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Cluster Algebra

Quiver: A directed graph with no one or two cycles with vertices labeled 1, 2...n.

Seed: A pair (Q, a) for a quiver,Q and a tuple a = (a1, a2, ...an) called a cluster labeling the vertices
of Q respectively. The a′

is are called A-coordinates.

For each vertex, k, of a seed, a mutation at vertex k produces a new seed with a new quiver and
a new list of variables in the following manner:

;

The cluster algebra generated by a seed Q is the Q−Algebra generated by all A-coordinates ap-
pearing in any seed obtained by mutating the original seed.

The Grassmannian

The Grassmannian over a field F , denoted Gr(p, n) is the space of p-dimensional sub-spaces of
an n-dimensional vector space over F .

Fact: An element of Gr(p, n) can be identified with a p × n matrix which can in turn be identified
by the determinants of p−column minors, called Plucker Coordinates (modulo some left action
from SLp).

The coordinate ring of the Grassmannian is the space of Plucker Coordinates modulo relations

between them.

Theorem: The coordinate ring of Gr(p, n) has a cluster algebra structure.

Polylogarithm Relation

Classical polylogarithms appeared in the 18th and 19th centuries under different guises in the

works of Leibniz, Euler, Spence, Abel, Kummer, Lobachevsky, and many others.
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The weight of a polylogarithm is n1 + n2... + nd and the depth is d, the number of variables.

It was noticed early on that polylogarithms satisfy functional equations: a linear combination of

polylogarithms of some weight are equal to lower weight terms. Here is the famous five-term

relation for the dilogarithm obtained by Abel:

Li2(−x) − Li2(−y) + Li2(−
1 + y

x
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) + Li2(−
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y
) = lower weight terms

which holds when 0 < x < y < 1. Similar relations for Li3, Li4, and Li5 were found by Kummer.

.

The relations proved very important to understanding polylogarithms. The discoveries by Abel,

Kummer and others led to the following conjecture:

Conjecture: There exists a relation among the polylogarithms of each weight.

Cluster Polylogarithms

Observation: The five-term relation is a sum of dilogarithms evaluated atA-coordinates of a cluster

algebra! This motivated the theory of Cluster Polylogarithms, which are polylogarithms evaluated

at A-coordinates.

The space CLn(S) is the space of cluster polylogarithms of weight n associated to the seed S.

More formally, it is all of the following expressions of the form

∑
I=(i1,...,in)

kI

∫
γ

d log(ai1)...d log(ain)

that satisfy two conditions:

Cluster adjacency For each I , ai1...ain all lie in a single cluster.

Cluster integrability The iterated integral only depends on the homotopy class of γ

Symbols of Polylogarithms

The symbol of a polylogarithm is an algebraic invariant assigned to each cluster polylogarithm in

the following way:

∑
I=(i1,...,in)

kI

∫
γ

d log(ai1)...d log(ain) →
∑

I=(i1,...,in)
kI

(
ai1 ⊗ ... ⊗ ain

)

Fact: If a linear combination of polylogarithms forms a polylogarithm relation, this can be recov-

ered from only the symbols.

Thus we identify polylogarithms and their symbols. Using polylogarithm symbols, Matveiakin and

Rudenko gave a purely algebraic and combinatorial description of CLn(S).
Theorem: A polylogarithm P is in CL2(S) if the symbol Sym(P ) lies in the space generated by{

M1
aa′ ∧ M2

aa′

∣∣∣∣ a an A-coordinate of S)
}

whereM1 andM2 denote product in and out respectively, and a, a′ denote the variable at a vertex
before and after mutation at that vertex respectively.

A polylogarithm P is in CLn(S) if for all 1 ≤ j ≤ n − 1, we have

∑
I=(i1,...in)

kIai1 ⊗ ...aij ∧ aij+1 ⊗ aij+2... ⊗ ain ∈ A ⊗ ...CL2(S) ⊗ ...A

Theorem by Andrei Matveiakin and Daniil Rudenko:

Dimension of the space CLn(Gr(2, m)) of weight n ≥ 2, m ≥ 4 equals to(
m − 1

3

)
+
(
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4

)
+ ... +

(
m − 1
n + 1

)
What about for Gr(3, 6), Gr(3, 7), Gr(3, 8), etc.?

The project: Calculation of dimension

;

Goal: Find the dimension and basis for CLn(Gr(3, m)) form = 6, 7, 8.
Method: Create computational algorithms to compute the clusters and coordinates for the Grass-

mannians. From this, use linear algebra to construct a basis for CL2. Then, implement the linear
map from symbols to tensor and wedge products, and use linear algebra to find the preimage of

the necessary subspace to construct a basis for CLn.

Example for Gr(2, 5)

;

M1
a13a′

13
∧ M2

aa′ = a12a34
a13a24

∧ a14a23
a13a24

= a12a34 ∧ a14a23 − a12a34 ∧ a13a24 − a13a24 ∧ a14a23
= a12 ∧ a14 + a12 ∧ a23 + a14 ∧ a12 + a14 ∧ a23 − a12 ∧ a13 − a12 ∧ a24 − a34 ∧ a13 − a34 ∧ a24 − a13 ∧
a14 − a13 ∧ a23 − a24 ∧ a14 − a24 ∧ a23

a12a34
a13a24

∧ a14a23
a13a24

− a23a45
a24a35

∧ a25a34
a24a35

+ a34a15
a35a14

∧ a13a45
a35a14

− a45a12
a14a25

∧ a24a15
a14a25

+ a15a23
a25a13

∧ a35a12
a25a13

= 0

dim(CL2(Gr(2, 5)) = 4
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