frac{a_{25} a_{34}}{a_{24} a_{35}}+\frac{a_{34} a_{15}}{a_{35} a_{14}} \wedge \frac{a_{13} a_{45}}{a_{35} a_{14}}-\frac{a_{45} a_{12}}{a_{14} a_{25}} \wedge \frac{a_{24} a_{15}}{a_{14} a_{25}}+\frac{a_{15} a_{23}}{a_{25} a_{13}} \wedge \frac{a_{35} a_{12}}{a_{25} a_{13}}=0
$$ $\operatorname{dim}\left(C L_{2}(\operatorname{Gr}(2,5))=4\right.$

1] D. Rudenko and A. Matveiakin, "Cluster polylogarithms : Quadranguar polyogarithms", arXiv:2208.01564, Aug 2022. 2] D. Rudenke, "On the goncharov depth conjecture and a formula for the volumes of orthoschemes," arix:2:2012.05599, Dec 2020 .

