Introduction

Chaotic behavior is observed in a diverse range of mechanical and non-mechanical systems, such as thermal pulse combustors and living organisms. Understanding these complex dynamical systems pose challenges due to sensitivity to initial conditions. This study focuses on analyzing non-autonomous systems, particularly harmonically forced Duffing oscillators as representative examples.
The mathematical form of the noisy Duffing oscillator is described by the equation

$$
\ddot{x}+c \dot{x}+k_{1} x+k_{3} x^{3}=\gamma \cos (\omega t)+\sigma \eta_{t},
$$

where c is the viscous damping, k_{1} is the linear stiffness parameter, k_{2} is the nonlinear stiffness, γ is the forcing amplitude, ω is the forcing frequency, σ is the noise level, and η_{t} is the standard Brownian motion.
To understand the complex behavior and transitions between different states in noisy Duffing oscillators, we use Transition Path Theory (TPT), which offers a framework to study transitions committor function in in given a starting poinnch char $A \cup B$. This approach provides insights into the dynamics and given a starting point outside of .
In the original context, obtaining the committor function as the solution of a boundary value problem of an elliptic partial differential equation (PDE) poses significant challenges and is impractical for many real-world applications. To adddress this limitation, TPT can be adapted for discrete-time Markov chains, which is the approach used in this analysis. From the stochastic process. This allows us to compute the forward committor, which represents the probability of the process reaching set B before A when starting at state i. This is achieved by solving the following system of equations:

$$
\sum_{k \in S} L_{i k} q_{k}^{+}=0, \forall i \in(A \cup B)^{C} \quad q_{i}^{+}=0, \forall i \in A \quad q_{i}^{+}=1, \forall i \in B .
$$

Moreover, we extend our analysis to compute the backward committor and probability density of reactive trajectories through analogous techniques. In this manner, we strive to leverage the integration of Markov chains and TPT to develop a deeper understanding of the dynamics of
state transitions in noisy Duffing oscillators. Given the prevalence of noisy chaotic oscillators in both natural and engineered systems, our research holds potential to provide insights for the design and control of such systems.

Simple Case: Only Periodic Invariant Sets

In this section, we explore simple invariant sets to establish a foundation for analyzing more complex behaviors. The system considered is described by the equation

$$
\ddot{x}+0.1 \dot{x}+x+0.3 x^{3}=0.4 \cos (1.4 t)+\sigma \eta_{t}
$$

Using a $\sqrt{0.05}$ noise level for analysis, we observe stable low and high amplitude periodic attractors, basin boundaries indicating regions of attraction, and a saddle point serving as a boundary between the periodic attractors.
 transitions and points around the attractors. Additionally, we calculate covariance ellipses to understand the attractor structure, as depicted in the plot below.

Case Study I: Monostable Oscillator
In the non-noisy case with $k_{1}>0$ and $k_{3}>0$, the system behaves as a monostable Duffing oscillator with hardening characteristics. We follow the parameters from Agarwal's paper ${ }^{\prime \prime}$

$$
\ddot{x}+0.02 \dot{x}+x+5 x^{3}=\gamma \cos (0.5 t) .
$$

Using γ as a control parameter, we varied its range to observe the system's chaotic response The bifurcation diagram below reveals additional limit cycles (in green and orange) discovered using Newton's method, which were absent in Agarwal's paper. Focusing on $\gamma=3.6$, we insights.

Figure 2. (a) Bifurcation Diagram and (b) Basins of Attraction
To study state transitions, we introduce a noise term of $\sqrt{0.04} \eta_{t}$ and construct a point cloud capturing transitions and points around the attractors.Using metadynamics and delta-netting techniques, we achieve a quasi-uniform point distribution. Subsequently, we compute the transition probability matrix by launching numerous trajectories from each point in the point cloud and monitoring their ending positions. The transition probability for a specific point i to j in the point cloud is determined based on the Mahalanobis distance of j to point i 's trajectories' ending positions. Exponential weighting ensures probabilities decrease with distance, reflecting likelihood of transitions.

Using Tarjan's algorithm, we extract the largest strongly connected component within the point cloud, indicating a cohesive group with reciprocal transitions between its points. With the transition matrix, we calculate the forward and backward committor functions, delineating reaching each attractor from any point in the system.

Continuing, we analyze the probability of each state being involved in a reactive trajectory. To gain insight into transition pathways, we simulate escape paths from attractor A to attractor B using the computed transition probabilities. This also serves as validation for our results.

Case Study II: Bistable Oscillator
Here $k_{1}<0$ and $k_{3}>0$, and the system behaves as a bistable Duffing oscillator with softening characteristics. The system is defined by the equation

$$
\bar{x}+0.085 \dot{x}-0.5 x+0.2 x^{3}=\gamma \cos (0.42 t)
$$

The parameter γ is varied, creating interesting dynamics. We select the value $\gamma=0.15$ because generates three attractors: a positive and negative low-amplitude attractor as well as a high-amplitude attractor with intricate basin boundaries (Figure 6).

To study transitions, a noise coefficient of $\sigma=0.005$ is introduced, and increased to $\sigma=0.05$ for sampling. After a quasi-uniform point distribution is achieved, we attempted to compute the sampling. After a quasi-uniform point distribution is achieved, we attempted to compute extreme variance in the eigenvalues of the covariance matrices. We observed that certain 'joker points', especially near to the basin boundaries, violated the assumption used in Case Study I that the one-period trajectories conformed to a Gaussian distribution

Figure 7. (a) Discrepancies in Covariance, and (b) 'Joker Points'

Because the exponential weighting method proved inviable, I used a nearest-neighbor method to compute the stochastic matrix: if n stochastic trajectories were launched from point i, and k of the trajectories landed nearest to point j, then $P_{i j}=\frac{k}{n}$. Using this stochastic matrix, I computed the committor function outlined earlier. Notably, the committor function proved to and 0.5 across most of the state space, with few regions close to 1 . Notably, one-period trajectories with much greater covariance.

Reference

[1] B. Balachandran L. Cilenti, Maria Cameron.
Most probable escape paths in periodically driven nonlinear oscillators.
Chaos, 32(1):083140, 2022
[2] B. Balachandran V. Agarwal, R. Wang.
B. Balachandran V. Agarwal, R. Wang.
Data driven forecasting of aperiodic motions of non-autonomous systems.
Chaos, 31(2):021105, 2021.

