Math 130 - Fall 2014 - Boyle -Exam 2

- NO CALCULATORS OR ELECTRONIC DEVICES ALLOWED.
- Where a calculator would be used, give your answer as an expression a calculator could evaluate.
- Use a separate answer sheet for each question.
- Give your pledge on page 1 only, covering the whole test.
- Draw a box around a final answer to a problem.

1. (11 points)

(a) (6 pts) The trachea is contracted during a cough to produce a more effective cough. The Tuchinsky model for the velocity V of air flowing through the trachea during a cough is $V=C\left(R_{0}-R\right) R^{2}$, where C and R_{0} are positive constants and R is the radius of the windpipe during the cough.

Find the value of R that maximizes the velocity.
(b) (5 pts) Given $f(x)=\ln \left(6 x^{2}-5 x\right)$, compute $f^{\prime}(x)$.

2. (12 points)

(a) (7 pts) Find the equation of the tangent line to the graph of $f(x)=$ $\sqrt{x^{2}+9}$ at $x=4$.
(b) (5 pts) Given $f(x)=\ln (\sqrt{x+4})$, compute $f^{\prime}(x)$.

3. (10 points)

For each of the following functions, find the formula for y^{\prime}.
(a) (5 pts) $y=3^{5 x}$.
(b) (5 pts) $y=\log _{10}(1-x)$.

4. (11 points)

(a) (7 pts) Given $y=e^{x^{2}} \cos x$, find the formula for y^{\prime}.
(b) (4 pts) Given $y=\sin (3 x+2)$, find the formula for y^{\prime}.

5. (16 points)

For each function below, find all inputs x at which $f(x)$ assumes a local maximum, and all inputs x at which $f(x)$ assumes a local minimum.
(a) (8 pts) $f(x)=x^{3} e^{x}$.
(b) (8 pts) $f(x)=2 x-9 x^{2 / 3}$, with domain $=[0, \infty)$.

6. (12 points)

(a) (8 pts) Suppose the concentration of a drug in the blood of a patient t minutes after injection is described by the function $K(t)=5 t /\left(t^{2}+1\right)$. Over which intervals is $K(t)$ decreasing / increasing ?
(b) (4 pts) Given $y=\cos ^{7} x$, find a formula for y^{\prime}.
7. (14 points) Consider the function $f(x)=2 x+\frac{8}{x}$.
(a) (3 pts) Find all asymptotes for f.
(b) (4 pts) Find the intervals on which f is increasing/decreasing.
(c) (3 pts) Find the intervals on which f is concave up/down.
(d) (4 pts) Graph f.
8. (14 points) Consider the function $f(x)=x e^{-x}$.
(a) (2 pts) Find all asymptotes for f.
(b) (4 pts) Find the intervals on which f is increasing/decreasing.
(c) (4 pts) Find the intervals on which f is concave up/down.
(d) (4 pts) Graph f.

