Math 130 - Spring 2015 - Boyle -Exam 2-Solutions

- NO CALCULATORS OR ELECTRONIC DEVICES ALLOWED.
- Where a calculator would be used, give your answer as an expression a calculator could evaluate. For full credit, simplify expressions appropriately.
- Use a separate answer sheet for each of the SEVEN questions.
- Give your pledge on page 1 only, covering the whole test.
- Draw a box around a final answer to a problem.

1. (14 points)

For each of the following functions, find the formula for y^{\prime}. (a) (7pts) $y=2^{-5 x}$.

Solution.

$$
\begin{aligned}
y & =2^{-5 x}=e^{(\ln 2)(-5 x)} \\
y^{\prime} & =(\ln 2)(-5) e^{(\ln 2)(-5 x)}=-(5 \ln 2) 2^{-5 x} .
\end{aligned}
$$

(b) (7 pts) $y=\ln (|\sin (2 x)|)$.

Solution.

$$
\begin{aligned}
y & =\ln (|\sin (2 x)|) \\
y^{\prime} & =\frac{2 \cos (2 x)}{\sin (2 x)}=2 \cot (2 x)
\end{aligned}
$$

2. (14 points)

(a) (7 pts) Given $y=\log _{10}(\sqrt{3 x})$, find the formula for y^{\prime}.

Solution.

$$
\begin{aligned}
y & =\log _{10}(\sqrt{3 x})=\log _{10}(3 x)^{1 / 2}=\frac{1}{2} \log _{10}(3 x)=\frac{1}{2 \ln (10)} \ln (3 x) \\
y^{\prime} & =\frac{1}{2 \ln (10)} \frac{3}{3 x}=\frac{1}{2 x \ln (10)} .
\end{aligned}
$$

(b) (7 pts) Given $y=(\cos (x)) /\left(x^{2}+1\right)$, find the formula for y^{\prime}.

Solution.

$$
y^{\prime}=\frac{\left(x^{2}+1\right)(-\sin x)-(\cos x)(2 x)}{\left(x^{2}+1\right)^{2}} .
$$

3. (14 points)

Find every relative extreme value of the function $f(x)=(\ln x)\left(x^{2}\right)$, and indicate which are relative maxima and which are relative minima. (Remember, values are outputs.)

Solution.

$$
\begin{aligned}
f^{\prime}(x) & =(\ln x)^{\prime}\left(x^{2}\right)+(\ln x)\left(x^{2}\right)^{\prime} \\
& =(1 / x)\left(x^{2}\right)+(\ln x)(2 x) \\
& =x+(\ln x)(2 x)=x(1+2 \ln x) .
\end{aligned}
$$

The domain of f is $(0, \infty) . f^{\prime}(x)$ is zero only at $x=e^{-1 / 2}=1 / \sqrt{e}$. If $0<x<1 / \sqrt{e}$, then $f^{\prime}(x)<0$; of $1 / \sqrt{e}<x<\infty$, then $f^{\prime}(x)>0$.
By the first derivative test, at $x=1 / e f$ has a relative minimum value, which is $f(1 / \sqrt{e})=(-1 / 2)(1 / e)=-1 / 2 e$. This is the only relative extreme value.
4. (14 points) For each of the following functions, determine all asymptotes; if there is no asymptote for a function, say so.

$$
f(x)=7 x+\frac{\cos x}{x} \quad g(x)=\frac{8 x^{4}+3 x+1}{x^{2}+5} \quad h(x)=\ln (x) .
$$

Solution.

- f has an oblique asymptote $y=7 x$.
- f has a vertical asymptote at $x=0$.
- g has no asymptote.
- h has a vertical asymptote at $x=0$.

5. (14 points) (4 pts)

The formulas for the volume V and surface area A of a ball as a function of its radius R are $V=\frac{4}{3} \pi R^{3}$ and $A=4 \pi R^{2}$. There are numbers C and s such that $A=C V^{s}$ gives the area of a ball as a function of its volume.
a. (2 pts) What is the relationship between A and $d V / d R$?
b. (4 pts) What is s ?
c. (4 pts) Find the formula which gives $d A / d V$ as a function of V. (You do not have to solve for C, but you must use the correct number for s.)
d. (4 points) Compute $\lim _{R \rightarrow \infty} d A / d R$ and $\lim _{V \rightarrow \infty} d A / d V$.

Solutions.

a. $A=d V / d R$.
b. $s=2 / 3$.

