Math 130 - Spring 2015 - Boyle -Exam 1 - Solutions

1. (13 points)
(a) (4 pts) What is the domain of $y=\ln (x-6)$? What is the range?

SOLUTION.
The domain is $(6, \infty)$; i.e., all real numbers greater than 6 .
The range (set of outputs) is $(-\infty, \infty)$, i.e., all real numbers.
(b) (3 pts) Solve $\log _{2}(x)=-3$.

SOLUTION.

$$
\begin{aligned}
\log _{2}(x) & =-3 \\
2^{\log _{2}(x)} & =2^{-3} \\
x & =1 / 8
\end{aligned}
$$

(c) (6 pts) Solve $\sqrt{e^{x}}=e^{x} e^{x+1}$.

SOLUTION.

$$
\begin{aligned}
\sqrt{e^{x}} & =e^{x} e^{x+1} \\
e^{x / 2} & =e^{x} e^{x+1} \\
e^{x / 2} & =e^{2 x+1} \\
x / 2 & =2 x+1 \\
-1 & =\frac{3}{2} x \\
x & =-\frac{2}{3} .
\end{aligned}
$$

2. (10 points)

Potassium-40, with a half-life of 1.25 billion years, has been used by geochronologists trying to sort out the mass extinction of 250 million years ago. What fraction of the Potassium- 40 remains from a creature that died 250 million years ago?
SOLUTION.
Let t have units of billions of years. Let $t=0$ be the time 250 million (. 25 billion) years ago. Let $y(t)$ be the amount of potassium-40 in the creature at time t. The fraction we need to compute is $y(.25) / y(0)$.

$$
\begin{aligned}
y(t) & =y(0) e^{k t} \\
y(t) & =y(0) e^{(-\ln 2)(1 / 1.25) t} \\
y(.25) & =y(0) e^{(-\ln 2)(1 / 1.25)(.25)} \\
\frac{y(.25)}{y(0)} & =e^{(-\ln 2)(1 / 1.25)(.25)} \\
& =e^{(-\ln 2)(1 / 5)}=2^{-1 / 5}=1 / \sqrt[5]{2} .
\end{aligned}
$$

Alternately, you can just notice that 250 million years is one fifth of the half life, and therefore the answer is $2^{-1 / 5}$.

3. (10 points)

(a) (4 pts) Find all values of x between 0 and 2π for which $\sin x=1 / 2$.

SOLUTION: $x=\pi / 6$ and $x=5 \pi / 6$
(b) (3 pts) What is the period of the function $y=5 \sin (3 t+2)$?

SOLUTION: $2 \pi / 3$
(c) (3 pts) For the population model function

$$
P(t)=\frac{8}{1+4 e^{-3 t}}
$$

compute $\lim _{t \rightarrow \infty} P(t)$.
SOLUTION: 8
4. (12 points) Let position be measured in feet and let time be measured in seconds. Suppose the position of an object moving in a straight line is given by $s(t)=|t|$.
(a) (6 pts) What is the average velocity between $t=-3$ and $t=1$? SOLUTION.

$$
\frac{s(1)-s(-3)}{1-(-3)}=\frac{1-3}{1+3}=-\frac{1}{2} \mathrm{ft} / \mathrm{sec}
$$

(b) (3 pts) What is the instantaneous velocity at $t=2$?

SOLUTION.
$1 \mathrm{ft} / \mathrm{sec}$.
(For $t>0,|t|=t$, and therefore $s^{\prime}(t)=1$ if $t>0$.)
(c) (3 pts) What is the instantaneous velocity at $t=-2$?

SOLUTION.
$-1 \mathrm{ft} / \mathrm{sec}$.
(For $t<0,|t|=-t$, and therefore $s^{\prime}(t)=-1$ if $t<0$.)
5. (16 points) Determine the following limits. (4 points each)
(a) $\lim _{x \rightarrow 0} f(x)$ with f defined by $f(x)= \begin{cases}3 x+1 & \text { if } x \neq 0 \\ 2 & \text { if } x=0\end{cases}$
(b) $\lim _{x \rightarrow-1} \frac{x^{2}+4 x+3}{x+1}$
(c) $\lim _{x \rightarrow \frac{\pi^{-}}{}} \tan (x)$
(d) $\lim _{x \rightarrow-\infty} \frac{3 x^{5}+5 x^{4}-19,000}{5 x^{5}+4 x^{4}+3 x^{3}}$

SOLUTION.
(a) $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} 3(0)+1=1$
(b) $\lim _{x \rightarrow-1} \frac{x^{2}+4 x+3}{x+1}=\lim _{x \rightarrow-1} \frac{x^{2}+4 x+3}{x+1}=\lim _{x \rightarrow-1}(x+3)=2$
(c) $\lim _{x \rightarrow \frac{\pi}{2}^{-}} \tan (x)=\infty$
(d) $\lim _{x \rightarrow-\infty} \frac{3 x^{5}+5 x^{4}-19,000}{5 x^{5}+4 x^{4}+3 x^{3}}=\lim _{x \rightarrow-\infty} \frac{3 x^{5}}{5 x^{5}}=\frac{3}{5}$.
6. (12 points) (a) (8 pts) A tumor is approximately spherical in shape. If the radius of the tumor grows from 13 mm to 15 mm , what is the linear approximation to the change in the volume of the tumor?

SOLUTION.
Let $V=V(r)$ be the volume of a ball of radius $R \mathrm{~mm}$. We want the linear approximation to $V(15)-V(13)$. We have $V(r)=(4 / 3) \pi r^{3}$ and therefore $V^{\prime}(r)=4 \pi r^{2}$. So ...

$$
\begin{aligned}
V(13)-V(15) & \approx V^{\prime}(13)(15-13) \\
V(13)-V(15) & \approx 4 \pi(13)^{2}(2)=8(169) \pi \\
V(13)-V(15) & \approx(1352) \pi \mathrm{mm}^{3}
\end{aligned}
$$

(b) (4 pts) Given an example of a continuous function $y=f(x)$, from $(-\infty, \infty)$ to $(-\infty, \infty)$, and a number a such that $f^{\prime}(a)$ does not exist. You do not have to give a proof.

SOLUTION.
$f(x)=|x|$ and $a=0$.
(There are infinitely many other solutions.)
7. (17 points) (a) (9 pts) Find an equation for the tangent line of the graph of $y=\sqrt{x}$ at the point $(9,3)$.

SOLUTION.
$y=x^{1 / 2}$, so $y^{\prime}=(1 / 2) x^{-1 / 2}=1 /(2 \sqrt{x})$. We can get an equation for the tangent line by substituting into the point-slope form:

$$
\begin{aligned}
y-y_{0} & =(\text { slope })\left(x-x_{0}\right) \\
y-3 & =\frac{1}{2 \sqrt{9}}(x-9) \\
y-3 & =\frac{1}{6}(x-9) .
\end{aligned}
$$

Determine the following (2 pts each).
(b) $\lim _{x \rightarrow+\infty} \frac{\sin (x)}{x}=0$
(d) $\lim _{x \rightarrow+\infty} \frac{x^{5}}{e^{x}}=0$
(c) $\lim _{x \rightarrow+\infty} \sin (x) \quad D N E$
(e) $\lim _{x \rightarrow+\infty} \frac{\sqrt{x}}{\ln (x)}=\infty$

