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Introduction
Chaotic behavior is observed in a diverse range of mechanical and non-mechanical systems,

such as thermal pulse combustors and living organisms. Understanding these complex

dynamical systems pose challenges due to sensitivity to initial conditions. This study focuses

on analyzing non-autonomous systems, particularly harmonically forced Duffing oscillators as

representative examples.

The mathematical form of the noisy Duffing oscillator is described by the equation

ẍ + cẋ + k1x + k3x
3 = γ cos(ωt) + σηt,

where c is the viscous damping, k1 is the linear stiffness parameter, k2 is the nonlinear stiffness,

γ is the forcing amplitude, ω is the forcing frequency, σ is the noise level, and ηt is the standard

Brownian motion.

To understand the complex behavior and transitions between different states in noisy Duffing

oscillators, we use Transition Path Theory (TPT), which offers a framework to study transitions

between two subsets of interest, often labeled as sets A and B. A central concept of TPT is the

committor function, which characterizes the probability of the system ending up in set A or B

given a starting point outside of A ∪ B. This approach provides insights into the dynamics and

probabilities of state transitions.

In the original context, obtaining the committor function as the solution of a boundary value

problem of an elliptic partial differential equation (PDE) poses significant challenges and is

impractical for many real-world applications. To adddress this limitation, TPT can be adapted

for discrete-time Markov chains, which is the approach used in this analysis. From the

transition matrix P of the Markov chain, we construct the generator L = P − I of the

stochastic process. This allows us to compute the forward committor, which represents the

probability of the process reaching set B before A when starting at state i. This is achieved by

solving the following system of equations:∑
k∈S

Likq+
k = 0, ∀i ∈ (A ∪ B)C q+

i = 0, ∀i ∈ A q+
i = 1, ∀i ∈ B.

Moreover, we extend our analysis to compute the backward committor and probability density

of reactive trajectories through analogous techniques. In this manner, we strive to leverage the

integration of Markov chains and TPT to develop a deeper understanding of the dynamics of

state transitions in noisy Duffing oscillators. Given the prevalence of noisy chaotic oscillators in

both natural and engineered systems, our research holds potential to provide insights for the

design and control of such systems.

Simple Case: Only Periodic Invariant Sets
In this section, we explore simple invariant sets to establish a foundation for analyzing more

complex behaviors. The system considered is described by the equation

ẍ + 0.1ẋ + x + 0.3x3 = 0.4 cos(1.4t) + σηt

Using a
√

0.05 noise level for analysis, we observe stable low and high amplitude periodic

attractors, basin boundaries indicating regions of attraction, and a saddle point serving as a

boundary between the periodic attractors.

Using a noise level of
√

0.01, we construct a point cloud using enhanced sampling to capture

transitions and points around the attractors. Additionally, we calculate covariance ellipses to

understand the attractor structure, as depicted in the plot below.
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Figure 1. Point Cloud with Attractors and Basin Boundaries

Case Study I: Monostable Oscillator
In the non-noisy case with k1 > 0 and k3 > 0, the system behaves as a monostable Duffing

oscillator with hardening characteristics. We follow the parameters from Agarwal’s paper[2]:

ẍ + 0.02ẋ + x + 5x3 = γ cos(0.5t).

Using γ as a control parameter, we varied its range to observe the system’s chaotic response.

The bifurcation diagram below reveals additional limit cycles (in green and orange) discovered

using Newton’s method, which were absent in Agarwal’s paper. Focusing on γ = 3.6, we
explored the coexistence of two attractors with fractal-like basin boundaries for deeper

insights.
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Bifurcation Diagram with Overlaid Newton Method Data
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Figure 2. (a) Bifurcation Diagram and (b) Basins of Attraction

To study state transitions, we introduce a noise term of
√

0.04ηt and construct a point cloud

capturing transitions and points around the attractors.Using metadynamics and delta-netting

techniques, we achieve a quasi-uniform point distribution. Subsequently, we compute the

transition probability matrix by launching numerous trajectories from each point in the point

cloud and monitoring their ending positions. The transition probability for a specific point i to j

in the point cloud is determined based on the Mahalanobis distance of j to point i’s

trajectories’ ending positions. Exponential weighting ensures probabilities decrease with

distance, reflecting likelihood of transitions.
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Figure 3. (a) Enhanced Sampling and (b) Stochastic Matrix

Using Tarjan’s algorithm, we extract the largest strongly connected component within the point

cloud, indicating a cohesive group with reciprocal transitions between its points. With the

transition matrix, we calculate the forward and backward committor functions, delineating

attractor A in magenta and attractor B in cyan. This analysis reveals the probabilities of

reaching each attractor from any point in the system.
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Figure 4. (a) Forward Committor and (b) Backward Committor

Continuing, we analyze the probability of each state being involved in a reactive trajectory. To

gain insight into transition pathways, we simulate escape paths from attractor A to attractor B

using the computed transition probabilities. This also serves as validation for our results.
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Figure 5. (a) Probability Density of Reactive Trajectories and (b) Escape Paths from A to B

Case Study II: Bistable Oscillator
Here k1 < 0 and k3 > 0, and the system behaves as a bistable Duffing oscillator with softening

characteristics. The system is defined by the equation

ẍ + 0.085ẋ − 0.5x + 0.2x3 = γ cos(0.42t)

The parameter γ is varied, creating interesting dynamics. We select the value γ = 0.15 because
it generates three attractors: a positive and negative low-amplitude attractor as well as a

high-amplitude attractor with intricate basin boundaries (Figure 6).
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Figure 6. (a) Bifurcation Diagram, (b) Attracting Cycles, and (c) Basins of Attraction

To study transitions, a noise coefficient of σ = 0.005 is introduced, and increased to σ = 0.05 for
sampling. After a quasi-uniform point distribution is achieved, we attempted to compute the

means and covariances of one-period trajectories launched from each point, but noticed

extreme variance in the eigenvalues of the covariance matrices. We observed that certain

‘joker points’, especially near to the basin boundaries, violated the assumption used in Case

Study I that the one-period trajectories conformed to a Gaussian distribution.
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Figure 7. (a) Discrepancies in Covariance, and (b) ‘Joker Points’

Because the exponential weighting method proved inviable, I used a nearest-neighbor method

to compute the stochastic matrix: if n stochastic trajectories were launched from point i, and k

of the trajectories landed nearest to point j, then Pij = k

n
. Using this stochastic matrix, I

computed the committor function outlined earlier. Notably, the committor function proved to

be almost exactly 0.5 across most of the state space, with few regions closer to 0 or 1. Notably,
the points for which the committor function is closer to 0.5 are more likely to produce

one-period trajectories with much greater covariance.
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Figure 8. (a) Forward Committor Function, and (b) Magnitude of Greatest Covariance Eigenvalue
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