This problem was about a theme in one of the biology worksheets. Here $s=2 / 3$ comes from $\left(R^{3}\right)^{2 / 3}=R^{2}$. In more detail:

$$
V^{2 / 3}=\left(\frac{4}{3} \pi R^{3}\right)^{2 / 3}=\left(\frac{4}{3} \pi\right)^{2 / 3}\left(R^{3}\right)^{2 / 3}=\left(\frac{4}{3} \pi\right)^{2 / 3}\left(R^{2}\right) .
$$

Then

$$
A=4 \pi R^{2}=\left(4 \pi \frac{1}{\left(\frac{4}{3} \pi\right)^{2 / 3}}\right) V^{2 / 3} .
$$

So, $s=2 / 3$ and C is that messy number multiplying $V^{2 / 3}$.
c. Since $A=C V^{2 / 3}$, we have $d A / d V=(2 / 3) C V^{-1 / 3}$.
d.

$$
\begin{aligned}
& \lim _{R \rightarrow \infty} d A / d R=\lim _{R \rightarrow \infty}(8 \pi R)=\infty \\
& \lim _{V \rightarrow \infty} d A / d V=\lim _{V \rightarrow \infty}(2 / 3) C \frac{1}{\sqrt[3]{V}}=0 .
\end{aligned}
$$

6. (14 points) For a given positive constant r, the Ricker model of population uses the function $P(x)=x e^{r(1-x)}$ to estimate the population one year from today, given that the population now (in suitable units) is x. The domain of P is $[0, \infty)$.
(a) (2 pts) Find all asymptotes for P (if there are none, say so).
(b) (4 pts) Find the intervals on which f is increasing/decreasing. (c) (2 pts) Determine all inputs x at which f has a relative maximum or minimum (say which).
(d) (2 pts) You may assume $P^{\prime \prime}(x)=\left(e^{r(1-x)}\right)\left(-2 r+r^{2} x\right)$. Find the intervals on which the graph of f is concave up/down.
(e) (4 points) For the parameter value $r=1$, graph f.

Solutions. (a) $y=0$ is a horizontal asymptote for P.
(b)

$$
\begin{aligned}
P^{\prime}(x) & =(x)^{\prime}\left(e^{r(1-x)}\right)+(x)\left(e^{r(1-x)}\right)^{\prime} \\
& =\left(e^{r(1-x)}\right)+(x)\left(-r e^{r(1-x)}\right) \\
& =e^{r(1-x)}(1-r x)
\end{aligned}
$$

From the sign of $P^{\prime}: f$ is increasing on $[0,1 / r]$ and decreasing on $[1 / r, \infty)$.
(c) f assumes a relative max at $x=1 / r$.
(d) By the way, here is a computation of $P^{\prime \prime}(x)$:

$$
\begin{aligned}
P^{\prime \prime}(x) & =\left(e^{r(1-x)}\right)^{\prime}(1-r x)+\left(e^{r(1-x)}\right)(1-r x)^{\prime} \\
& =\left(-r e^{r(1-x)}\right)(1-r x)+\left(e^{r(1-x)}\right)(-r) \\
& =\left(e^{r(1-x)}\right)\left(\left(-r+r^{2} x\right)+(-r)\right. \\
& =\left(e^{r(1-x)}\right)\left(-2 r+r^{2} x\right)=\left(e^{r(1-x)}\right)(r)(-2+r x) .
\end{aligned}
$$

$f^{\prime \prime}, 0$ on $(0,2 / r)$ and $f^{\prime \prime}>0$ on $(2 / r, \infty)$. So, the graph of f is concave down on $(0,2 / r)$ and concave up no $(2 / r, \infty)$.
(e) The graph is not included for technical reasons. We can write P also as $P(x)=\left(e^{r}\right) x e^{-r x}$. So, the graph will be a rescaling of the graph of $y=x e^{-x}$.

7. (16 points)

(a) (4 pts) You are given the following table of values:

x	1	2	3	4
$f(x)$	2	4	1	3
$f^{\prime}(x)$	-6	-7	-8	-9
$g(x)$	2	3	4	1
$g^{\prime}(x)$	$2 / 7$	$3 / 7$	$4 / 7$	$5 / 7$

If $h(x)=g(f(x))$, what is $h^{\prime}(1)$?

Solution.

(a) By the chain rule,
$h^{\prime}(1)=\left[g^{\prime}(f(1))\right]\left[f^{\prime}(1)\right]=\left[g^{\prime}(2)\right]\left[f^{\prime}(1)\right]=[3 / 7][-6]=-18 / 7$.
(b) Answer each of the following TRUE or FALSE. No proof required.
(i) (4 pts) The largest number of local extreme values a polynomial of degree 5 can have is 5 .
FALSE. If a polynomial f has an extreme value at x, then $f^{\prime}(x)=0$. Here f^{\prime} is a degree four polynomial. It cannot have more than four roots (a nonconstant polynomial of degree k has at most k distinct roots).
(ii) (4 pts) If f is the function $f(x)=e^{x}$, then $f^{\prime}(2 x)=2 f^{\prime}(x)$, for every x.
FALSE.
(iii) (4 pts) In the Fitz-Hugh-Nagumo model of neuron communication, the rate of change of the electrical potential with respect to time is given as a function of the potential v by $f(v)=v(a-v)(v-1)$. Suppose $a=1 / 4$.

True or False: The electrical potential is increasing with respect to time when $v=1 / 5$.
FALSE. $f(1 / 5)=(1 / 5)(1 / 4-1 / 5)(1 / 5-1)$. The sign of $f(1 / 5)$ is $(+)(+)(-)=$ $(-)$. Since $f(1 / 5)<0$, the electrical potential is increasing with respect to time when $v=1 / 5$.

